
The Realities of DTrace on FreeBSD
Talk Overview

●​ History
●​ Motivation
●​ Recent Improvements
●​ How people use DTrace
●​ Future Improvements

History
●​ Invented by Sun in 2005
●​ Ported to FreeBSD in 2008

○​ Notes from original porting effort still in public_html folder
●​ Ported to Mac OS for 10.5
●​ Maintained separately by each OS team with some cross patching

Motivations
●​ Improve tracing on large systems
●​ Distributed Systems
●​ Use tracing for teaching complex operating systems (U. Cambridge, Robert Watson’s course)

○​ https://www.cl.cam.ac.uk/teaching/1617/L41/materials.html
●​ Making it production ready

Crisis Meeting (picture of Mexican standoff from Reservoir Dogs)
●​ Wall Street high perf computing with three teams: Networking people, Mathematicians, Systems people
●​ Networking people understand bits/sec, Mathematicians write terrible code (here’s this equation …)

○​ Each group have a different language
●​ Tracing is a common language in a large, distributed system

CADETS: Casual, Adaptive, Distributed and Efficient Tracing System
●​ focus on security, distributed tracing
●​ (as opposed to putting log files in Splunk)

Ground-Up Local Instrumentation
●​ compilers

○​ LOOM(program driven instrumentation)
○​ LLVM IR fat binaries support JIT (re-) instrumentation

●​ OS: Dtrace scriptable full-system dynamic tracing
Distributed Instrumentation Using DTrace

●​ Use Case: always-on DTrace
●​ Poll trace information out of a live system running at full speed
●​ Dtrace protections can be used against us
●​ Some improvements necessary
●​ github.com/cadets/dtrace-scripts

DTrace Design Principles
●​ No overhead when not in use

○​ Ship single binary. Suitable for high perf work yet still debuggable
●​ Never panic the kernel
●​ Protect kernel at all costs
●​ D is like C but safe

○​ no loops, no basic blocks (only the conditional operator), can’t force kernel to loop forever
●​ Tunings were set for slower 2005 hardware

Running out of steam
●​ dtrace: 2179050 drops on CPU 0 ...
●​ “DTrace is broken!”

https://www.cl.cam.ac.uk/teaching/1415/L41/materials.html
https://github.com/cadets/dtrace-scripts

Tuning
●​ bufsize: defaults to 4M

○​ increase if you have many drops
●​ switchrate: defaults to 1Hz

○​ increase if you have drops
●​ dynvarsize: defaults to 1M

○​ increase if you have many variable drops
Recent Improvements

●​ Machine Readable Output
○​ Traditional DTrace UI is very textual
○​ Machine readable output enables different frontends and visualizations

●​ New Providers
○​ FreeBSD audit subsystem: useful for security use case of CADETS
○​ mac and Mac_framwork
○​ opencrypto
○​ sctp
○​ xbb

●​ Performance Analysis
●​ Documenting the Internals

○​ original source code well documented, external Oracle docs less so
○​ not just what, but how and why

Machine Readable Output Demo
●​ dtrace -O json -n ‘syscall:write:entry’

○​ each event includes a timestamp (for visualization etc)
D Language Improvements

●​ Original design
○​ awk like language
○​ thread and clause local variables
○​ Subroutines to handle common tasks

●​ copyoutmbuf (added by George)
●​ There are no mbufs in Solaris
●​ Reading chained mbufs in D
●​ Important for network stacks
●​ (Dump IP packet example: IPv6 packet starts with 0x45)

●​ if statements
○​ D only has a conditional operator
○​ the syntactic-sugar-if still has error message readability problems

Audit Provider
●​ originally for Common Criteria (Orange Book)

DTrace Performance
●​ Original design goal: shouldn’t degrade performance

○​ Drops Records: not great for security use case
○​ kernel can kill tracing under high load

●​ Solutions
○​ our monitor cycle
○​ buffer size configurable with sysctl
○​ Improve the compiler

■​ LLVM
Aside - Loom

●​ instrumentation framework
●​ LLVM based
●​ weaves instrumentation into LLVM IR

●​ instrumentation defined in policy files
●​ instrumentation can be done as long as LLVM IR is available

USDT (static userland tracepoints)
USDT Performance

●​ Problems
○​ DTrace tool modifies binaries
○​ doesn’t play well with make

LOOM based User Tracing
Dynamic Userland Tracing

●​ Early stage of development
○​ sycall (dt_probe)
○​ instrumentation via LOOM

DTrace is not the Only One (mentioning other systems for completeness)
●​ eBPF

○​ low level, too primitive
●​ bcc, ply

○​ high level tracing frontends
●​ Brendan Gregg: eBPF achieved feature parity with DTrace in 2017

DTrace Source Flow
(There’s a Windows port of DTrace)
Illumos -> FreeBSD
 -> MacOS
 -> Linux …

OpenDTrace
●​ Cross Platform

○​ (The way the original DTrace works on ARMv7 is kind of ugly)
●​ Highly Portable
●​ RFD (Request for Discussion) Process
●​ github.com/orgs/opendtrace

OpenDTrace Specification
●​ Specs of DIF, DOF, CTF (compact trace format)
●​ Better testing
●​ support new execution substrates (JIT)
●​ Allow for clean room reimplementation (e.g. desire to avoid CDDL license)

OpenDTrace Features
●​ Basic Blocks (George wants if-statements)
●​ Bounded Loops (joke: there might be a 42 iteration limit)
●​ Modules
●​ Higher performance
●​ Test Suite
●​ More OS Ports
●​ Broad Architecture Support
●​ Finer Grained Libraries
●​ Usable from other languages: Python, Rust, Go
●​ Support uC, game consoles, laptops, distributed systems

Applying OpenDTrace
●​ more kernel subsystem providers

How you can help
●​ look at the opendtrace organization on github
●​ checkout docs and source

Q&A

●​ opendtrace only about DTrace code? A: yes
●​ interwork with eBPF? A: no. Goal is to crush them (joke)
●​ Scalability? A: research project not over. DTrace no more or less scalable than other solutions
●​ Talk more about win32 port? A: no

	The Realities of DTrace on FreeBSD

