Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»

Факультет цифровых технологий и химического инжиниринга Кафедра информационных компьютерных технологий

ОТЧЕТ

«Поиск научных работ и патентов по теме: применение искусственного интеллекта в химии»

Ведущий преподаватель, к.т.н.

Зубов Д.В.

СТУДЕНТКА группы КС-30

Вусатюк А.А.

Москва

2024

Оглавление

Реферат	4
Введение	5
Русскоязычный поиск	6
Статьи	6
Авторы	7
Выводы по русскоязычному поиску	7
Англоязычный поиск	8
Статьи	8
Авторы	9
Журналы	9
Выводы по англоязычному поиску	10
Заключение	11
Список литературы	12

Реферат

Отчет 13 с., 11 источников.

Поиск научных работ и патентов: использование искусственного интеллекта в химии.

Цель работы: выявить актуальность темы "Использование искусственного интеллекта в химии".

В ходе исследования были изучены такие материалы как научные статьи, специализированные журналы и зарегистрированные патенты в русских и английских источниках, посвящённые теме применения искусственного интеллекта и машинного обучения в разных областях химии. Была проанализирована актуальность данной темы, её развитие в последние годы и области применения.

Объектом исследования являются публикации об использовании машинного обучения и искусственного интеллекта в химии.

В ходе выполнения НИР получены следующие результаты:

- 1. Выявлена область применения искусственного интеллекта в химии.
- 2. Определены ключевые слова для проведения поиска по теме.
- 3. Был проведён поиск публикаций, журналов и патентов в русскоязычных источниках.
- 4. Был проведён поиск публикаций, журналов и патентов в англоязычных источниках.
- 5. Были сделаны частные выводы по результатам русскоязычного и англоязычного поисков и глобальный вывод об актуальности темы исследования.

Введение

В современном цифровом мире стремительно развиваются информационные технологии, которым находится применение всё в большем количестве направлений и областей. Различные технологии применяются на постоянной основе как и в повседневной жизни, так и в разных областях науки, зачастую играя ключевую роль в выявлении каких-либо феноменов или совершении научных прорывов. Машинное обучение сейчас является крайне актуальной технологией, которая внедряется и используется в новые сферы и находит себе самые разные применения. В науке машинное обучение может быть крайне полезно для предсказания и моделирования каких-либо процессов, свойств, веществ и систем.

Химия в настоящее время является крайне актуальной и развивающейся сферой, и во многом в этом помогают современные технологии: для моделирования, создания, исследования различных веществ и реакций. Многие процессы можно оптимизировать или облегчить с помощью применения машинного обучения и искусственного интеллекта.

В данной работе рассматривается применение машинного обучения в различных областях химии, и актуальность данной тематики.

Русскоязычный поиск

Тема исследования: Использование искусственного интеллекта в химии

Ключевые слова: Искусственный интеллект, Машинное обучение, Нейронные сети, Химия

Поиск по ключевым словам: Всего найдена 131 публикация.

Статьи

- Баскин И.И. Искусственный интеллект в синтетической химии: достижения и перспективы / Баскин И.И., Маджидов Т.И., Антипин И.С., Varnek A.A. // Успехи химии. 2017 №11 с. 1127-1156. ISSN 0042-1308, eISSN 1817-5651
- 2. **Глебов М.Б.** Применение нейронных сетей в химии и химической технологии / Глебов М.Б., Галушкин А.И. // Нейрокомпьютеры: разработка, применение. 2003. № 3-4. С. 66-107. ISSN 1999-8554.
- 3. **Губанова С.А.** Машинное обучение, искусственный интеллект и химия: как интеллектуальные алгоритмы меняют моделирование и лабораторию / Губанова С.А. // Реформирование и развитие естественных и технических наук: сборник материалов XVI-ой международной очно-заочной научно-практической конференции. Москва, 2023. С. 106-112. УДК: 004.838.2. Издательство: Научно-издательский центр "Империя".
- 4. **Измоденов** Д.В. Машинное обучение в квантовой химии / Измоденов Д.В., Лейбин И.В., Озеров Г.К., Безруков Д.С., Синицкий А.В. // Химия, физика, биология: пути интеграции: Сборник тезисов докладов VIII Всероссийской научной молодежной школы-конференции. Москва, 2020. С. 19. Издательство: Федеральное государственное бюджетное учреждение науки Институт химической физики им. Н.Н. Семенова Российской академии наук.

