
JARED: Should people write tests first?  
 
JOEL: No. 
 
JARED: Hello. Welcome to Dead Code. I'm Jared. Today, we're talking about a bunch of things. 
Our guest is Joel Drapper. He works on lots of things, and we're going to talk about a whole 
bunch of them. We're going to talk about his view framework. We're going to talk about Literal, 
whatever we want to call that. We're going to talk about his testing framework.  
 
Despite what you heard in the cold open, he does write tests. He actually has an interesting 
perspective on writing tests and when to write tests first that we talked about after the interview, 
so maybe we'll have him on at some point to expand upon that. And finally, we'll be talking about 
the projects that he's putting together that combines all of these other open-source projects that 
he's been doing, and some other people, like Stephen Margheim, have been working on. Let's 
get into it. 
 
Joel, welcome to the podcast.  
 
JOEL: Hey, thanks.  
 
JARED: Can you tell our listeners a little bit about who you are?  
 
JOEL: Sure. Yeah. So, I am Joel Drapper. I am a software engineer based in the UK, in 
Oxfordshire, and I work on a bunch of different open-source projects in the Ruby ecosystem. I'm 
working on my kind of grand vision for a new full-stack web framework, eventually, that probably 
will never happen, but hopefully, is going to produce some interesting side projects along the 
way.  
 
JARED: Yeah. And those various projects are why I wanted to have you on because I've used 
some of them, and I'm really curious about some of the other ones. I thought maybe we'd start 
by talking about Phlex. So, what's Phlex?  
 
JOEL: Yeah. So, Phlex is, I think...I don't know if it's the first...or one of the first projects I started 
doing open source. It is basically a way to write your view layer just by using Ruby objects. So, 
you can create...if you think about anything that you could sort of draw a circle around on a 
webpage and give a name, you can think about that as being an object. It's an instance of an 
object.  
 
And that object can have a method that describes how it's going to be rendered. And in that 
method, you just use Ruby methods to create the HTML. So, every HTML element is a method 
that you call. You pass a block for the content, and you pass keyword arguments for the 
attributes. And so, you can kind of use it to build HTML views in a purely object-oriented way.  
 
JARED: How does it differ from something like ViewComponent?  



 
JOEL: Yeah. So, ViewComponent is very similar, except that ViewComponent, when it comes to 
the template, it goes out to a different language. So, it uses ERB, I think, by default. And I think 
you can use various other templating languages like Slim and that kind of thing. Whereas 
because Phlex is just using Ruby, it means that you have a bit more flexibility. You can, for 
example, without extracting a whole component, you can extract just a small piece that you 
might use again and again within your component.  
 
So, like, you might have a nav component, and you want to have a snippet for your nav items. 
You don't need to have a nav item component. You can just have a method called item that 
takes the parameters of each item and then outputs, you know, just the part of HTML required 
for that, and that can actually be public. When you make a method public like that, you could 
expose it so that when you call to render the nav, you can pass the block and pick up the yield, 
and then you can call that item method multiple times on it. It's really difficult to try to explain 
that in audio form there.  
 
JOEL: Yeah, yeah, no, it took me a second to wrap my head around that the first time I tried to 
do it, but that pattern is really cool. I've used Phlex on a number of projects, and my personal 
website is all built in Phlex and some other stuff we've done is in Phlex. And I found that it was 
really nice to have that sort of pure I just make a file, that's my component, and being able to 
sort of fit that into the sort of broader web development patterns on a project. 
 
So, if a project, for example, uses, like, BEM for its CSS conventions, for example, you can build 
helpers into your setup to automatically generate your BEM classes based on the names of your 
components. And that sort of reduces sort of quite a bit sort of duplication and boilerplate in the 
projects I was working on, certainly. 
 
JOEL: Yeah, it's really cool because it's just Ruby. There's a lot you can do in terms of, like, you 
can just inherit behavior. So, you can either use class inheritance or mixin modules or 
something like that to layer on behavior. And you can even do things like you could, for a 
specific component, you could override an HTML element. So, you could say, if I render a div in 
this component, I'm actually going to override that method, and it's going to call super with these 
specific overrides, or something like that.  
 
I used this for a markdown component that I made that would take some markdown. It would 
render the markdown using, you know, H1, H2, H3, et cetera. But then I wanted to be able to 
just say, “I'm going to override H1 and say that it's actually going to call super with these 
Tailwind classes.” And so, you can have this component where you just say, I'm going to inherit 
from this kind of abstract markdown component and override what do I want each of these 
different pieces of the syntax to do? So, that's pretty cool.  
 
