CS10 Su23 Discussion 7: Python Data Structures SOLUTIONS

1 Data Structures

Computer programming involves a lot of data processing, utilization and manipulation, where data
information displays a representation of facts, concepts, or instructions in a formalized manner that's
suitable for communication, interpretation and processing, With the significance of data processing in
computer programming, it is important that this data is stored efficiently and is accessible.

Data structures play a big role in accomplishing this. Data structures arc ways of organizing,
processing, retrieving, and storing data. Data structures make accessing and modifying data much
easier and more efficient, with multiple variations of data structures out there existing that are designed
to arrange data to suit a specific purpose.

Data structures can be classified into two categories: implicitly built-in data structures, and user-
defined data structures. Python allows programmers to create their own user-defined data
structures, where functionality of the data structurc is under full control of the user. User-defined
data structures are out of scope for this course specifically, but a huge part of your programming
journey will involve engaging with a data structures and algorithms courses that will teach you how to
create your own data structures. (The UC Berkeley version of this course is CS61B/L, the second course of
the notorious CS6T series!)

The built-in data structures that are supported in Python include lists, dictionaries, tuples, and sets.
The implementation of lists in Python are relatively similar to how they're portrayed on Snap!.
However, dictionaries, tuples, and sets are all new. Dictionaries ({ }) are like lists, but hold collections
of key-value pairs. Whereas items in lists have an associated index, items in dictionaries have an
associated key that you use to look up an item. Tuples have a similar structure to lists, but rather thank
square brackets ([]}, tuples are created using parentheses. Tuples are immutable, so once you put an item
in a tuple, you cannot change it unless the item you stored in the tuple is mutable (ie. a tuple of
lists). Sets also use curly braces {{ }) like dictionaries, but sets represent a collection of unordered
elements that are unique, meaning no item in a set repeats itsell (l.e {1, 2, 3} would be an example of
a set).

Each of these data structure have different functionalities, so depending on what you want vour program
to accomplish, think about which of these data structures would you benefit from using the most. In
this course, we will putting most of our attention around practicing with lists and dictionaries, but
do keep tuples and sets in mind in case you run across a situation where vou find their usage beneficial.

1. List Comprehension

When playing around with lists, we witnessed thar there were two ways in which we could iterate through
lists and make changes to it:

1. Looping through all items in the list using @ for i or for each loop
2 Abstracting the looping process by using a higher-order function like map, keep, or combine in Snap!

We can mimic the functionalities of the HOFs blocks on Snap! by using list comprehension. List
comprehension is a convenient way to make a new list based off of values from an old list, which is
essentially the functionalities of the map and keep blocks on Snap!.

The syntax of list comprehension is rather compressed, but it can be summed down to this structure:
new_list = [<expression> lor <ilem> in <old_list> i <condition>

Oftentimes, you will find the variable holding item appear within the expression, which indicates that the
expression is dependent on the items in the list.

Q1: More & More Translation

Translate the following blocks of code from Srap! into lines of Python code using list
comprehension:

a)

map | ' letter &P of §

L
keep items such that t "A > 3 jsoul my list
/

[word[0] for word in my list if len(word) > 5]

b) (i
Ornoine

keep items r mod ! 3 i numbers from "1 to /10

UEINoY W

[sum([num for num in range(ll) if num % 2 == 0])]

¢) Write a list comprehension that finds the index of an item in a list. You may assume
that the item appears only once in the list.
def find index(item, lst):

o [i for 1 in range(len(lst)) if item == 1lst[i]][0]

a1 Dictionaries
Like mentioned previously, dictionaries hold key-valued pairs, with its structure being as follows:
fruits dict = {'A' : 'apple', 'B' : 'banana', 'C' : 'cherries'}

The key is held beflore the colon and the value of the item is placed after the colon. To access a value, you
would use its associated key rather than its index in the dictionary. Al keys in a dictionary must be unique, but
multiple keys can have the same value.

Although recent updates to Python (3.6+) have made dictionaries insertion-ordered, do note that when
speaking of dictionaries conceptually, you should not assume order.

