
UNIT 4 : ROBOT KINEMATICS & ROBOT PROGRAMMING 
 

 
FORWARD KINEMATICS: It is a scheme to determine joint angles of a robot by 
knowing its position in the world coordinate system. 
 
REVERSE KINEMATICS: It is a scheme to determine the position of the robot in 
the world coordinate system by knowing the joint angles and the link parameters of the 
robot. 
 
THE FORWARD AND REVERSE TRANSFORMATION OF 2-DEGREE OF 
FREEDOM 
 
Forward transformation of a 2- degree of freedom arm 

 
We can determine the position of the end of the arm in world space by defining a 
vector for link 1 and another for link 2. 
                                               r1 = [L1 cos θ1, L1 sin θ1] -----eq1 
                                               r2 = [L2cos (θ1 +θ2), L2 sin (θ1+ θ2)] ------eq2 
Vector addition of eq1 and eq2 yields the coordinates x and y of the end of the arm 
point PW  in world space 

     X = L1 cos θ1 +L2 cos (θ1+ θ2) ----eq3 
     Y = L1 sin θ1 + L2 sin (θ1+ θ2) ----eq4 

 
Reverse transformation of a 2- degree of freedom arm 
It is more important to be able to derive the joint angles given the end of the arm 
position in the world space. The typical situation is where the robot’s controller must 
compute the joint angles required to move its end of arm to a point in space defined by 
the points coordinates. 
Consider RR robot  



 
We can find the angles θ1 and θ2 by using trigonometric identities 
Cos (A+B) = cos A cos B – sin A sin B 
Sin (A+B) = sin A cos B + sin B cos A 

tan (A-B) =  𝑇𝐴𝑁 𝐴+ 𝑇𝐴𝑁 𝐵
1−𝑇𝐴𝑁 𝐴 𝑇𝐴𝑁 𝐵

We can re write the equations 3 and 4 
     X = L1 cos θ1 +  L2  cos θ1 cos θ2 – L2 sin θ1 sin θ2 ----eq5 

        Y = L1 sin θ1 + L2 sin θ1 cos θ2 + L2 sin θ2 cos θ1) ----eq6 
Squaring and adding the equations 5 and 6  
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We know the link lengths L1 and L2 and arm end position P(x, y) can able to calculate 
the joint angles 
 
A 3-DEGREE OF FREEDOM ARM IN TWO DIMENSIONS 
 

The arm we have been modeling is very simple; a two-jointed robot arm has little 
practical value except for very simple tasks.  
Let us add to the manipulator a modest capability for orienting as well as positioning a 
part or tool. Accordingly, we will incorporate a third degree of freedom into the 
previous configuration to develop the RRR manipulator shown in Figure.  
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This third degree of freedom will represent a wrist joint. The world space coordinates 
for the wrist end would 

      X = L1 cos θ1 +L2 cos (θ1+ θ2) + L3 cos (θ1 + θ2 + θ3) 
     Y = L1 sin θ1 + L2 sin (θ1+ θ2) + L3 sin(θ1 + θ2 + θ3)  

ψ = θ1 + θ2 + θ3 
The reverse transformation of three degree of freedom of arm . when defining the 
position of end of the arm p(x, y)  and ψ is the orientation angle for the wrist. 
We can solve the joint angles θ1, θ2, θ3 using 

X3 = X – L3 cos ψ 
Y3 = Y – L3 sin ψ 

 
A 4-DEGREE OF FREEDOM MANIPULATOR IN THREE DIMENSIONS: 
 

The configuration of a manipulator in three dimensions. The manipulator has 4 
degrees -of freedom: joint 1 (type T joint) allows rotation about the z axis; joint 2 (type 
R) allows rotation about an axis that is perpendicular to the z axis; joint 3 is a linear 
joint which is capable of sliding over a certain range; and joint 4 is a type R joint 
which allows rotation about an axis that is parallel to the joint 2 axis. Thus, we have a 
TRLR manipulator. 

Let us define the angle of rotation of joint j1 about z axisθ; the angle of rotation of 
joint 2 will be called the elevation angleΦ; the length of linear joint 3 will be called the 
extension L (L represents a combination of links 2 and 3); and the angle that joint 4 
makes with the x y plane will be called the pitch angleψ. These features are shown in 
figure. 