JARED: Yeah, that's really interesting because I also had to deal with rendering markdown in 
the context of Phlex components. So, what I ended up doing was not that, though I should have 
considered that. What I ended up doing is implementing my own Redcarpet::Renderer and 



having that redefining the various components that I wanted to attach. I think it was Tailwind. 
No, it wouldn't have been Tailwind. It would have just been BEM classes, too, having that call 
out to my Phlex components, which sort of does illustrate, on the other side, how having these 
reusable components is really useful because you can just sort of plug them in where you need 
them, regardless of what other technologies you're using. 
 
JOEL: Yeah, exactly. And also, if you're good at writing Ruby and, you know, your team is made 
up predominantly of Rubyists, I think it can just be nice to keep everything in one language and 
in one place. A lot of the code, like, component code that I work on it's constantly either reading 
an instance variable or iterating over some kind of enumerable object. And there's no switching 
between Ruby and then ERB, HTML, that kind of thing. So, that can be really nice. And then, it 
also just means you can use your existing formatters. Like, you can use RuboCop. You can use 
Ruby LSP.  
 
We've done a lot of work recently to make Phlex kind of expose all of its methods to the Ruby 
LSP. So, all of the HTML elements they're actually defined dynamically. There's, like, a loop that 
goes over this big list and defines them. Well, that's how it originally started. And we updated it 
to actually just spell out every single one and even put in the...we couldn't do it for all of the 
HTML attributes, but for, like, kind of a good example, but, like, input, for example, input, you're 
typically going to have a name, a type, various other attributes.  
 
We actually updated the code that generates the HTML elements to make it create basically, 
like, this empty method first just so the Ruby LSP can pick it up and see that, ah, I know that 
there's a method there called input. And then, we would run the macro that would generate the 
fancy dynamic. 
 
JARED: The real method. 
 
JOEL: The real method, yeah, which is just a lot of, like, class_eval.  
 
JARED: Cool. I mean, that's awesome because that's something that's been a pain in a lot of 
view templating languages and other options in the spaces that, you know, whether it's SLIM, or 
ERB, or HAML, or any of these, you don't typically get linting and formatting as good as you get 
with, you know, the tools we have for just pure Ruby. And it's always trying to keep projects 
consistent within your views ends up just really annoying.  
 
JOEL: Yeah. Yeah. Another really interesting thing about it that I think is probably less 
well-known is how rich the attribute serialization is. For example, if you say, “My class is,” and 
then you pass it an array, within that array...so in Ruby, it's really easy to use inline if 
conditionals to basically provide conditional items in an array, where you can say, it's active if, 
and then, since this variable is true, or something like that. 
 
And so, it makes it really easy to do things like passing in conditional classes or conditional 
styles. And then, for attributes like style, you can pass a hash. So, you can use, essentially, 



Ruby hashes as your style tags, and it automatically converts font-weight as a symbol to the 
font dash weight CSS rule.  
 
JARED: That's really cool. I did like the style one. I did not know about the class one, which is 
kind of funny, in retrospect, because I basically just reimplemented that for myself.  
 
JOEL: [laughs] 
 
JARED: My project literally has a class names helper that sort of emulates what you're 
describing, which is also similar...if anyone's used the classnames NPM package in React, 
basically the same idea, but that's funny. Mine might do a little more than what you get out of the 
box because mine, you could do things like hashes and stuff in there. So, if you did, like, 
key-value, then it would treat the keys as classes and the values as a Boolean, whether you're 
supposed to apply that class or not. 
 
JOEL: I think ours supports that, but I can't remember.  
 
JARED: I have to try it out [inaudible 10:45]. 
 
JOEL: I'm pretty sure it does because I think that was originally the way that we were 
recommending people do it. But I liked the syntax, like, the way that it looks in Ruby when you 
do the array version, it's just really nice. Because if you use a hash, you have to sort of read the 
rocket. You have to read that rocket as if. Like, when you see it, you say the word if, but you can 
actually replace it with the word if, if you use an array. 
 
JARED: Yeah, cool. Well, I love Phlex. We work on a bunch of projects that use 
ViewComponents and some that are just, you know, regular ERB. And I've had a really great 
time using Phlex. I know that Phlex Rails ships with Rails generators for generating 
components. And after my conversation with Garrett Dimon, I actually ended up going and 
implementing my own custom generators that tweaked a few things and set up the style sheets 
and everything for the components. 
 
JOEL: Awesome. 
 
JARED: So, that was really cool sort of leveraging both sides and being able to use the 
generators that were already there as sort of a reference, so... 
 
JOEL: Yeah. One thing that's amazing that we could do, and we are not doing it yet, but we so 
could do this and should do this, when you know what the framework is and you have a direct 
connection to the framework, which we could do with Phlex Rails, right? We've got two different 
projects. Phlex is just a Ruby project with no dependencies at all. And then, Phlex Rails can 
actually lean on Rails a bit. So, one thing that I really want to build into Phlex is source maps. 
So, we can actually tell not only where every one of your components is defined, but also where 
every single element is defined, like, down to the Ruby source.  



