
UNIT 4 : ROBOT KINEMATICS & ROBOT PROGRAMMING

FORWARD KINEMATICS: It is a scheme to determine joint angles of a robot by
knowing its position in the world coordinate system.

REVERSE KINEMATICS: It is a scheme to determine the position of the robot in
the world coordinate system by knowing the joint angles and the link parameters of the
robot.

THE FORWARD AND REVERSE TRANSFORMATION OF 2-DEGREE OF
FREEDOM

Forward transformation of a 2- degree of freedom arm

We can determine the position of the end of the arm in world space by defining a
vector for link 1 and another for link 2.
 r1 = [L1 cos θ1, L1 sin θ1] -----eq1
 r2 = [L2cos (θ1 +θ2), L2 sin (θ1+ θ2)] ------eq2
Vector addition of eq1 and eq2 yields the coordinates x and y of the end of the arm
point PW in world space

 X = L1 cos θ1 +L2 cos (θ1+ θ2) ----eq3
 Y = L1 sin θ1 + L2 sin (θ1+ θ2) ----eq4

Reverse transformation of a 2- degree of freedom arm
It is more important to be able to derive the joint angles given the end of the arm
position in the world space. The typical situation is where the robot’s controller must
compute the joint angles required to move its end of arm to a point in space defined by
the points coordinates.
Consider RR robot

We can find the angles θ1 and θ2 by using trigonometric identities
Cos (A+B) = cos A cos B – sin A sin B
Sin (A+B) = sin A cos B + sin B cos A

tan (A-B) = 𝑇𝐴𝑁 𝐴+ 𝑇𝐴𝑁 𝐵
1−𝑇𝐴𝑁 𝐴 𝑇𝐴𝑁 𝐵

We can re write the equations 3 and 4
 X = L1 cos θ1 + L2 cos θ1 cos θ2 – L2 sin θ1 sin θ2 ----eq5

 Y = L1 sin θ1 + L2 sin θ1 cos θ2 + L2 sin θ2 cos θ1) ----eq6
Squaring and adding the equations 5 and 6

 𝑐𝑜𝑠θ
2

=
𝑥2+𝑦2−𝐿

1
2−𝐿

2
2

2𝐿
1
𝐿

2

Defining α and β
Tan β = 𝑦

𝑥

Tan α =
𝐿

2
 𝑆𝐼𝑁 θ

2

𝐿
1
+𝐿

2
 𝐶𝑂𝑆θ

2

Tan θ1 = Tan (β-α) = = 𝑇𝐴𝑁 + 𝑇𝐴𝑁
1−𝑇𝐴𝑁 𝑇𝐴𝑁

𝑌
𝑋 +

𝐿
2
 𝑆𝐼𝑁 θ

2

𝐿
1
+𝐿

2
 𝐶𝑂𝑆θ

2

1− 𝑌
𝑋

𝐿
2
 𝑆𝐼𝑁 θ

2

𝐿
1
+𝐿

2
 𝐶𝑂𝑆θ

2

 =
𝑌 𝐿

1
+𝐿

2
𝐶𝑂𝑆θ

2()+𝑋(𝐿
2
𝑆𝐼𝑁 θ

2
)

𝑋 𝐿
1
+𝐿

2
𝐶𝑂𝑆θ

2()−𝑌(𝐿
2
𝑆𝐼𝑁 θ

2
)

We know the link lengths L1 and L2 and arm end position P(x, y) can able to calculate
the joint angles

A 3-DEGREE OF FREEDOM ARM IN TWO DIMENSIONS

The arm we have been modeling is very simple; a two-jointed robot arm has little
practical value except for very simple tasks.
Let us add to the manipulator a modest capability for orienting as well as positioning a
part or tool. Accordingly, we will incorporate a third degree of freedom into the
previous configuration to develop the RRR manipulator shown in Figure.

http://5starnotes.com/

This third degree of freedom will represent a wrist joint. The world space coordinates
for the wrist end would

 X = L1 cos θ1 +L2 cos (θ1+ θ2) + L3 cos (θ1 + θ2 + θ3)
 Y = L1 sin θ1 + L2 sin (θ1+ θ2) + L3 sin(θ1 + θ2 + θ3)