Fill out the table below to get more familiar with the syntax for dictionaries in Python.

class_dict = {“Math’:‘1A’, ‘English’:‘R1A’}

Add the key ‘CS’ with the value ‘1@’ class_dict['CS'] = "10'
Access the value of ‘Math’ class_dict['Math']

Change the value of ‘Math’ to 1B’ class_dict['Math'] = "1B'
Check if ‘UGBA’ is a key in class_dict 'UGBA' in class_dict

Check if €18’ is a value in class_dict '10' in class_dict.values()
Get a list of the keys in class_dict list (class_dict)

Q2 : Merge_Dicts

Write a function merge dicts that takes in two dictionaries as inputs and returns a new
dictionary that contains all entries from both mput dictionaries. You can assume that both
dictionarics have Strings as keys and numbers as values. For any keys present in hoth
dictionaries, the corresponding value in the output dictionary should be the sum of the values in
the inputs.

""" Below is an example of how merge_dicts works:
>>> dl = {'Dan’: 1@, 'Oski': 15}

»>>> d2 = {'Alonzo': 5, 'Oski': 2@, 'Dan': -10@}
>>> merge_dicts(dl, d2)

{'Dan': @, 'Alonzo': 5, 'Oski': 35} """

def merge_dicts(dictl, dict2):

new diet = {1}

for key in diectl:

new_dict[key] = dictl[key]

for key in dict2:

if key in new dict:

new_dict[key] += dict2[key]

else:

new_dict [key] = d2[key]

return new_dict

Q3: LC in Dicts

a) Write a function keys with value() that takes in a dictionary and a value v, and
returns a list of keys from dictionary with value equal to v.

Below is an example of how keys_with_value works:

>>> fruits = {'apple': 1@, 'strawberry': 1@, 'banana': 5}
>>> keys_with_value(fruits, 1)

['apple', 'strawberry'] """

def keys_With_value(dictionary, value):

return [k for k in dictionary if dictionaryl[k] == wvalue]

b) For this question, we're going to use tuples! To create a tuple, insert values in between
parentheses, separated by commas. For instance, ('a', 'b') is a tuple with its first item being
'a' and its second item being 'b'.

Write a function conditional map() that takes in a dictionary dict, a function func, and a
predicate condition cond, and returns a list of key-valued pairs from dict stored in tuples that
contains keys that satisfy cond, with func applied to each value.
""" Below is an example of how conditional_map works:
>>> fruits = {'apple': 1, ‘cherries': 3, 'strawberries': 5}
>>> def is_there_an_i(word):

return ("i" in word)

>>> def double(value):
return value + value

>>> conditional_map(fruits, double, is_there_an_1i)
[(‘cherries', 6), ('strawberries', 10)] """

def conditional_map(dict, func, cond):

return [(key, func(dict[key])) for key in dict if pred(key)]

Q4 : What Would Python Do?
Assume we have defined food_dict in the Python interpreter as follows:

food dict = {"fruit": "apple", "veggie": "carrot", "beverage":

"water", "grain": "rice"}

Write down what will be displayed alicr cach of the following lines execute. If the result is an crror

message, simply write "Error" as your answer. Each subproblem is independent and does not depend
on other subproblems,

>>> len(food dict)

>>>1ist (food dict)

["fruit', 'veggie', 'beverage', 'grain'] **NOTE: we cannot rely cn order

>>> food_dict[0]

Error

**0 1s not a key

>>> ('fruit' in food dict) and ('apple' in food dict)

False

**Vapple' is not a key in food dict

>>> ("fruit" in food dict.keys())

True

and ("apple" in food dict.values())

>>> for food in food_dict:

food += "s"

>>> food dict

{"fruit': 'apple', 'veggie': 'carrot', 'beverage': 'water’,

'‘grain':

"rica'}

>>> def recursion is fun(dictl, dict2):

if dict2 == (}:

return dictl
dict2.pop(list(dict2) [0])
return recursion_is fun(dictl, dict2)

>>> copy = food dict
>>> recursion_is_ fun(food_dict, copy)

{}

>>> more_food = {"protein": "chicken"}
>>> food _dict["more food"] = more food
>>> food dict

{“more food”: {“protein”: “chicken”}}

Q5 : Extra Practice

For this exira problem, write a function unique vals that takes a dictionary d and returns True
if every value in d only has one corresponding key.

""" Below is an example of how unique_vals works:
#»> unique = {'a': 4, 'b": 5, *c¢': 3}
>>> one_to_one(unique)

True

3> not_uniqe = {"a'; 2, 'b': 4, 'c': 2}
>>> one_to_one(not_unique)
False """

def unique_vals(d):

seen values = []

for value in d.values():

if value in seen values:

return False

seen values.append (value)

return True