 
And so, if we can come up with a format where we can put this information into comments when 
you're in development mode, then we could have some JavaScript that we inject into the page 
that gives you this dev interface that lets you select an element. And then, it will pop up and 
show you how you can jump to that file. And you could click it, and that file could open up 
automatically for you because it could send a message to the Rails server that's running in the 
background. And the Rails server can, obviously, execute shell commands, and one of those 
shell commands could just be, like, Z, and then this path, or whatever editor you're using. And it 
should launch your editor for you straight from the browser, which I think would be so cool.  
 
JARED: I'm pretty sure there used to be a thing like that for just regular Rails views.  
 
JOEL: Yeah, and for controllers, you could do that. 
 
JARED: At the partial level was able to do that. So yeah, that would be really cool and definitely 
totally doable.  
 
JOEL: Yeah. 
 
JARED: So, let's talk about some of your other projects. Tell me about Literal.  
 
JOEL: Yeah. So, Literal, I think, it began its life in Phlex in a really, really early version of Phlex. 
And, basically, like, creating all these components, I ended up making a lot of very small objects, 
Ruby objects. And it just felt like there was a lot of boilerplate involved in doing that. Like, for 
every one of the properties that your object has, you have to create an initializer.  
 
Wait, so you create an initializer, and it has to take each one of those properties as a parameter. 
Then it has to assign it to an instance variable, and then you have to specify separately whether 
you want at a reader, at a writer, at a recessor. If you want predicates, so, like, methods with 
question marks after them that just check the truthy-falsy value of one of these instance 
variables, you have to do that separately as well.  
 
And so, I wanted a way to sort of generate these from a single definition of each property. And, 
additionally, I wanted a way to sort of provide some validation at runtime that if I'm expecting a 
string here and you send me an array, like, raise an error, complain. If I have a thousand objects 
being initialized to render a page and every single one of those objects is being very cautious 
about what it receives, and it's going to raise an error if it receives the wrong thing, that means 
that just running a test that renders the page, even if you don't make any assertions about it, 
you just render it.  
 
Now, I know, obviously, that's not enough. You need to test your stuff properly. But you get a 
significant amount of signal for just doing that. I don't know if you could put a figure on it, but in 
terms of every time that something's wrong, it tells you immediately very quickly that something 
is wrong. Like, that just seems to be the case if you build stuff like this.  



 
So, Literal is basically...the main thing is Literal properties, and it's a module that you can extend 
into a class. And, typically, you would just do this into some abstract class, like your application 
component or something, your base component that everything else inherits from. And then, 
you can use the keyword prop and then define these rules for your properties.  
 
So, you can define the name of the property, whether there's a reader or a writer or a predicate 
method, and you can specify, you know, private, public, protected, or false for each of those, as 
well as coercion rules. So, like, your question would just be the block that you give to this prop 
method, which means you can say, like, ampersand two S, or something like that to say, I want 
this to be, you know, attempt to stringify this thing before you check that it's a string or whatever. 
And you also specify a type. And the way that the type interface works is it basically uses 
Ruby's triple-equals interface. So, this is the interface that is used when you use a case 
statement or a passer matching.  
 
JARED: Yeah. People call it case equality sometimes.  
 
JOEL: Yeah. And case equality is really interesting. It takes a bit to kind of wrap your head 
around it because, essentially, it is like the object saying, I'm going to assert whether the thing 
that you have passed me is my kind, which means that it's a bit different when you're talking 
about a class of thing versus an actual thing. So, any string, if you send triple equals to the 
string class, it will be true. But if you send triple equals to a string, it will be the equivalent of 
double equals, right? It would check that the string is exactly that string. Anyway, you can think 
of a type or a validation rule as just being any object that responds to triple equals with truthy or 
falsy. 
 
JARED: And Ruby has lots of them. Like, the regular expressions test whether the string you've 
passed matches the regular expression. Ranges test whether the value you're given is within 
that range. We have a sort of rich sort of ecosystem of things that respond to triple equals to test 
whether this is that kind of thing. 
  
JOEL: Right. Yeah. There's loads of them. And there's also a rich ecosystem of things that take 
triple equalsable things like array dot any, array dot all. You can pass a block, or you can pass 
anything that responds to triple equals. 
  
JARED: I didn't know that. 
  
JOEL: Yeah. And it's much faster because it doesn't allocate anything. So, there's loads of 
places that already use this in Ruby. It's like this already well-recognized pattern, so you just 
need to create these objects. So, Literal also has these types, these kinds of generic types that 
you can use to create more constrained types of things.  
 