ψ = θ1 + θ2 + θ3
The reverse transformation of three degree of freedom of arm . when defining the
position of end of the arm p(x, y) and ψ is the orientation angle for the wrist.
We can solve the joint angles θ1, θ2, θ3 using

X3 = X – L3 cos ψ
Y3 = Y – L3 sin ψ

A 4-DEGREE OF FREEDOM MANIPULATOR IN THREE DIMENSIONS:

The configuration of a manipulator in three dimensions. The manipulator has 4
degrees -of freedom: joint 1 (type T joint) allows rotation about the z axis; joint 2 (type
R) allows rotation about an axis that is perpendicular to the z axis; joint 3 is a linear
joint which is capable of sliding over a certain range; and joint 4 is a type R joint
which allows rotation about an axis that is parallel to the joint 2 axis. Thus, we have a
TRLR manipulator.

Let us define the angle of rotation of joint j1 about z axisθ; the angle of rotation of
joint 2 will be called the elevation angleΦ; the length of linear joint 3 will be called the
extension L (L represents a combination of links 2 and 3); and the angle that joint 4
makes with the x y plane will be called the pitch angleψ. These features are shown in
figure.

Forward kinematics: The position of the end of the wrist, P, defined in the world
coordinate system for the robot, is given by

X = cos θ (L cos Φ +L4 cos ψ)
Y = sin θ (L cos Φ +L4 cos ψ)

 Z = L1 + L sinΦ + L4 sin ψ)
Reverse kinematics: Given the specification of point P(x, y, z) and pitch angle ψ we
can find any of the joint positions relative to the world coordinates system. Using P4
(x4, y4, z4), which is the position of joint 4.

X4 = x – cos θ (L4 Cosψ)
Y4 = y – sin θ (L4 Cosψ)

Z4 = z –L4 sin ψ
The values of L, Φ and θ can be computed

L = (𝑋
4
2 + 𝑌

4
2 + (𝑍

4
− 𝐿

1
)2)

−1

Sin Φ =
𝑧

4
−𝐿

1

𝐿

COS θ =
𝑌

4

𝐿

MOTION COMMANDS:

Among the most important functions in a robot language are those which control the
movement of the manipulator arm. This section describes how the textual languages
accomplish these functions.

Move and Related Statements:

One of the most important functions of the language, and the principal feature that
distinguishes robot languages from computer programming languages, is manipulator
motion control. we defined the basic motion command, the MOVE statement

MOVE A1

This causes the end of the arm (end effector) to move from its present position to the
point (previously defined), named A1. A point is defined in terms of the robot's joint
positions, and so A1 defines the position and orientation of the end effector. This
MOVE statement generally causes the arm to move with a joint-interpolated motion.
There are variations on the MOVE statement. For example, the VAL II language
provides for a straight line move with the statement:

MOVES A1

The suffix S stands for straight line interpolation. The controller computes a straight
line trajectory from the current position to the point A1 and causes the robot arm to
follow that trajectory.

In some cases, the trajectory must be controlled so that the end effector passes
through some intermediate point as it moves from the present position to the next
point defined in the statement. This intermediate point is referred to as a via point.
The need for the via point arises in applications in which there are obstacles and
clearances to be considered along the motion path. For example, in removing a part
from a production machine, the arm trajectory would have to be planned so that no
interference occurs with the machine. The move statement for this situation might
read like the following:

MOVE A1 VIA A2

This command tells the robot to move its arm to point A1, but to pass through via

point A2 in making the move.

A related move sequence involves an approach to a point and departure from the
point. The situation arises in many material-handling applications, in which it is
necessary for the gripper to be moved to some intermediate location above the part
before proceeding to it for the pick up. This is what is called an approach, and the
robot languages permit this motion sequence to be done in several different ways. We
will use VAL II to illustrate. Suppose the robot's task is to pick up a part from a
container. We assume that the gripper is initially open. The following sequence might
be used:

APPRO A1, 50
DOVES A1
SIGNAL (to close gripper)
DEPART 50

The APPRO command causes the end effector to be moved to the vicinity of point
A1, but offset from the point along the tool z axis in the negative direction (above the
part) by a distance of 50 mm. From this location the end effector is moved straight to
the point A1 and closes its gripper around the part. The DEPART statement causes the
robot to move away from the pickup point along the tool z axis to a distance of 50
mm. The provision is available in VAL II for the APPRO and DEPART statements to
be performed using straight line interpolation rather than joint interpolation. These
commands are APPROS and DEPARTS, respectively.