 
Forward kinematics: The position of the end of the wrist, P, defined in the world 
coordinate system for the robot, is given by 

X = cos θ (L cos Φ +L4 cos ψ) 
Y = sin θ (L cos Φ +L4 cos ψ) 

                                                             Z = L1 + L sinΦ + L4 sin ψ) 
Reverse kinematics: Given the specification of point P(x, y, z) and pitch angle ψ we 
can find any of the joint positions relative to the world coordinates system. Using P4 
(x4, y4, z4), which is the position of joint 4. 

X4 = x – cos θ (L4 Cosψ) 
Y4 = y – sin θ (L4 Cosψ) 

Z4 = z –L4 sin ψ 
The values of L, Φ and θ can be computed 
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MOTION COMMANDS: 



 

Among the most important functions in a robot language are those which control the 
movement of the manipulator arm. This section describes how the textual languages 
accomplish these functions. 
 
Move and Related Statements: 
 

One of the most important functions of the language, and the principal feature that 
distinguishes robot languages from computer programming languages, is manipulator 
motion control. we defined the basic motion command, the MOVE statement 
 
MOVE A1 
 
This causes the end of the arm (end effector) to move from its present position to the 
point (previously defined), named A1. A point is defined in terms of the robot's joint 
positions, and so A1 defines the position and orientation of the end effector. This 
MOVE statement generally causes the arm to move with a joint-interpolated motion. 
There are variations on the MOVE statement. For example, the VAL II language 
provides for a straight line move with the statement: 
 
MOVES A1 
 
The suffix S stands for straight line interpolation. The controller computes a straight 
line trajectory from the current position to the point A1 and causes the robot arm to 
follow that trajectory. 
 
In some cases, the trajectory must be controlled so that the end effector passes 
through some intermediate point as it moves from the present position to the next 
point defined in the statement. This intermediate point is referred to as a via point. 
The need for the via point arises in applications in which there are obstacles and 
clearances to be considered along the motion path. For example, in removing a part 
from a production machine, the arm trajectory would have to be planned so that no 
interference occurs with the machine. The move statement for this situation might 
read like the following: 
 
MOVE A1 VIA A2 
 
This command tells the robot to move its arm to point A1, but to pass through via 
 
point A2 in making the move. 
 
A related move sequence involves an approach to a point and departure from the 
point. The situation arises in many material-handling applications, in which it is 
necessary for the gripper to be moved to some intermediate location above the part 
before proceeding to it for the pick up. This is what is called an approach, and the 
robot languages permit this motion sequence to be done in several different ways. We 
will use VAL II to illustrate. Suppose the robot's task is to pick up a part from a 
container. We assume that the gripper is initially open. The following sequence might 
be used: 
 



APPRO A1, 50 
DOVES A1 
SIGNAL (to close gripper) 
DEPART 50 
 
The APPRO command causes the end effector to be moved to the vicinity of point 
A1, but offset from the point along the tool z axis in the negative direction (above the 
part) by a distance of 50 mm. From this location the end effector is moved straight to 
the point A1 and closes its gripper around the part. The DEPART statement causes the 
robot to move away from the pickup point along the tool z axis to a distance of 50 
mm. The provision is available in VAL II for the APPRO and DEPART statements to 
be performed using straight line interpolation rather than joint interpolation. These 
commands are APPROS and DEPARTS, respectively. 
 
In addition to absolute moves to a defined point in the workspace, incremental moves 
are also available to the programmer. In the incremental move, the direction and 
distance of the move must be defined. This is commonly done by specifying the 
particular joint(s) to be moved and the distance of the move. Move distances for linear 
joints are defined in inches or millimeters, while rotational joint moves are specified 
in degrees of rotation. The following examples from AML illustrate the possibilities: 
 
DMOVE(1,10)  
DMOVE(<4,5,6>, <30,-60,90>) 
 
DMOVE is the command for an incremental or 'Delta' move. In parenthesis, the joint 
and the distance of the incremental move are specified. The first example moves joint 
1 (assumed to be a linear joint) by 10 in. The second example commands an 
incremental move of axes 4, 5, and 6 by 30°, - 60°, and 90°, respectively.  
 