So, you can use string as a type, but you can use underscore string, and now you have the 
ability to pass in constraints. So, you could say, length 10. And what you're doing there is you're 



saying, create me a string type that has this length constraint. And so, Literal is going to call the 
length method on the object. And it's going to use triple equals again to compare what you set 
that length to with the value that comes back from calling that method. 
  
So, again, you can use a type. So, you could use a range. So, I could say length 10 dot dot 20. 
And now it's going to check that that string is within, you know, the length is within 10 to 20. And 
so, there's a bunch of these. There's, like, union, which means basically or. It's going to be this 
or this or this. That's very useful for components if you have position and you want it to be a 
symbol, but you want it to be one of four symbols: top, right, bottom, left. You can say position 
equals union top right, bottom left. And then you can say, define the attribute position, and then 
its type is this position, capital P. 
  
JARED: Sort of like an enum in some type systems. 
  
JOEL: Yes. Yeah. I mean, Literal also has enums as well as unions, but unions are kind of like a 
more lightweight version of it. So, there's a bunch of these types, for want of a better word, like, 
generic types. They're really just functions that return objects, but they're just special objects 
that are designed to essentially just respond to triple equals, and then that's how validations 
work. So, you can make loads of these objects that work like that. 
  
And then, Literal also has, essentially, equivalence to struct and data objects. So, the main 
difference is they're automatically serializable. So, they kind of make some assumptions that 
you are basically using these just to store data, and it's basically frozen or not frozen, depending 
on whether you use Literal struct or Literal data. And then, so they are marshallable really 
efficiently. You can convert them to hashes. You can use double equals to compare them to 
each other, and they have a default implementation of that. They support dot hash. And they 
basically support a bunch of things that you'd want from kind of a basic object or an AST node 
or something like that. And so, they also are very useful. 
  
The third thing is enums, which are essentially object-oriented constant enumerations. So, Rails 
has an enums feature, where, in Rails, an enum is, like, an attribute of the parent rather than 
being an object on its own. So, if you have a post status enum, in Rails, the default is, like, the 
post has status as a property of itself rather than it has a status object. And I like to think about 
a post as having a status object, which itself can have behavior, can be compared to things, can 
be enumerated on the class. So, Literal has a way to define these and to define methods on 
them and things like that. 
  
JARED: Cool. I mean, that sounds very useful. I've seen a few sort of similar attempts to this. 
I've seen some of them, at least one was in a project that we inherited but was abandoned, and 
that’s... 
  
JOEL: Oh no. Was it my one [laughs]? 
  
JARED: I don't think -- 



  
JOEL: Because I made Literal enums as a separate thing originally, and then I've abandoned it 
and merged it into Literal, the gem. 
  
JARED: No, this was much, much older, and this implementation looks a lot more serious, let's 
say. We've inherited a number of projects over the years where people were the, you know, the 
CTO had decided to invent his own dependency injection framework and promptly abandoned it 
when he changed jobs and left the company to inherit this weird piece of code that he wrote. 
And we had a similar case with some similar project to this. But both feature-wise and, like, 
feature and functionality-wise, this seems more like what I would want out of this. 
  
JOEL: Oh, it has been very carefully designed. And I've been through, I think, about four or five 
different iterations, like, complete rewrites of Literal enums. Where we're at now, I really like 
because it's designed to integrate with Ruby LSP again. So, when you define your Literal enum, 
you say, like, class status inherits from Literal enum integer, and then you define a constant. So, 
you'd say, published equals new, and then you pass in the value zero or whatever, or the string 
published, however, you want to serialize it. 
  
And because Ruby LSP can see that you are defining the constant published and then it equals 
new, so, it's going to be an instance of this enum, it knows. And so, you can put comments in 
and things like that. And the auto-complete is amazing. It shows all your comments, and Ruby 
LSP supports markdown. So, in Yippee, we have this enum for HTTP status codes. And we 
have documentation from MDN, as well as a link to the MDN documentation on each status 
code that just pops up in your editor as you start typing out the enum. So, it's really cool. 
 
JARED: Yeah, that's awesome. I guess one question I would ask is, how's performance? Should 
I be thinking about whether or not to use this in, you know, really performance-critical parts of 
my application? 
  
JOEL: Yeah, performance is pretty good. There are some types that do kind of like O(N) checks, 
so, like, the array type that we have. If you say I have an array of strings, that is going to do 
O(N) checks when you pass it an array. If you give it an array of a thousand things, it's going to 
check a thousand items to make sure that they're all strings.  
 
But all of the checks that happen at runtime are zero allocations. So, every single one of the 
types that we generate, when you actually test the type, so you've created the type already, 
maybe you've assigned it to a constant, or you've just used it in a class, that happens once 
when the application boots. And then, every time you call triple equals on it, it's doing no 
allocations. So, it is very fast, but yeah, some of the types can be a bit slower. 
  