In addition to absolute moves to a defined point in the workspace, incremental moves
are also available to the programmer. In the incremental move, the direction and
distance of the move must be defined. This is commonly done by specifying the
particular joint(s) to be moved and the distance of the move. Move distances for linear
joints are defined in inches or millimeters, while rotational joint moves are specified
in degrees of rotation. The following examples from AML illustrate the possibilities:

DMOVE(1,10)
DMOVE(<4,5,6>, <30,-60,90>)

DMOVE is the command for an incremental or 'Delta' move. In parenthesis, the joint
and the distance of the incremental move are specified. The first example moves joint
1 (assumed to be a linear joint) by 10 in. The second example commands an
incremental move of axes 4, 5, and 6 by 30°, - 60°, and 90°, respectively.

In the AL language, which is designed for multiple arm control, the MOVE statement
can be used to identify which arm is to be moved. Robots of the future might possess
more than a single arm, and we present the AL statement to illustrate how this might
be done.

MOVE ARM2 TO A1

The robot is instructed to move its arm number 2 from the current position to point
Al.

Speed control:

The SPEED command is used to define the velocity with which the robot's arm is
moved. When the SPEED command is given in the monitor mode (preparatory to
executing a program), it indicates some absolute measure of velocity available for the
robot. This might be specified as

SPEED 60 IPS

which indicates that the speed of the end effector during program execution shall be
60 in./sec unless it is altered to some other value during the program. If no units are
given, the speed command usually indicates some value relative to the robot
designer's concept of 'normal' speed. For instance,

SPEED 75

indicates that the robot should operate at 75 per cent of normal speed during program
execution (unless altered during the program).
When the speed command is included as a statement in the robot program, it can be
used either to specify the actual speed (e.g., 60 IPS), or it can indicate that the robot
should operate at a certain per cent of the speed that was specified under monitor
mode before program execution. For example, if SPEED 60 IPS was specified under
monitor command, and the following statement appeared in the program SPEED 75

it would mean that the subsequent statements should be performed at a speed that is
75 per cent of 60 IPS (45 in./sec).

Definition of Points in the Workspace:

Our motion control programs have made use of points in the workspace. The locations
of these points must be defined for the program. As indicated earlier, the definition of
point locations is usually done by means of a teach pendant. The pendant is used to
drive the robot arm to the desired position and orientation. Then, with a command
typed into the keyboard such as

HERE A1

that point location is named A1. (The HERE statement is used in the VAL language.)
The position and orientation of each joint are captured in control memory as an
aggregate such as

<50.526, 236.003, 14.581, 25.090, 125.750>

As indicated previously, the first three values are the x-y-z coordinates in world space
and the remaining values are wrist rotation angles. An alternative way of specifying
points in space is to name the point and designate its coordinate values by typing them
into control memory directly without using the teach pendant. We have used the
following method for specifying these coordinate values

DEFINE A1= POINT <50.526, 236.003, 14.581, 25.090, 125.750> There are, of
course, problems in defining points in this way because of the programmer's difficulty
in knowing the coordinates in the work cell of the desired position for the robot end
effector.

Paths and Frames:

Several points can be connected together to define a path in the workspace. The
following statement might be used to specify a path

DEFINE PATH1 PATH(A1, A2, A3, A4)

Accordingly, the path PATH1 consists of the connected series of points A1, A2, A3,
and A4, defined relative to the robot's world space. The beginning of the path is A1
and the end of the path is the last point that is specified in the series. A path can
consist of two or more points. All points specified in the path statement must have
been previously defined. The manner in which the robot moves between the points in
the path is determined by the motion statement. For example, the statement

MOVE PATH1

would indicate that the robot arm would move through the sequence of positions
defined in PATHI using a joint-interpolated motion between the points. If the
statement is used, this indicates that straight line interpolation must be used to move
between the points in the path.