In the AL language, which is designed for multiple arm control, the MOVE statement 
can be used to identify which arm is to be moved. Robots of the future might possess 
more than a single arm, and we present the AL statement to illustrate how this might 
be done. 
 
MOVE ARM2 TO A1 
 
The robot is instructed to move its arm number 2 from the current position to point 
Al. 
 
 
 
 
 
Speed control: 
 
The SPEED command is used to define the velocity with which the robot's arm is 
moved. When the SPEED command is given in the monitor mode (preparatory to 
executing a program), it indicates some absolute measure of velocity available for the 
robot. This might be specified as 
 



SPEED 60 IPS 
 
which indicates that the speed of the end effector during program execution shall be 
60 in./sec unless it is altered to some other value during the program. If no units are 
given, the speed command usually indicates some value relative to the robot 
designer's concept of 'normal' speed. For instance, 
 
SPEED 75 
 
indicates that the robot should operate at 75 per cent of normal speed during program 
execution (unless altered during the program). 
When the speed command is included as a statement in the robot program, it can be 
used either to specify the actual speed (e.g., 60 IPS), or it can indicate that the robot 
should operate at a certain per cent of the speed that was specified under monitor 
mode before program execution. For example, if SPEED 60 IPS was specified under 
monitor command, and the following statement appeared in the program SPEED 75 
 
it would mean that the subsequent statements should be performed at a speed that is 
75 per cent of 60 IPS (45 in./sec). 
 
Definition of Points in the Workspace: 
 
Our motion control programs have made use of points in the workspace. The locations 
of these points must be defined for the program. As indicated earlier, the definition of 
point locations is usually done by means of a teach pendant. The pendant is used to 
drive the robot arm to the desired position and orientation. Then, with a command 
typed into the keyboard such as 
 
HERE A1 
 
that point location is named A1. (The HERE statement is used in the VAL language.) 
The position and orientation of each joint are captured in control memory as an 
aggregate such as 
 
<50.526, 236.003, 14.581, 25.090, 125.750> 
 
As indicated previously, the first three values are the x-y-z coordinates in world space 
and the remaining values are wrist rotation angles. An alternative way of specifying 
points in space is to name the point and designate its coordinate values by typing them 
into control memory directly without using the teach pendant. We have used the 
following method for specifying these coordinate values 
 
DEFINE A1= POINT <50.526, 236.003, 14.581, 25.090, 125.750> There are, of 
course, problems in defining points in this way because of the programmer's difficulty 
in knowing the coordinates in the work cell of the desired position for the robot end 
effector. 
 
Paths and Frames: 
 



Several points can be connected together to define a path in the workspace. The 
following statement might be used to specify a path 
 
DEFINE PATH1 PATH(A1, A2, A3, A4) 
 
Accordingly, the path PATH1 consists of the connected series of points A1, A2, A3, 
and A4, defined relative to the robot's world space. The beginning of the path is A1 
and the end of the path is the last point that is specified in the series. A path can 
consist of two or more points. All points specified in the path statement must have 
been previously defined. The manner in which the robot moves between the points in 
the path is determined by the motion statement. For example, the statement 
 
MOVE PATH1 
 
would indicate that the robot arm would move through the sequence of positions 
defined in PATHI using a joint-interpolated motion between the points. If the 
statement is used, this indicates that straight line interpolation must be used to move 
between the points in the path. 
 
MOVES PATH1 
 
A reference frame is a Cartesian coordinate system that may have other points or 
paths defined relative to it. For example, suppose a part has several identical features 
replicated in its design, each with a different position and orientation. Furthermore, 
suppose that the robot must be programmed to process each of the identical features 
on the part. An example of this kind of situation might be the routing of the same 
pattern at several locations around the contour of a curved plate. The pattern would 
consist of a path which contains several moves, and although all paths are identical. 
their positions and orientations in space vary around the part. In this situation, it 
would be convenient to program the routing path relative to a reference frame and 
then redefine the reference frame for each location on the part. The following 
statement conveys the concept of the frame definition in robot programming 
 
DEFINE FRAME1 = FRAME(A1, A2, A3). 
 