One of the things that we're working on at the moment to kind of get around some of this is to 
have Literal objects that can stand in for these collection types. So, if we have a Literal array 
object that can stand in for a real array and kind of has a very similar interface, then we can 



check the types as you put them into the array, and then we don't have to check them ever 
again. 
  
So, if you pass that array around to different things that are expecting that specific generic 
Literal array, like a Literal array of strings, we know that it can't contain integers. And also, we 
can do stuff like...if you have a Literal array of strings and you map them with the Proc 
ampersand length, we can actually look up that Proc on string because we have a map that 
says that that must return an integer. 
  
So, actually, we can map from a Literal array of strings to a Literal array of integers with a 
specific Proc without actually checking anything because we can kind of see how these types 
progress through the mapping. So, that's a bit more involved, a bit more, like, you have to 
actually use Literal’s types for that. But yeah, it should mean that it can be a bit faster in some 
cases. 
  
JARED: Yeah, that's cool, providing that sort of next step if you run into those kinds of 
performance issues. Speaking of performance and speed, I think it's good to have different 
voices on the podcast, to have different opinions on certain things. And who better to come on 
and talk about the other side of testing, someone who doesn't write tests first, than somebody 
who's writing a test framework anyway? So, tell us about Quickdraw. 
  
JOEL: Yeah. Okay. So, first of all, Quickdraw is the most experimental project that I have 
published, I think, so don't use it right now. Probably you'll run into a world of pain if you try to 
use it, probably give it a few more months.  
 
But Quickdraw is basically an alternative take on testing. It kind of started out quite different and 
explored some different ideas. And now it's landed somewhere much closer to feeling like 
Minitest, but it is fundamentally built on the capability of using multiple CPU cores. So, it is 
multi-process and multi-threaded, and that comes with a lot of challenges. It basically makes 
everything that you want to try to do more difficult. So, it doesn't have a lot of the basics that you 
might expect to have from a testing library. 
  
For a long time, the test output was terrible. It's getting better now. Like, for example, you can't 
say, “Fail fast,” because, actually, fail fast is really tricky to do when you have 12 different 
processes running multiple tests. 
  
JARED: Yeah, when you’re orchestrating all of these different things, and it's like, well, what 
does first even, you know. 
 
JOEL: [laughs] Right. 
 
JARED: Now we got to shut down all these tests, yeah. 
  



JOEL: Yeah. So, we're going to have to take an interpretation of what fail fast means, and 
probably it will be the first process to get a message back to the parent process that says, I 
have a failing test. Like, that's the one that we’ll show you, and we'll just ignore the rest of the 
results or something.  
 
But for a long time, it didn't even have two-way communication, really. It was using pipes. We 
recently re-architected it, and I think it's much better now. So, originally, it was, like, basically, 
just splitting up all your tests and kind of just handing them out evenly, but, of course, not all 
tests are even. Some tests take much longer than others. 
  
And so, what we're doing now is pretty interesting. We'll basically load all of your tests into a big 
bucket. And then, we will fork one process for each of your performance cores if you're on a 
Mac, or all of your CPU cores minus one if you're on anything else. And then, they will have this 
thing called a sized queue. It's like this Ruby object where you can say, basically, I want you to 
have a maximum size of 100. And that means when you try to put something into the queue, if 
it's reached its maximum size, it is going to block. It's not going to let you do that, so that thread 
is going to block. If you’re trying to take stuff out and you run out of stuff, that's also just going to 
block. 
  
So, they have a sized queue, and the size is kind of figured out based on how many tests you 
have and how many CPU cores you have and stuff. They will send a message to the host and 
say, “Hey, I need my next batch.” The host will respond. It can do this in, I think, four or five 
bytes. It will respond with the next number that you can take a batch from. And then, it's going to 
basically grab that batch from its copy on right copy of the tests, shove them into the queue, or 
try to shove them into the queue, but probably it's going to fail and have to just wait and keep 
working on it. 
  
Eventually, it then has this thread pool, and they are basically just working, pulling stuff out of 
the queue. So, you can have maybe eight threads per process or something like that. And, 
eventually, it's going to get below this size, this maximum size, which means it can then go out 
and fetch the next batch from the parent. And, hopefully, there's enough in the queue to keep 
the thread pool working while it does that round trip through the Unix socket up to the parent 
and then back down again with the next batch.  
 
So, that's basically how it works, but it took quite a while to figure that out. And the result is we 
can essentially run it at however many performance cores you have times as fast as something 
like RSpec, which is awesome. 
 