5. Ширяева А.А. Совершенствование процесса подбора реагентов промышленной химии с использованием методов машинного обучения / Ширяева А.А., Пасечников В.В., Диденко В.Ю. // Основы инновационных технологий нефтяной и газовой промышленности: Сборник трудов Всероссийской научной конференции международным участием, посвященной 35-летию ИПНГ РАН. – C. 165-166. Москва, 2022. _ Издательство: Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Российской академии наук.

Авторы

- 1. Антипин Игорь Сергеевич; число публикаций в РИНЦ 424, индекс Хирша – 32
- 2. Баскин Игорь Иосифович; число публикаций в ядре РИНЦ 212, индекс Хирша 32
- 3. Маджидов Тимур Исмаилович; число публикаций в ядре РИНЦ 80, индекс Хирша 17
- 4. Сенько Олег Валентинович; число публикаций в ядре РИНЦ 137, индекс Хирша 10

Выводы по русскоязычному поиску

На данную тему найдено по ключевым словам «искусственный интеллект, химия» была найдена 131 что статья, является удовлетворительным количеством. Это означает, что тема сформулирована не слишком обширно и не слишком узко. Статьи по теме применения машинного обучения в химии входят в РИНЦ, из чего можно заключить, что это направление актуально. Так же по данной теме были найдены патенты, тоже входящие в РИНЦ. Большая часть статей и патентов была опубликована за последние пять лет, что показывает актуальность данного направления и растущий к нему интерес и спрос.

Англоязычный поиск

Tema: Application of artificial intelligence in chemistry

Ключевые слова: Artificial intelligence, Machine learning, Chemistry

Поиск: 28203 статьи

Статьи

- 1. **Matheus C. Colaço.** Supramolecular Chemistry: Exploring the Use of Electronic Structure, Molecular Dynamics, and Machine Learning Approaches / Matheus C. Colaço, Vinícius A. Glitz, Amanda K. Jacobs, Vinícius C. Port, Giovanni F. Caramori // European Journal of Organic Chemistry. 2024. Vol. 27. Issue 27.
- Lei He. Applications of computational chemistry, artificial intelligence, and machine learning in aquatic chemistry research / Lei He, Lu Bai, Dionysios D. Dionysiou, Zongsu We, Richard Spinney, Chu Chu, Zhang Lin, Ruiyang Xiao // Chemical Engineering Journal. 2021 Vol. 426.
- 3. **Luwei Miao.** Progress toward adsorption mechanism exploration method for capacitive deionization: Experimental, mathematical model, computational chemistry and machine learning / Luwei Miao, Ming Gao, Weilong Xiao, Yuchen Kang, Ran Li, Hao Kong, Haiyan Mou, Wenqing Chen, Tianqi Ao // Desalination. 2024 Vol. 586.
- 4. Haripriya Thalla. Supervised Machine-Learning Algorithm using Low Data Sets: Flow Chemistry Optimization of the Key Urea Moiety Construction in Larotrectinib / Haripriya Thalla, Varshini Uma Jayaraman, Maheshkumar Uppada, Vishnuvardhan Reddy Eda, Saikat Sen, Rakeshwar Bandichhor, Srinivas Oruganti // Organic Process Research & Development. 2024.
- 5. **Markus Meuwly.** Machine Learning for Chemical Reactions / Markus Meuwly // Chemical Reviews. 2021 Vol. 121. Issue 16.

6. **John A. Keith.** Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems / John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger, Klaus-Robert Müller, Alexandre Tkatchenko // Chemical Reviews. – 2021 – Vol. 121. – Issue 16.

Авторы

- 1. Lin Zhang, H-index 76, 439 публикаций, 20548 цитирований.
- 2. Caramori Giovanni Finoto, H-index 24, 134 публикаций, 1890 цитирований.
- 3. Markus Meuwly, H-index 51, 230 публикаций, 10248 цитирований.
- 4. Ao Tianqi, H-index 24, 129 публикаций, 1694 цитирований.
- 5. Bandichhor Rakeshwar, H-index 22, 134 публикаций, 2312 цитирований.

