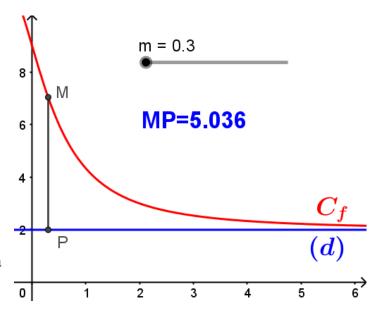
Asymptote horizontale

On considère une fonction f définie sur


l'intervalle
$$[0; +\infty[par : f(x) = \frac{2x^2 + 2x + 9}{x^2 + x + 1}]$$

.

On note C_f sa courbe représentative.

Soit \mathbf{m} un réel de l'intervalle $[0;+\infty[$

On appelle M et P les points d'abscisses m placés respectivement sur la courbe C_j et sur la droite (d) l'équation y = 2.

1. Construction sur le logiciel GeoGebra

- a) Construire un curseur *m* variant de 0 à 100 par pas de 0,1.
- b) Reproduire la figure ci-dessus avec le logiciel GeoGebra.

Appeler le professeur

- **2.**À l'aide du fichier GeoGebra, faire varier les valeurs de *m* et donner une conjecture sur la distance MP lorsque *m* devient très grand.
- **3.a)** Déterminer le plus petit entier m tel que MP < 0,1.
- **b)** Déterminer le plus petit entier *m* tel que MP< 0,01.

4.Exprimer la distance MP en fonction de m.

Appeler le professeur

5.Soit r un nombre réel strictement positif. On considère ci-dessous un programme qui déterminer le plus petit entier naturel n tel que pour tout $m \ge n$, la

a)Compléter les pointillés de l'algorithme.

distance MP <*r*.

b)Qu'affiche le programme si r = 0,0001?

c)Qu'affiche le programme si r = 0,00001 ?

Appeler le professeur

```
def distanceMP(r):
m=0
while .....>=r:
    return (m)
```

Appeler le professeur

Production écrite demandée

Réponses aux questions 2, 3, 4 et 5.