MOVES PATH1

A reference frame is a Cartesian coordinate system that may have other points or
paths defined relative to it. For example, suppose a part has several identical features
replicated in its design, each with a different position and orientation. Furthermore,
suppose that the robot must be programmed to process each of the identical features
on the part. An example of this kind of situation might be the routing of the same
pattern at several locations around the contour of a curved plate. The pattern would
consist of a path which contains several moves, and although all paths are identical.
their positions and orientations in space vary around the part. In this situation, it
would be convenient to program the routing path relative to a reference frame and
then redefine the reference frame for each location on the part. The following
statement conveys the concept of the frame definition in robot programming

DEFINE FRAME1 = FRAME(A1, A2, A3).

The variable name given to the frame is FRAME1. Its position in space is defined
using the three points, A1, A2, and A3. A1 becomes the origin of the frame, A2 is a
point along the x axis, and A3 is a point in the xy plane. Accuracy is improved in the
internal calculations as the separation between points is increased. The three points
uniquely define the Cartesian coordinate system of the new frame. The z axis is
perpendicular to the xy plane, with its positive direction pointing to form a right- hand
coordinate system.

In our illustration of the series of routing operations around the contoured surface of a
curved plate, let us assume that there are nine identical patterns to be made, each one
with a different reference frame. We can define the nine frames as FRAME1,
FRAME2,..., FRAME9. A routing path, called ROUTE, can now be defined relative
to one of these frames (any frame will do) by means of a statement such as the
following

DEFINE ROUTE:FRAME1 = PATH(P1, P2, P3, P4, P5, P6, P7)

where the series of points P1 through P7 defines the routing pattern at the first
position on the part identified by FRAME1. Instead of the seven points being defined
relative to the world space coordinate system, they are defined relative to the new
coordinate system FRAME1. When the robot is commanded to follow the path, the
statement must include the definition of the reference frame, as follows

MOVES ROUTE:FRAME1

To repeat the same path, only relocating and reorienting it relative to successive
reference frames, we would use the following commands as required to execute the
sequence of routing operations

MOVES ROUTE:FRAME2
​ .
​ .
​ .
MOVES ROUTE:FRAME3

.​
​ .
​ .
MOVES ROUTE:FRAME9

Using the computational methods for compound transformations , the path ROUTE is
transformed in the robot space into each new frame that is specified in the move
command. Each of the points in ROUTE is transformed into the new frame, and the
straight line segment path is executed accordingly.

If the programmer were to use the statement MOVES ROUTE, that is, without
specifying the particular frame, then the default condition would require the robot to
interpret the command so that the world space coordinate system were used as the
reference frame. The path would be transformed into the robot's world cartesian
coordinate system.

END EFFECTOR AND SENSOR COMMANDS

we made use of the SIGNAL and WAIT statements to initiate output signals or await
input signals. The signals were binary (on-off) which imposed limitations on the level
of control that could be exercised. The second generation languages have more
advanced input-output capabilities.

End Effector Operation:

One of the uses of the SIGNAL commands in the previous chapter was to operate the
gripper: SIGNAL 5 to close the gripper and SIGNAL 6 to open the gripper. In most
robot languages, there are better ways of exercising control over the end effector
operation. The most elementary commands are

OPEN and CLOSE

VAL II distinguishes between differences in the timing of the gripper action. The two
commands OPEN and CLOSE cause the action to occur during execution of the next
motion, while the statements
OPENI and CLOSEI

cause the action to occur immediately, without waiting for the next motion
to begin. This latter case results in a small time delay which can be defined by a
parameter setting in VAL II.

The preceding statements accomplish the obvious actions for a non-servoed gripper.
Greater control over a servoed gripper operation can be achieved in several ways. For
instance, the command

CLOSE 40 MM

or

CLOSE 1.575 IN

when applied to a gripper that has servocontrol over the width of the finger opening
would close the gripper to an opening of 40 mm (1.575 in.). Similar commands would
control the opening of the gripper.

