MARKING SCHEME

Q.No	EXPECTED ANSWER / VALUE POINTS	MARKS
1	а	1
2	С	1
3	C	1
4	a	1
5	a	1
6	b	1
7	С	1
8	b	1
9	d	1
10	b	1
11	d	1
12	b	1
13	С	1
14	b	1
15	d	1
16	d	1
17	а	1
18	а	1
19	(a) because the magnitude of osmotic pressure is large even for very dilute solution and it can be measured at room temperature.	1
	(b) due to the presence of more oxygen . Solubility of oxygen in water increases with decrease in temperature as dissolution process is exothermic in nature .	1
20	$\lambda_{\rm m} = k \times 1000/M$	1
	=4.95 × 10 ⁻⁵ × 1000/0.001	
	$= 49.5 \mathrm{S} \mathrm{cm}^2 \mathrm{mol}^{-1}$	1/2
	Now, degree of dissociation α , is given by	1/2
	$\alpha = \frac{\Lambda_m}{\Lambda_m^{\circ}}$	
	Putting the values,	
	$\alpha = \frac{49.5}{390.5} \text{ S cm}^2 \text{ mol}^{-1}$	
	= 0.1267	
21	Correct reactions	1/2+1/2
	Correct reason	'
	Correct definition	1
	Correct reactions	1/2+1/2
22	The sum of powers to which the concentration terms are raised in	1/2 1/2
	the rate law expression .	1/2 + 1/2
	(a) First order (b) Zero order	'/2 ' '/2
23	Coordination isomerism	1
_0	[Cr(NH ₃) ₆] [Co(CN) ₆].	1
24	$(CH_3)_3C$ -Br reacts faster because it is a tertiary halide (3° halide).	1/2 +1/2

	Correct mechanism involving two steps.	1/2+1/2
	or	
	(i) $+ Cl_2 \xrightarrow{\text{Anhyd.}} + Cl_2 \xrightarrow{\text{FeCl}_3} + HCl$	1
	1,2-dichlorobenzene 1,4-dichlorobenzene	1
	(ii) $CH_3CH_2Cl + AgNO_2 \longrightarrow CH_3CH_2NO_2 + AgCl$ Nitro ethane	
25	 p-Nitrophenol has intermolecular H-bonding hence has high BP and o- Nitrophenol has intra molecular H-bonding 	1
	Sec and ter- alkyl halides in presence of strong base undergo elimination reaction.	1
26	$4 FeCr2O4 + 8 Na2CrO4 + 7O2 \rightarrow 8 Na2CrO4 + 2 Fe2O3 + 8 CO2$ Sodium chromate (A)	1
	$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ Sodium dichromate	
	(B) $Na_2Cr_2O_7 + 2 KCI \rightarrow K_2Cr_2O_7 + 2 NaCI$	1/2
	Potassium dichromate (C)	1/2
	$Cr_2O_7^{2-} + 3H_2S + 8H^+ \rightarrow 2Cr^{3+} + 3S + 7H_2O$ (D)	1
27	Let the rate law expression $r = k[A]^p[B]^q$	
	$6.0 \times 10^{-3} = k[0.1]^{p} [0.1]^{q}(i)$ $7.2 \times 10^{-2} = k[0.3]^{p} [0.2]^{q}(ii)$ $2.88 \times 10^{-1} = k[0.3]^{p} [0.4]^{q}(iii)$ $2.4 \times 10^{-2} = k[0.4]^{p} [0.1]^{q}(iv)$	
	On dividing (iv) by (i) P=1	1
	on dividing (iii) by (ii) q=2	1
	Hence rate law expression – r = K [A] ¹ [B] ² therefore order of reaction = 1+2 =2	1/2+1/2
	or $t_{1/2} = 5730 \text{ years}$ $[R]_0 = 100$ $[R] = 80$ $t = ?$	

	Then K=0.693/ t _{1/2}	
	= 0.693/5730	1/2+ 1/2
	$=1.2 \times 10^{-4} \text{ y}^{-1}$	
	t=2.303/K (log [R] ₀ /[R])	1/2
	= 2.303/ 1.2 × 10 ⁻⁴ log(100/80)	1
	= 1845 years	1/2
28	NaCl → Na ⁺ + Cl ⁻	1/2
	i=2	
	$\Delta T_f = i K_f m$	1/2
	$\Delta T_f = i \times K_f \times W_B / M_{B \times} W_A$	
		1
	3= 2× 1.86 × W _B / 58.5 × 1	
	$W_B = 47.17 g$	1/2 +1/2
29	(a) CHCl ₃ is stored in dark coloured bottles to cut off light because	1
	CHCl ₃ is slowly oxidised by air in presence of light to form an	_
	extremely poisonous gas, carbonyl chloride, popularily known as	
	phosgene.	
	(b) Both enantiomeric forms cancel the optical rotation of each	1
	other.	1
	(c) Due to +R effect partial double character arises / due to sp ² hybridised C of haloarenes to which halogen is attached .	-
	hybridised of haloarenes to which halogen is attached.	
	or	
	Aniline to Bromo benzene	
	NH_2 $N_2^+Cl^-$ Br	1
	A NAME AND A AND A DATE OF THE PARTY OF THE	1
	$\frac{\text{NaNO}_2 + \text{HCl}}{273-278\text{K}} \longrightarrow \frac{\text{HB}_r/\text{Cu}_2\text{Br}_2}{\text{HB}_r/\text{Cu}_2\text{Br}_2} \longrightarrow \text{HCl}$	
	Benzene diazonium	
	chloride	
	Chlorobenzene to 2-chloroacetophenone	1
	Cl Anhyd. Cl O	
	+ CH ₃ COCl AlCl ₃ CH ₃ + HCl	
	Chloroethane to butane	1
	$2CH_3CH_2Cl + 2Na \xrightarrow{Dry \text{ ether}} CH_3CH_2 - CH_2 - CH_3 + 2NaCl$	
	3 2	

30 NO ₂	
CH ₂ CH ₃	L/2+1/2
$ \begin{array}{c} \text{2- Ethylbenzaldehyde} \\ \text{CHO} \\ \text{CH}_2\text{CH}_3 \end{array} \begin{array}{c} \text{Ag (NH}_3)_2 \\ \text{Tollen's reagent} \end{array} \begin{array}{c} \text{COO}^- \\ \text{2- Ethylbenzoate} \end{array} + \text{Ag} \\ \text{2- Ethylbenzoate} \end{array} $	1/2+1/2
2 – Ethylbenzaldehyde 1, 2 – Benzenedicarboxylic acid	L/2+1/2
(Identification + reaction)	•
31 (a) Formic acid on heating with tollen's reagent forms silver mirror.	
(b) Di-tert butyl ketone < Methyl tert –butyl ketone < Acetone < Acetaldehyde (c)	I
(i) $O + HCN \longrightarrow CN$ OH CN	1
(ii) $COONa + NaOH \xrightarrow{CaO} + Na_2CO_3$ Benzene	1
or	
(i) correct conversion (ii) correct conversion	
(a)Cu ²⁺ due to presence of unpaired elelctron . (b)No unpaired electron in 3d subshell /weak metallic bonding . (c) (i) Due to participation of (n-1)d and ns electron in bond formation .	1
1	1/2+1/2
or (i) Many Cu(I) compounds are unstable in aqueous solution and undergo disproportionation. $2Cu^+ \to Cu^{2+} + Cu$ The stability of Cu^{2+} rather than Cu^+ is due to more –ve hydration enthalpy of Cu^{2+} than Cu^+ which is much more and compensate for the II ionisation enthalpy .	
(ii) Due to similar metallic radii .	I

33	(a)Any two correct differences . (b)	1+1
	$Sn(s) \rightarrow Sn^{2+}(aq) + 2e^{-}$	
	$2H^*(aq) + 2e^- \rightarrow H_2(g)$	1/2
	$Sn(s) + 2H^*(aq) \rightarrow Sn^{2*}(aq) + H_2(g)$	
	$\begin{split} E_{cell}^* &= E_{(H^*,H_2)}^* - E_{(Sn^{2*},Sn)}^* \\ &= 0.00 - (-0.14) \\ &= +0.14V \\ E_{cell} &= E_{cell}^* - \frac{0.0591}{n} \log \frac{[Sn^{2*}]}{[H^*]^2} \end{split}$	1/2
	$=0.14-\frac{0.0591}{2}\log\frac{(4\times10^{-3})}{(2\times10^{-2})^2}$	1
	= 0.14 - 0.0295 log 10 = 0.14 - 0.0295 = 0.1105 V	1/2+1/2 (unit)
	50% (ASA C)*	(41111)
	or	
	(a)The limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion	1
	and cation of the electrolyte . $\lambda^{\circ}_{m} CH_{3}COOH = \lambda^{\circ}_{m} CH_{3}COO^{-} + \lambda^{\circ}_{m}H^{+}$	1
	(b)Correct definition	1
	Correct explanation for strong electrolyte Correct explanation for strong electrolyte	1
34	.(a) (i) Picric acid from phenol : OH OH	1
	Phenol + Conc. HNO ₃ Conc.H ₂ SO ₄ O ₂ N NO ₂	
	2, 4, 6-Trinitrophenol (Picric acid)	
	(ii) 2-Methylpropene from 2-methylpropanol:	1
	H_3C — CH — CH_2 — OH — $H_2SO_4(Conc)$ CH_3 — $C = CH_2$	
	CH ₃ CH ₃ 2-Methylpropanol 2-Methylpropene	
	(b) ethanol < p-methoxyphenol < phenol < p-nitrophenol	1
	(c)Acid catalysed hydration : Alkenes react with water in the presence of acid as catalyst to form alcohols	
	$C=C$ + H_2O $\xrightarrow{H^+}$ C C C C	
	Mechanism : It involves three steps :	

	(i) Protonation of alkene to form carbocation by electrophilic	
	attack of H ₃ O ⁺	
	$H_2O + H^+ \longrightarrow H_3O^+$	1
	(ii) Nucleophilic attack of water on carbocation	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	(iii) Deprotonation to form an alcohol	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	or	
	(a) (i) Daimon Tieneann nearlian a Teachasach af aleanal (ii)	
	(a) (i) Reimer-Tiemann reaction : Treatment of phenol with CHCl ₃ in presence of aqueous NaOH at 340K followed by	
	hydrolysis gives salicylaldehyde.	
	$OH \longrightarrow CHCl_3 \xrightarrow{NaOH, 340K} ONa \longrightarrow CHO \longrightarrow CHO$	1
	Salicylaldehyde	
	 (ii) Williamson's ether synthesis: The reaction of alkyl halide with sodium alkoxide to form ether is called Williamson synthesis. R—X + R'ONa → R—O—R' + NaX 	1
	Alkyl halide Sod. alkoxide Ether	1
	(b) (i) Pentan-2-ol on heating with I ₂ and NaOH gives yellow ppt.	
	of Iodoform while Pentan-3-ol does not give this test. (ii) Phenol gives violet coloured solution with FeCl ₃ while methanol does not.	1
	OH O	
	$3 \bigcirc + \text{FeCl}_3 \longrightarrow \bigcirc \bigcirc \downarrow \downarrow \downarrow_3 \text{Fe} + 3\text{HCl}$	
	Violet colouration	
	(c) Nitro group being EWG stabilizes the phenoxide ion formed	1
	while methoxy being ERG destabilizes the phenoxide ion .	
35	(a) tetracyanidonickelate(II) ion , dsp² ,square planar	1/2+1/2+
	,diamagnetic	1/2+1/2
	(b)Correct explanation + Correct diagram	1+1
	(c)Fe ₄ [Fe(CN) ₆] ₃	