The variable name given to the frame is FRAME1. Its position in space is defined 
using the three points, A1, A2, and A3. A1 becomes the origin of the frame, A2 is a 
point along the x axis, and A3 is a point in the xy plane. Accuracy is improved in the 
internal calculations as the separation between points is increased. The three points 
uniquely define the Cartesian coordinate system of the new frame. The z axis is 
perpendicular to the xy plane, with its positive direction pointing to form a right- hand 
coordinate system. 
 
In our illustration of the series of routing operations around the contoured surface of a 
curved plate, let us assume that there are nine identical patterns to be made, each one 
with a different reference frame. We can define the nine frames as FRAME1, 
FRAME2,..., FRAME9. A routing path, called ROUTE, can now be defined relative 
to one of these frames (any frame will do) by means of a statement such as the 
following 
 



DEFINE ROUTE:FRAME1 = PATH(P1, P2, P3, P4, P5, P6, P7) 
 
where the series of points P1 through P7 defines the routing pattern at the first 
position on the part identified by FRAME1. Instead of the seven points being defined 
relative to the world space coordinate system, they are defined relative to the new 
coordinate system FRAME1. When the robot is commanded to follow the path, the 
statement must include the definition of the reference frame, as follows 
 
MOVES ROUTE:FRAME1 
 
To repeat the same path, only relocating and reorienting it relative to successive 
reference frames, we would use the following commands as required to execute the 
sequence of routing operations 
 
MOVES ROUTE:FRAME2 
​ . 
​ . 
​ . 
MOVES ROUTE:FRAME3 

.​  
​ . 
​ . 
MOVES ROUTE:FRAME9 
 
Using the computational methods for compound transformations , the path ROUTE is 
transformed in the robot space into each new frame that is specified in the move 
command. Each of the points in ROUTE is transformed into the new frame, and the 
straight line segment path is executed accordingly. 
 
If the programmer were to use the statement MOVES ROUTE, that is, without 
specifying the particular frame, then the default condition would require the robot to 
interpret the command so that the world space coordinate system were used as the 
reference frame. The path would be transformed into the robot's world cartesian 
coordinate system. 
 
END EFFECTOR AND SENSOR COMMANDS 
 

we made use of the SIGNAL and WAIT statements to initiate output signals or await 
input signals. The signals were binary (on-off) which imposed limitations on the level 
of control that could be exercised. The second generation languages have more 
advanced input-output capabilities. 
 

End Effector Operation: 
 

One of the uses of the SIGNAL commands in the previous chapter was to operate the 
gripper: SIGNAL 5 to close the gripper and SIGNAL 6 to open the gripper. In most 
robot languages, there are better ways of exercising control over the end effector 
operation. The most elementary commands are 
 



OPEN and CLOSE 
 
VAL II distinguishes between differences in the timing of the gripper action. The two 
commands OPEN and CLOSE cause the action to occur during execution of the next 
motion, while the statements  
OPENI and CLOSEI 
 
cause the action to occur immediately, without waiting for the next motion 
to begin. This latter case results in a small time delay which can be defined by a 
parameter setting in VAL II. 
 
The preceding statements accomplish the obvious actions for a non-servoed gripper. 
Greater control over a servoed gripper operation can be achieved in several ways. For 
instance, the command 
 
CLOSE 40 MM 
 
or 
 
CLOSE 1.575 IN 
 
when applied to a gripper that has servocontrol over the width of the finger opening 
would close the gripper to an opening of 40 mm (1.575 in.). Similar commands would 
control the opening of the gripper. 
 
Some grippers also have tactile and/or force sensors built into the fingers. These 
permit the robot to sense the presence of the object and to apply a measured force to 
the object during grasping. For example, a gripper servoed for force measurement can 
be controlled to apply a certain force against the part being grasped. The command 
 
CLOSE 3.0 LB 
 
indicates the type of command that might be used to apply a 3-lb gripping force 
 
against the part. Force control of the gripper can be substantially more refined than 
the preceding command. For a properly instrumented hand, the AL language 
statement 
 
CENTER 
 
provides a fairly sophisticated level of control for tactile sensing. Invoking this 
command causes the gripper to slowly close until contact is made with the object by 
one of the fingers. Then, while that finger continues to maintain contact with the 
object, the robot arm shifts position while the opposite finger is gradually closed until 
it also makes contact with the object. The CENTER statement allows the robot to 
center its arm around the object rather than causing the object to be moved by the 
gripper closure. This could be useful in determining the position of an object whose 
location is only approximately known by the robot. 
 



