
Investigation: Custom Keyed Collections

Databases
Variety of syntaxes for composite keys. Triggers often propagate using triggers or cascading.
Keys are not hashed.

Computed keys (custom identity) can be used as primary keys but not in all databases, and not
in certain scenarios with dynamic behavior. General workflow around custom/computed identity
is to use multiple tables and cascade between them.

Ruby
Custom hash keys are tied to instances. No way to perform customization per collection.

compare_by_identity
Forces a Hash to use identity rather than custom hash keys.

object.object_id
Returns an integer that is unique for the lifetime of an object.

Python
Uses integer types for identity as hash codes. No way to perform customization per collection.
Emulating container types does not strictly bind the implementation of types to a specific
abstract base. This works because using collections is done by separate functions such as
slice() and not methods of collections.

__eq__ / __hash__
Requires that objects be considered equal if hashes are equal.

id
Returns an integer that is unique for the lifetime of an object.

Java
Uses integer types for identity as hash codes.

https://ruby-doc.org/core-2.5.3/Hash.html#class-Hash-label-Hash+Keys
https://ruby-doc.org/core-2.2.2/Hash.html#method-i-compare_by_identity
http://ruby-doc.org/core-2.5.3/Object.html#method-i-object_id
https://docs.python.org/3/reference/datamodel.html?emulating-container-types#emulating-container-types
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/2/library/functions.html#id


Object.equals / Object.hashCode
Allows objects to override the alter the default identity via hash codes and equality for keys but
requires that objects with identity to be equal, otherwise collections might not work properly.

IdentityHashMap
Does not extend standard collection type but implements interface to Map to create class with
differing identity and equality for storing keys.

java.System.identityHashCode
Helper to avoid virtual identity and get runtime referential identity. String allocations are not
considered equal if pointing to different references.

CSharp
Uses integer types for identity as hash codes..

IEqualityComparer
Requires implementing a way to generate identity using hash codes and compare values.

Object.GetHashCode / Object.Equals
Allows objects to override the alter the default identity via hash codes and equality for keys but
requires that objects with identity to be equal, otherwise collections might not work properly.

RuntimeHelpers.GetHashCode
Helper to avoid virtual identity and get runtime referential identity. String allocations are not
considered equal if pointing to different references.

Rust
Uses integer types for identity as hash codes. No known way to generate a unique id via the
system, but can compare pointers and use Rc<T> to create identity based functionality.

std.HashMap.with_hasher
Allows passing in a function to customize hashing for keys, requires Eq and Hash be
implemented for the keys such that.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/IdentityHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#identityHashCode-java.lang.Object-
https://docs.microsoft.com/en-us/dotnet/api/system.collections.iequalitycomparer?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.object.gethashcode?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.object.equals?view=netframework-4.7.2#System_Object_Equals_System_Object_
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.runtimehelpers.gethashcode?redirectedfrom=MSDN&view=netframework-4.7.2#System_Runtime_CompilerServices_RuntimeHelpers_GetHashCode_System_Object_
https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.with_hasher


trait Hash / trait Eq
Allows objects to override the alter the default identity via hash codes and equality for keys but
requires that objects with identity to be equal, otherwise collections might not work properly.

Observations

Overriding behaviors
Languages allow customization of the concept of equality per type or object. JavaScript does
not currently allow overriding equality operations. These languages also allow overriding of
identity via hashing.

JS does not allow overriding equality nor customizing identity currently. It seems unlikely that
existing referential identity semantics of maps would be allowed to change if equality cannot
also be customized by looking at requirements of implementing custom identity and equality in
other languages.

Subclassing
Very few cases encouraging subclassing exist, custom types and wrapped types such as
PersonByEmail, PersonByFamily, PersonByLastName, etc. seem to be the path of least friction
to provide different views of identity for a single Person object.

Hooks into existing collections
Databases, Rust, and C# allow for providing custom computations into the identity of a
collection. These require the non-strictly enforced semantics of identity and equality in both Rust
and C# which can lead to logical errors or misuse if the implementations of those 2 traits are not
correctly synchronized. Databases do not allow for differentiation of equality and identity.

https://doc.rust-lang.org/std/cmp/trait.Hash.html
https://doc.rust-lang.org/std/cmp/trait.Eq.html