JARED: Yeah. Was that the goal, just basically leveraging concurrency to get a faster test 
runner? 
  
JOEL: Yes. Yes. Because my Mac has, I think, 16 CPU cores, or something like that. And it ran 
RSpec, I think, about 10% faster than my previous one, which had, I think, eight. I was like, 
that's just not right. First of all, it's like three generations, or something like that, two generations 



faster CPUs, but, also, like, it should be faster. I started digging into why this was. And, 
obviously, Ruby is single-threaded, or Ruby has this thing called threads that aren't really 
threads. It runs on a single CPU core and, yeah, tests don't need to be run like that. So, the idea 
was to try to use that capability and kind of build it in from the beginning. 
  
JARED: That's really cool. I mean, I would gladly accept a faster test runner. So, I think we'll 
have to check back in with you once it's a little more mature and you're recommending people 
go try it out. 
  
JOEL: Yeah. The big thing that I need to get done, I think, before I could recommend people try 
it out, is compatibility. There's a compatibility mode now for Minitest and RSpec. So, the idea 
isn't to be able to run your RSpec suite perfectly, but that maybe you'd have to change less than 
10% of your tests. You can, for the most part, just copy-paste your RSpec tests, and they will 
run because we can implement all of the different matches and things. 
  
JARED: Cool. So, the final project that I really wanted to hear some more about is Yippee. What 
is it? 
  
JOEL: Yeah. So, Yippee is a full...well, it's nothing right now. It's a private repo that I've been 
working on for a while with Stephen Margheim. And the idea is a very opinionated, lightweight, 
full-stack framework that is built on top of SQLite and Ruby. So, yeah, the idea is if you are 
willing to accept that your app is going to run on one server and you're just going to scale that 
server to be really big and have, like, I don't know, I think you can go up to 200-plus CPU cores 
now, then you get a bunch of benefits in terms of just simplicity of deployment, of everything that 
you do. 
  
If everything is based on SQLite and this very simple Ruby application, you can scale to, you 
know, millions of dollars in revenue, I think. I think you can scale to hundreds and hundreds of 
thousands of requests a minute easily with SQLite and a single server. And so, it's basically...it's 
bringing together all this stuff we've been working on in terms of Phlex, Literal, Quickdraw with a 
new router, a new job system, and a new ORM. And that's, like, the big part that we've been 
building out over the last year or so.  
 
So, we started working on this ORM, and we got to migrations, and we were like, okay, wouldn't 
it be cool if you could just define your schema and then run a command, and it would generate 
the migration for you? Because it's so much nicer just to say what I want and then have it 
generate the thing, and then I can read it to make sure it's okay before I deploy it. But I don't 
have to think about how I'm going to change it. 
  
JARED: Kind of spiritually similar to Django's automatic migration stuff. 
  
JOEL: Probably, yeah, yeah. And there’s some other things that we were trying to do. We 
realized, basically, you can only get so far with regular expressions. We need a SQL parser. 



Like, we need to be able to actually pass this schema dump, at least. But probably we’ll only be 
able to pass every piece of SQL, like, that would be an amazing capability for our framework. 
 
So, we kind of stopped working on Yippee and started working on a SQLite parser, which is, it's, 
like, specifically designed to parse SQLite's flavor of SQL perfectly, and it's been a lot of work. 
We've got to the point now where it's parsing create table statements, I think, a hundred 
percent, which is what we need for the ability to do these migrations. So, there's that. But then 
we also built a router, which it uses a similar router to Roda. 
  
JARED: Cool. 
  
JOEL: I don't know if you know, Roda uses this thing, what do they call it, a routing tree? 
  
JARED: Yeah. And it's built so that, like, the...forgive me for pronouncing the word differently 
than you, but --  
 
JOEL: [inaudible 35:08] 
 
JARED: Yeah, no, it’s fine. I just...you say it your way. I’ll say it my way. 
  
JOEL: No, it’s always confusing because we’ve got this root, route [chuckles]. But I would call a 
root [inaudible 35:17]. 
  
JARED: [laughs] Oh yeah. Yeah. But the routing tree ends up being, essentially, just part of the 
syntax of the AST of your router, which I thought was a really nice pattern and has, you know, it 
has advantages and disadvantages. The Rails router we use now has some really neat 
optimizations it can do because it, you know, builds up sort of in-memory understanding of your 
routes and then can optimize itself. But if you're not going to go down that path, then something 
that’s syntax-based routing tree is really cool. 
  
JOEL: Yeah, you would think that...I don't know how the Rails router works, like, I don't really 
understand how it fundamentally works. But I understand that it is somewhat compiled at boot 
time. And you would think that that would make it significantly faster than something like a 
routing tree, but I don't think that it does.  
 