Some grippers also have tactile and/or force sensors built into the fingers. These
permit the robot to sense the presence of the object and to apply a measured force to
the object during grasping. For example, a gripper servoed for force measurement can
be controlled to apply a certain force against the part being grasped. The command

CLOSE 3.0 LB

indicates the type of command that might be used to apply a 3-lb gripping force

against the part. Force control of the gripper can be substantially more refined than
the preceding command. For a properly instrumented hand, the AL language
statement

CENTER

provides a fairly sophisticated level of control for tactile sensing. Invoking this
command causes the gripper to slowly close until contact is made with the object by
one of the fingers. Then, while that finger continues to maintain contact with the
object, the robot arm shifts position while the opposite finger is gradually closed until
it also makes contact with the object. The CENTER statement allows the robot to
center its arm around the object rather than causing the object to be moved by the
gripper closure. This could be useful in determining the position of an object whose
location is only approximately known by the robot.

For end effectors that are powered tools rather than grippers, the robot must b able to
position the tool and operate it. An OPERATE statement (based roughly on a
command available in the AL language) might be used to control the powered tool
For example, consider the following sequence of commands:

OPERATE TOOL (SPEED=125 RPM)
OPERATE TOOL (TORQUE = 5 IN LB)
OPERATE TOOL (TIME=10 SEC)

We are assuming a powered rotational tool such as a powered screwdriver All three
statements apply to the operation. However, the first two statements are mutually
exclusive; either the tool can be operated at 125 r/min or it can be operated with a
torque of 5 in.-lb. The driver would be operated at 125 r/min until the screw began to
tighten, at which point the torque statement would take precedence. The third
statement indicates that after 10 sec the operation will terminate.

Sensor Operation:

Let us consider some additional control features of the SIGNAL, WAIT, and similar
statements beyond those described in Chap. 8. The SIGNAL command can be used
both for turning on or off an output signal. The statements

SIGNAL 3, ON
​ .
​ .
SIGNAL 3, OFF

would allow the signal from output port 3 to be turned on at one point in the program
and turned off at another point in the program. The signal in this illustration is
assumed to be binary. An analog output could also be controlled with the SIGNA
command. We will reserve for analog signals the input/output ports numbered greater
than 100. The statement could be written as follows:

SIGNAL 105, 4.5

This would provide an output of 4.5 units (probably volts) within the allowabl range
of the output signal.

The on-off conditions can also be applied with the WAIT command. In th following
sequence, the robot provides power to some external device. The WA is used to verify
that the device has been turned on before permitting the program to continue. Later in
the program, the robot turns off the device and the device signals back that it has been
turned off before the program continues. The relevant commands are as follows:

SIGNAL 5, ON Robot turns on the device
WAIT 15, ON Device signals back that it is on
​ .
​ .
​ .
SIGNAL 5, OFF Robot turns off the device

WAIT 15, OFF Device signals back that it is off

The WAIT statement can be used for analog signals as well as binary digital signals in
the same manner as the SIGNAL command.

Instead of identifying input and output signals by their I/O port number, it is often
more convenient to define a variable name for the signal. This is usually easier for the
programmer to remember. It also permits the variable to be used in the program, so
that its value might be changed within the program by means of some logical
operators (to be covered in Sec. 9.7). The variables could be defined as follows

DEFINE MOTOR1 = OUTPORT 5
DEFINE SENSR3 = INPORT 15

This would permit the preceding input output statements to be written in the following
way:

SIGNAL MOTOR1, ON
WAIT SENSR3, ON

SIGNAL MOTOR1, OFF

WAIT SENSR3, OFF

It is also possible to define an analog signal, either input or output, as a variable that is
used during program execution. The statement

DEFINE VOL T1 = OUTPORT 105

specifies that the variable VOLT1 will be used with output port 105. At some point in
the program, that variable could be computed to be a particular value (e.g., 4.5 V).
and that value could be sent to the designed device in the cell by the statement

SIGNAL VOLT1

The value of VOLTI would be signaled to the external device through output port 105.
Similar use can be made of the WAIT command for an analog input signal.
Specification of the variable name and associated input port is done by

DEFINE VOLTS3 = INPORT 115

Subsequent use of the variable can be made in a WAIT statement as follows

WAIT VOLT3

which indicates that the program execution should wait for the value of the signal on
input port 115 to have a value that is greater than or equal to VOLT3. The
programmer must keep in mind what the normal signal level is likely to be (whether it

is normally greater than or less than VOLT3) since this may influence the logic of the
program

