

SPECIFICATIONS

[TITLE]

TECHNICAL FIELD OF THE INVENTION

The present invention relates to an [General Field of the invention] specifically [more detailed field of the invention].

BACKGROUND OF THE INVENTION

Your Background of the invention is located here. Prior Arts and Related Techs

SUMMARY OF THE INVENTION

Your advantage over the Prior art, what problem does it solve, how was the problem solved. State the Prior arts here and what are the gaps that the current invention solves.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects and implementations of the present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various aspects and implementations of the disclosure, which, however, should not be taken to limit the disclosure to the specific aspects or implementations, but are for explanation and understanding only.

FIG. 1 Shows the perspective view of the device

FIGS. 2 Shows the block diagram of the components of the device.

FIG. 3 is the process flow of the operation of the device.

DETAILED DESCRIPTION OF THE INVENTION

Detailed description is found here

CLAIMS (Must be on new page)

[Sample Claim Only]

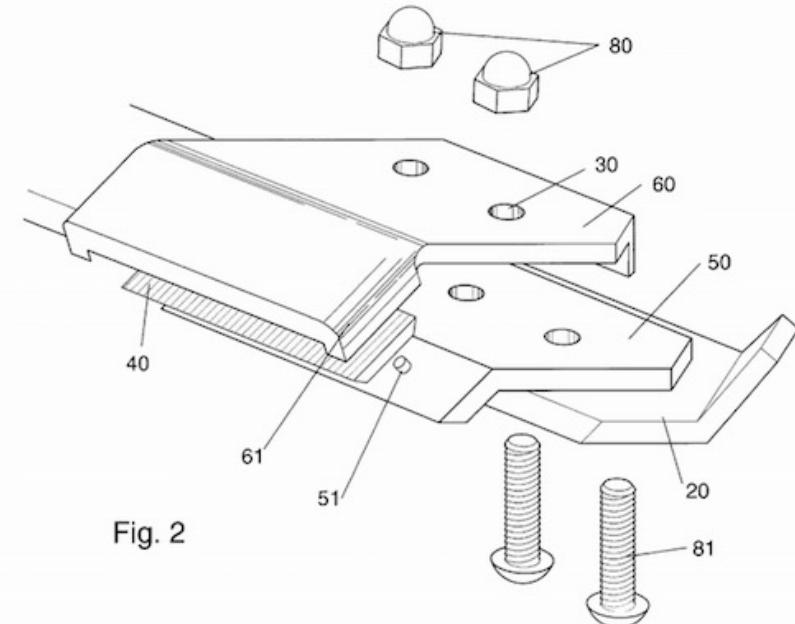
1. An autonomous adaptive irrigation system comprising:

- a) a plurality of soil moisture sensors distributed throughout a field, configured to measure soil moisture levels at multiple depths within the soil;
- b) a weather station configured to collect meteorological data including temperature, humidity, rainfall, and solar radiation;
- c) an actuation system comprising water valves and pumps for controlling the distribution of water to the field;
- d) a central control unit comprising processing capabilities and communication modules, wherein said central control unit is configured to receive inputs from the plurality of soil moisture sensors and the weather station;
- e) wherein the central control unit is further configured to analyze the received data using machine learning algorithms and predictive analytics to determine an optimal irrigation schedule and water distribution pattern based on factors including soil type, crop type, growth stage, and local weather conditions;
- f) wherein the central control unit is further configured to transmit control signals to the actuation system to adjust the irrigation parameters in real-time based on the analysis;
- g) wherein the central control unit is further configured to provide remote monitoring and control capabilities, allowing users to access real-time data and control the irrigation system through a user-friendly interface accessible via smartphones or computers.

2. The autonomous adaptive irrigation system of claim 1, wherein the soil moisture sensors utilize capacitance or resistance-based sensing technology to measure soil moisture levels.
3. The autonomous adaptive irrigation system of claim 1, wherein the weather station comprises sensors for measuring temperature, humidity, rainfall, and solar radiation, wherein said sensors are positioned at an optimal height to collect accurate meteorological data.
4. The autonomous adaptive irrigation system of claim 1, wherein the machine learning algorithms utilized by the central control unit are trained using historical data on soil moisture, weather conditions, crop characteristics, and irrigation practices to optimize irrigation scheduling and water distribution.
5. The autonomous adaptive irrigation system of claim 1, wherein the user-friendly interface accessible via smartphones or computers allows users to remotely monitor soil moisture levels, weather conditions, and irrigation activities, and further enables users to manually adjust irrigation settings or override automatic control based on specific preferences or requirements.

[TITLE]

ABSTRACT OF THE DISCLOSURE


Maximum of 150 words if possible.

DRAWINGS

Drawing Label: " Figure 1 or Fig. 1" (No Description)

Affix signature at the bottom right side with your position.

Example:

