
[KEP 2570] Memory QOS
Created: 2023-01-23
Last updated: 2023-01-23
Status: Draft
Kep-2570
Enhancement Issue
Blog Post

Username Role Status Last Change

David Porter Approver PENDING 2023-01-23

Mrunal Patel Approver PENDING 2023-01-23

Tim Xu Approver PENDING 2023-01-23

Paco Xu Approver PENDING 2023-01-23

Sergey Kanzhelev Approver PENDING 2023-01-23

Background

Problem Statement

Goal

Alternative Formulas

Default MemoryThrottlingFactor

Alternatives For Pod-Level Memory QOS Configuration

Code Changes

Background
In Kubernetes v1.22, an alpha feature named `QOS for Memory’ was introduced to improve how
Linux nodes implement memory resources requests and limits.

● It uses the memory controller of cgroup v2 to guarantee memory resources in
Kubernetes. Following table specifies the mapping of cgroup v2 memory controller’s
interface files with Kubernetes pod parms:

https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/2570-memory-qos
https://github.com/kubernetes/enhancements/issues/2570#issuecomment-1334894545
https://kubernetes.io/blog/2021/11/26/qos-memory-resources/

Cgroup v2 Pod

memory.max memory.limit

memory.high MemoryThrottlingFactor * (memory.limit or node
allocatable),
where memoryThrottlingFactor is 0.8 by default

memory.min memory.request

● It adds a MemoryThrottlingFactor field in kubelet configuration. 0.8 is set as default
memoryThrottling factor.

Note: This feature doesn’t use memory.low interface of cgroup v2 memory controller.
TODO(Dixita): It might be worth documenting why we are not using memory.low.

Problem Statement
The current implementation for memory.high is a function of memory.limit or node allocatable if
memory.limit is not set. It is based on the following formula:

memory.high = MemoryThrottlingFactor * (memory.limit or node allocatable)

The default MemoryThrottlingFactor is set to 0.8.

This approach has following problems:

1. Fails to throttle when requested memory is closer to memory limits (or node
allocatable): memory.high < memory.request
memory.high is the memory usage level at which throttling occurs. If the requested
memory is closer to memory limits, the current formula results in memory.high being less
than the memory.request. Since the requested memory is beyond memory throttling
limits i.e. memory.high, there won’t be any throttling.

For example,
memory.request = 850Mi
MemoryThrottlingFactor = 0.8
memory.limit = 1000Mi
Per current implementation,
memory.high = MemoryThrottlingFactor * memory.limit

= 0.8 * 1000Mi = 800Mi
Here, memory.high < memory.request.
TODO(ndixita): link the code with this check

https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/kubelet/config/v1beta1/types.go#L779

2. Throttling is easy to reach and can induce throttling too early
A sizable chunk of memory is unused because of early throttling.

For example,
● memory.request = 800Mi

MemoryThrottlingFactor = 0.8
memory.limit = 1000Mi
Per current implementation,
memory.high = MemoryThrottlingFactor * memory.limit

= 0.8 * 1000Mi = 800Mi
Throttling occurs at 800Mi, while a sizable chunk of 200Mi is still unused.

● memory.request = 500Mi
MemoryThrottlingFactor = 0.6
memory.limit = 1000Mi
Per current implementation,
memory.high = MemoryThrottlingFactor * memory.limit

= 0.6 * 1000Mi = 600Mi
Throttling occurs at 600Mi which is just a 100Mi over the requested memory.
400Mi of memory is still unused as early throttling happens.

3. Default throttling factor of 0.8 might be too aggressive for applications
Some applications have high memory usage closer to memory limits. Throttling will occur
when memory consumption reaches 80% of the memory limit as default
MemoryThrottlingFactor is 0.8. Such workloads are likely to be always throttled as the
memory consumption could be higher than the memory.high throttling level.

For example, some Java workloads that use 85% of the memory will start to get throttled
once this feature is enabled by default. Hence the default 0.8 MemoryThrottlingFactor
value may not be a good value.

Limit 1000Mi \ Request factor current design: memory.high =
MemoryThrottlingFactor * memory.limit (or node

allocatable if memory.limit is not set)

request 0Mi
factor 0.6

600Mi (400Mi unused)

request 500Mi
factor 0.6

600Mi (early throttling when memory usage is just
100Mi above requested memory; 400Mi unused)

request 800Mi
factor 0.6

max (600 < 800 i.e. memory.high < memory.request
=> no throttling)

request 1Gi
factor 0.6

max (600 < 800 i.e. memory.high < memory.request
=> no throttling)

request 0Mi
factor 0.8

800Mi

request 500Mi
factor 0.8

800Mi

request 800Mi
factor 0.8

max (600 < 800 i.e. memory.high < memory.request
=> no throttling)

request 500Gi
factor 0.4

max(400 < 500 i.e. memory.high < memory.request
=> no throttling)

Goal
The Memory QOS feature involves behavior change as it makes memory consumption stricter
for customer workloads. The workloads might get affected by memory reclamation more now
with this change. This document is to have an open discussion around the following topics for
smooth change:

1. Alternative formulas to calculate memory.high.
2. Higher default value of MemoryThrottlingFactor.
3. Alternatives for Pod-level Memory QOS configuration.

Alternative Formulas
1. memory.high as a function of memory.request and memory.limit

memory.high = memory.request + MemoryThrottlingFactor * (memory limit or

node allocatable - memory request)

Limit 1000Mi\
Request \
factor

current design:
memory.high

Alternative 1
memory.high = memory.request +

MemoryThrottlingFactor *
memory.limit - memory.request

request 0Mi
factor 0.6

600Mi 600Mi (document: 400Mi is still
unused and throttling occurs. It is not
recommended to use such a small

throttling factor to avoid early
throttling)

request 500Mi
factor 0.6

600Mi 800Mi

request 800Mi
factor 0.6

max (not throttling) 920Mi

request 1Gi
factor 0.6

max max

request 0Mi
factor 0.8

800Mi 800Mi

request 500Mi
factor 0.8

800Mi 900Mi

request 800Mi
factor 0.8

max 960Mi

request 500Mi
factor 0.4

max 700Mi

request 996Mi
factor 0.6

max(no throttling) 998.4 (Huge page size: say 2Mi,
throttling should have occurred at
998Mi. Hence page size needs to be
accounted for in the formula)

request 996Mi
Factor 0.8

max (no throttling) 999.2 (Huge page size: say 2Mi,
throttling should have occurred at
998Mi. Memory less than page size
won’t be allocatable Hence page size
needs to be accounted for in the
formula.)

Pros:
● memory.high is never less than memory.request.

○ As, memory.high = memory.request + MemoryThrottlingFactor * (memory.limit -
memory.request), memory.high >= memory.request

Cons:
● Formula is a little more complicated for customers than the current implementation.
● Early throttling can still occur when the MemoryThrottlingFactor is set to a low value.

Note: The cons can be addressed by providing proper guidance around recommended
values of MemoryThrottlingFactor.

2. [Preferred Alternative] memory.high as a function of memory.request, memory.limit and
page size.
This is an improvement to formula (1) that makes sure memory.high is divisible by pageSize
since memory is always requested in chunks of pageSize.

Formula:

memory.high = floor(memory.request + throttling factor * (memory limit or

node allocatable - memory request)/pageSize) * pageSize

Cons:
● Formula is a little complicated for customers who do not want to use default

MemoryThrottlingFactor
● Early throttling for small MemoryThrottlingFactor

Note: The cons can be addressed by providing proper guidance around recommended
values of MemoryThrottlingFactor.

3. Set default MemoryThrottlingFactor to a high value 0.9 or 0.95 with the current
implementation and make it configurable.

Pros:
● Simple formula.

Cons:
● Failure to throttle as memory.high can be lesser than memory.request.

For example, memory.request = 980Mi
memory.limit = 1000Mi
memory.high = 0.95 * 1000Mi = 950Mi
Since memory.high < memory.request, throttling won’t occur

4. Pod Level setting for a soft memory request
For example, custom setting in the POD YAML file to throttle at 180Mi.

apiVersion: v1
kind: Pod
metadata:

name: example
spec:

containers:
- name: nginx

resources:
requests:

memory: "200Mi"
cpu: "250m"

throttlingLimits:
memory: "180Mi"

limits:
memory: "64Mi"
cpu: "500m"

Cons:
● Requires changing the APIs to add a new field throttlingLimits.
● Understanding the throttlingLimits can be tricky for customers. Percentage of memory

usage through setting defaultMemoryThrottling factor is easier to gauge.

Default MemoryThrottlingFactor
With 0.8 as default MemoryThrottlingFactor, 20% of the memory will remain unused. It might be
worth considering a higher value of MemoryThrottlingFactor.

The table below runs over the examples with different values using the formula:

memory.high = memory.request + MemoryThrottlingFactor * (memory.limit -

memory.request

Limit
1000Mi

throttlingMem
oryFactor 0.6

throttlingMemory
Factor 0.8

throttlingMemory
Factor 0.9

throttlingMemory
Factor 0.95

request
0Mi

600Mi 800Mi 900Mi 950Mi

request
100Mi

640Mi 820Mi 910Mi 955Mi

request
200 Mi

680Mi 840Mi 920Mi 960Mi

request
300 Mi

720Mi 860Mi 930Mi 965Mi

request
400 Mi

760Mi 880Mi 940Mi 970Mi

request
500Mi

800Mi 900Mi 950Mi 975Mi

request
600Mi

840Mi 920Mi 960Mi 980Mi

request
700Mi

880Mi 940Mi 970Mi 985Mi

request
800Mi

920Mi 960Mi 960Mi 990Mi

request
900Mi

960Mi 980Mi 980Mi 995Mi

request
1000Mi

1000Mi 100Mi 1000Mi 1000Mi

Higher values of 0.9, 0.95 and so on cause less aggressive memory throttling limits, and results
in lesser unused memory. While very high values of 0.95 or a greater factor might not be as
effective as in this case memory.high could be almost equal to memory.limit.

[Actionable] Discussion for readers
What should we pick as the default value of MemoryThrottlingFactor? 0.9 or 0.95
Author’s opinion: 0.9 can be set as an initial default value, and can be changed to a higher value
of 0.95 based on the feedback from customers.

Alternatives For Pod-Level Memory QOS
Configuration
MemoryThrottlingFactor is a kubelet configuration that gets applied to nodes. Following are the
alternatives for implementing Memory QOS configuration at Pod level:

1. [Preferred] QOS Classes
● Continue allowing customers to MemoryThrottlingFactor at node level.
● Pods should comply with the QOS classes. Memory QOS behavior for the QOS

classes is as follows:

https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/kubelet/config/v1beta1/types.go#L779

i. Guaranteed class
The pod gets a Guaranteed class if the request and limit values are the same.
Guaranteed class pods are the highest priority pods and we disable throttling for
these pods by setting memory.high equal to memory.limit.

memory.high = memory.limit = memory.request

ii. Burstable
The pod gets a Burstable class if the requested memory is lower than the limit.

Case 1: When memory.request and memory.limit are set

memory.high = floor [(memory.request + memoryThrottlingFactor

* (memory.limit - memory.request)) / pageSize] * pageSize

Case 2. When memory.request is set, memory.limit is not set

memory.high = floor[(memory.request + memoryThrottlingFactor *

(node allocatable - memory.request) / pageSize) * pageSize

Case 3. When memory.request is not, memory.limit is set

memory.high = floor[(memoryThrottlingFactor * memory.limit) /

pageSize) * pageSize

iii. BestEffort
The pod gets a BestEffort class if memory.limit and memory.request are not set.

memory.high = floor[(memoryThrottlingFactor * node

allocatable) / pageSize) * pageSize

Pros
● Memory QOS complies with QOS which is a wider known concept.
● Simpler to understand as it requires setting only 1 kubelet configuration.

Cons
● There might be customers who require setting different throttling factors per pod.

Based on feedback from customers, we could decide if alternative solutions
cover more customer use cases in future versions.

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-guaranteed
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-burstable
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-besteffort

2. Allow customers to set MemoryThrottlingFactor for each pod in annotations.
● Add a new annotation for customers to set memoryThrottlingFactor to override

kubelet level MemoryThrottlingFactor.
Pros

● Allows more flexibility.
● Can be quickly implemented.

Cons
● Customers might not need per pod memoryThrottlingFactor configuration.
● TODO(ndixita):t not good from API side

3. Allow customers to set MemoryThrottlingFactor in pod yaml
● Add a new field in API for customers to set memoryThrottlingFactor to override

kubelet level MemoryThrottlingFactor.
Pros

● Allows more flexibility.
Cons

● Customers might not need per pod memoryThrottlingFactor configuration.
● API changes take a lot of time, and we might eventually realize that the

customers don’t need per pod level setting.

[Actionable] Discussion for readers
How should we allow pod level configuration?
Author’s opinion from meetings discussions: Start with QOS classes, and gather feedback.
Based on feedback from customers, decide if alternative solutions make more sense.

Code Changes
TODO(ndixita): Add code snippets