Routing trees can get slow if there's lots of different places that you could go at any given level. 
Like, if you have, I don't know, 2,000 places you could branch off to at a single level, then 
routing trees can be quite slow, but otherwise, they're incredibly fast. Like, our router in 
micro-benchmarks is about 15 times faster than the Rails router from what we can see running 
locally in production mode because Rails is massive. It's doing thousands of method calls per 
request just going through the Rails framework that are pretty unnecessary for a lot of 
applications. And I'm sure there's good reasons for them being there, but, at the end of the day, 
if you're doing 50,000 method calls to load a single hello world, it's not going to be the fastest 
router. 



  
JARED: Yeah. And one of the things I do like about the routing tree-based approach is you're 
able to sort of make performance decisions about, oh, even if you do have a lot of places to 
branch off of at a certain point, like, potentially at the root level of your routing tree, you can put 
the most critical ones first and do those checks and get those so that your worst case scenario 
at that particular branch you are going to only hit that for a very small number of actual requests. 
  
JOEL: Yep. For larger applications, we have this alternative way of defining your kind of 
branching logic for a specific branch in the tree. Instead of it having to walk through all of your 
code and check each condition one by one, there's a short circuit that you can define as a hash. 
So, it can be like, if the next segment of the URL that we're trying to pass, so segment being 
between each forward slash, actually just matches one of these items in this hash, then we're 
going to immediately forward you to that branch and let you continue. So, that means that the 
routing is, like, a one when you have something like that.  
 
And so, you don't need to use this all the time, but a lot of the time, it makes sense. Like, I think 
probably for your root root or your admin root or something like that, you can just have these 
shortcuts where you can say, if it's slash admin slash products, I don't have to check, you know, 
50 different things. I can just look up this hash and then jump straight to the product's controller. 
  
And in Yippee, we call these things, like, controllers. So, you have a route controller that 
starts...and its job basically is just to redirect you to different controllers, and each controller in 
Roda would be a block. But, for us, it's usually a class though it can be a block if you want to 
define everything in line. But it's usually a class, and you can kind of just handle each segment 
of your routing in its own controller. 
 
JARED: Cool. That's a really neat approach. What's next for Yippee? You mentioned it's just a 
private repo now. When, are we going to see the first steps of it in the wild? 
  
JOEL: I think we really need to finish the ORM for that to make sense because it's not going to 
be an amazing experience for anyone as just a router. I guess you could sort of use it now as a 
router plus Phlex plus Literal. But we'd really like to get the database support baked in there, 
especially as the whole thing about it is it's meant to be SQLite, everything native SQLite from 
the beginning. 
  
And I think once we've done that, it probably won't be much of a stretch to get jobs and that kind 
of thing built-in as well. We've got some ideas about how we're going to do that. We might have 
some kind of hybrid approach where you can either just run a job on a background thread or 
even send it to another Puma worker that can run it on a background thread that's less busy, or 
you put it in a queue with a SQLite write. I think it depends on what kind of thing you're doing.  
 
But there's lots of things we can explore when we have this constraint of we know that there's 
just going to be one server, so we don't need to worry about distributing things between different 
servers, going out to Redis, or anything like that. 



  
JARED: Yeah, that's an interesting approach. I really like it, deciding, like, the...you mentioned 
the framework is opinionated, and I generally appreciate that. I think that you get into a lot of 
trouble building, especially frameworks and tools and things, and trying to make them for 
everyone. Whereas if you can say, you know, "This is the use case. If you don't fit inside the use 
case, sorry. Maybe you should use something else," and then optimizing really well for that 
specific use case. It's good for especially, you know, you call it a micro framework. It's good for 
staying micro. And it's good for knowing whether or not you want any given feature in the 
framework. 
  
JOEL: Yeah. Yeah, and it's going to challenge the way that we think. Like, I think to use it, you 
have to really kind of adopt a different mindset as well. For example, and, honestly, like, I know 
this, and when I started building it, I got it wrong immediately. I started thinking about, like, okay, 
how can we avoid N+1s? Like, how can we make the ORM so that it's really difficult to get 
yourself in the situation where you have these really slow database queries? Because that's, 
honestly, the biggest performance issue for web apps like Rails apps is they keep running into 
these kinds of either unindexed queries or N+1s. 
  
And we can deal with the unindexed query problem because if we can analyze your schema, we 
can actually find these immediately and suggest indexes. But N+1s in SQLite are actually great. 
Like, it is so much better to do N+1s than to have really big complex queries because that takes 
a lot more memory, and it holds up...any kind of locking that you might have, it's going to hold 
that lock for much longer. 
  
JARED: And it turns out that the round trip to your SQLite database is not the same as the 
round trip to your, you know, [inaudible 42:19] database that's on another server. 
  