For end effectors that are powered tools rather than grippers, the robot must b able to 
position the tool and operate it. An OPERATE statement (based roughly on a 
command available in the AL language) might be used to control the powered tool 
For example, consider the following sequence of commands: 
 
OPERATE TOOL (SPEED=125 RPM) 
OPERATE TOOL (TORQUE = 5 IN LB)  
OPERATE TOOL (TIME=10 SEC) 
 
We are assuming a powered rotational tool such as a powered screwdriver All three 
statements apply to the operation. However, the first two statements are mutually 
exclusive; either the tool can be operated at 125 r/min or it can be operated with a 
torque of 5 in.-lb. The driver would be operated at 125 r/min until the screw began to 
tighten, at which point the torque statement would take precedence. The third 
statement indicates that after 10 sec the operation will terminate. 
 

Sensor Operation: 
 

Let us consider some additional control features of the SIGNAL, WAIT, and similar 
statements beyond those described in Chap. 8. The SIGNAL command can be used 
both for turning on or off an output signal. The statements 
 
SIGNAL 3, ON 
​ . 
​ . 
SIGNAL 3, OFF 
 
would allow the signal from output port 3 to be turned on at one point in the program 
and turned off at another point in the program. The signal in this illustration is 
assumed to be binary. An analog output could also be controlled with the SIGNA 
command. We will reserve for analog signals the input/output ports numbered greater 
than 100. The statement could be written as follows: 
 

SIGNAL 105, 4.5 
 
This would provide an output of 4.5 units (probably volts) within the allowabl range 
of the output signal. 
 
The on-off conditions can also be applied with the WAIT command. In th following 
sequence, the robot provides power to some external device. The WA is used to verify 
that the device has been turned on before permitting the program to continue. Later in 
the program, the robot turns off the device and the device signals back that it has been 
turned off before the program continues. The relevant commands are as follows: 
 
SIGNAL 5, ON Robot turns on the device 
WAIT 15, ON   Device signals back that it is on 
​ . 
​ . 
​ . 
SIGNAL 5, OFF  Robot turns off the device 



 
WAIT 15, OFF  Device signals back that it is off 
 
The WAIT statement can be used for analog signals as well as binary digital signals in 
the same manner as the SIGNAL command. 
 
Instead of identifying input and output signals by their I/O port number, it is often 
more convenient to define a variable name for the signal. This is usually easier for the 
programmer to remember. It also permits the variable to be used in the program, so 
that its value might be changed within the program by means of some logical 
operators (to be covered in Sec. 9.7). The variables could be defined as follows 
 
DEFINE MOTOR1 = OUTPORT 5  
DEFINE SENSR3 =  INPORT 15 
 
This would permit the preceding input output statements to be written in the following 
way: 
 
SIGNAL MOTOR1, ON  
WAIT SENSR3, ON 
 
SIGNAL MOTOR1, OFF 
 
WAIT SENSR3, OFF 
 
It is also possible to define an analog signal, either input or output, as a variable that is 
used during program execution. The statement 
 
DEFINE VOL T1 = OUTPORT 105 
 
specifies that the variable VOLT1 will be used with output port 105. At some point in 
the program, that variable could be computed to be a particular value (e.g., 4.5 V). 
and that value could be sent to the designed device in the cell by the statement 
 
SIGNAL VOLT1 
 
The value of VOLTI would be signaled to the external device through output port 105. 
Similar use can be made of the WAIT command for an analog input signal. 
Specification of the variable name and associated input port is done by 
 
DEFINE VOLTS3 = INPORT 115 
 
Subsequent use of the variable can be made in a WAIT statement as follows 
 
WAIT VOLT3 
 
which indicates that the program execution should wait for the value of the signal on 
input port 115 to have a value that is greater than or equal to VOLT3. The 
programmer must keep in mind what the normal signal level is likely to be (whether it 



is normally greater than or less than VOLT3) since this may influence the logic of the 
program 
 
 
 
 

 