JOEL: Yeah, we're talking probably a few nanoseconds or something to do this round trip or at 
least microseconds. And so, yeah, it just doesn't matter. And then, there's other things like, 
okay, so now does it mean that it maybe makes sense to put certain queries in views? Maybe. I 
don't know. Like, previously, I would say we should definitely try to build up ahead of time all of 
the database queries, and then send that down to the views as one thing, because, otherwise, 
you can have all of these N+1s and yadda, yadda, yadda. 
  
But maybe you've got some logic in the views that means that if this condition is such and such, 
you're not even going to run those queries. So, I don't know, maybe it means that actually we 
can forget that pattern and start doing stuff a bit later and only doing it when it's necessary. You 
can have a condition in your view that decides whether or not it's going to query the database in 
a certain way because it's just so fast it doesn't matter. 
  
JARED: Yeah, it's always interesting to sort of step into a set of tools or a different environment 
where the performance characteristics are just totally different like that. And there's definitely a 
lot of benefits, you know, we've seen a lot of work going into making SQLite a, you know, a 



production-ready database, and that's been really cool. And it's cool to see projects like yours 
trying to leverage that in new ways. 
  
JOEL: Yeah, I hope it all works out. I think the biggest challenge is going to be convincing 
people that it's going to be fine. Like, by the time that this becomes a problem, you're going to 
be making so much money from this application that you can solve any problem that you run 
into. Like, you can go multi-server eventually. Like, you can rebuild the, you know, build sharding 
into Yippee, whatever [laughs]. You can solve it. 
  
The latency issue is, I think, the biggest issue, but if you can deal with the latency of just having 
one server that is, you know, as local to your users as it can be, then I think it can be pretty 
awesome.  
 
One thing that we're really leaning into with Yippee, which is kind of ironic given that I worked on 
Phlex, is, like, single-page applications, believe it or not [chuckles]. I think that they're actually 
kind of getting really good now, like, really, really good. Certainly, I've been very impressed with 
Svelte. And I think that that goes a long way towards reducing the impact of the latency of 
having a single server serve your requests. Because if you have, you know, your entire interface 
is kind of local first and running locally, and then you're just going out to the server to fetch new 
data, sometimes ahead of time, you can still build really compelling experiences like that. 
  
JARED: Yeah. The user is not necessarily going to notice the latency if the UI is done really 
well. 
  
JOEL: Yeah. 
  
JARED: Cool. It's really cool. Excited to see what comes out of all that experimentation with all 
these tools. Where can people go to follow all of this online? 
  
JOEL: Mostly just on Bluesky. I don't really post anywhere else anymore. So, I'm at 
joel.drapper.me on Bluesky. Also, follow Stephen Margheim @fractaledmind on Bluesky, 
because he's posting a lot about Plume, our SQLite parser, and Yippee. 
  
JARED: I've seen a bunch of the SQL parsing stuff on there. 
  
JOEL: Yeah, yeah, he's been working with me. Like, he really, like, did 99% of the SQLite 
parser. I've just jumped in at the end. "I'm like, I didn't think you'd actually do this [laughs]. But 
you've gotten so far, so I'm just going to help you now," yeah. 
  
And also, come join the Naming Things Discord. There's, I think, something like 450 people on 
there. We're talking about these kinds of projects and just generally fun, exciting things 
happening in the Ruby world, SQLite, that kind of thing. 
  



JARED: Yeah, no, I don't check Discord super often, but I have been popping in there and 
seeing some really good conversations. So, that's definitely...I endorse the Naming Things 
Discord. There's some cool conversations happening in there. Cool. Well, thanks for coming on 
the podcast, Joel. 
  
JOEL: You're welcome. It's been great. 
  
JARED: I've been following Joel's work for quite a while. Very cool, really interesting to see all 
the different approaches and reworking he's done to make, you know, Phlex super performant, 
seeing all of the different cases that Literal can handle. I'm really excited to try Quickdraw when 
it's ready, and Yippee is really also really intriguing. 
  
It's cool to see all of that work that's gone into SQLite over the last couple of years, allowing for 
these different approaches to making applications. Because there was, you know, when I was 
initially getting into Rails, SQLite would have not been even close to an appropriate database to 
use for any kind of production application whatsoever. And lots of cool stuff has happened since 
then, and it is now a viable option for certain cases. Sadly, not usually the case that I work in. In 
e-commerce, I think it would be a little tricky. 
  
We do want to be able to scale in certain ways and get our servers closer to customers, but 
that's not the situation a lot of application developers are in. And that means that there's a big 
use case for SQLite and, you know, Rails has started adopting that. And it's cool to see new 
offerings coming to this space. 
  
This episode has been produced and edited by Mandy Moore. 
  
Now go delete some… 
 
  
 
 