Журналы

- 1. Chemical Engineering Journal, H-index 309, Q1.
- 2. Chemical Reviews, H-index 833, Q1.
- 3. European Journal of Organic Chemistry, H-idex 173, Q1.
- 4. Desalination, H-index 231, Q1.
- 5. Organic Process Research and Development, H-idex 127, Q1.

Выводы по англоязычному поиску

Поиск на английском языке дал намного больше источников и статей, причём в самых разных отраслях химии. По ключевым словам artificial intelligence + chemistry на ScienceDirect нашлось почти 30 тысяч результатов. Есть огромное многообразие статей и журналов, которые имеют очень высокие индексы и которые хоть и не направлены по своей тематике конкретно на применение искусственного интеллекта в химии, но публиковали статьи по этой тематике, а так же немалое количество авторов с довольно высоким h-индексом, занимающихся или интересующихся этой темой. За рубежом использование машинного обучения в химии является более востребованным и актуальным вопросом, нежели чем у нас, и это демонстрируют количество статей, журналов и авторов.

Можно заключить, что по данной тематике лучше проводить поиск на английском, а так же что эта тема является крайне актуальной и исследуемой в настоящее время.

Заключение

В ходе исследования было установлено, что данная тема больше актуальна за рубежом, нежели чем в России: поиск в англоязычных источниках дал намного больше статей и авторов, причём большинство опубликованы за последние годы. были Это подчёркивает актуальность и востребованность данной темы, а так же интерес многих авторов и научных журналов к ней. У нас применение машинного обучения в химии не настолько развито, но интерес к этой теме есть: были найдены последние найдены выложенные за годы, как И заинтересованные в этой теме, и можно предполагать, что в будущем данное направление будет лишь расти.

Список литературы

- Баскин И.И. Искусственный интеллект в синтетической химии: достижения и перспективы / Баскин И.И., Маджидов Т.И., Антипин И.С., Varnek A.A. // Успехи химии. 2017 №11 с. 1127-1156. ISSN 0042-1308, eISSN 1817-5651
- 2. **Глебов М.Б.** Применение нейронных сетей в химии и химической технологии / Глебов М.Б., Галушкин А.И. // Нейрокомпьютеры: разработка, применение. 2003. № 3-4. С. 66-107. ISSN 1999-8554.
- 3. **Губанова С.А.** Машинное обучение, искусственный интеллект и химия: как интеллектуальные алгоритмы меняют моделирование и лабораторию / Губанова С.А. // Реформирование и развитие естественных и технических наук: сборник материалов XVI-ой международной очно-заочной научно-практической конференции. Москва, 2023. С. 106-112. УДК: 004.838.2. Издательство: Научно-издательский центр "Империя".
- 4. **Измоденов** Д.В. Машинное обучение в квантовой химии / Измоденов Д.В., Лейбин И.В., Озеров Г.К., Безруков Д.С., Синицкий А.В. // Химия, физика, биология: пути интеграции: Сборник тезисов докладов VIII Всероссийской научной молодежной школы-конференции. Москва, 2020. С. 19. Издательство: Федеральное государственное бюджетное учреждение науки Институт химической физики им. Н.Н. Семенова Российской академии наук.
- 5. Ширяева А.А. Совершенствование процесса подбора реагентов промышленной химии с использованием методов машинного обучения / Ширяева А.А., Пасечников В.В., Диденко В.Ю. // Основы инновационных технологий нефтяной и газовой промышленности: Сборник Всероссийской научной конференции трудов международным участием, посвященной 35-летию ИПНГ РАН. – Москва, 2022. C. 165-166. Издательство: Федеральное

- государственное бюджетное учреждение науки Институт проблем нефти и газа Российской академии наук.
- 6. **Matheus C. Colaço.** Supramolecular Chemistry: Exploring the Use of Electronic Structure, Molecular Dynamics, and Machine Learning Approaches / Matheus C. Colaço, Vinícius A. Glitz, Amanda K. Jacobs, Vinícius C. Port, Giovanni F. Caramori // European Journal of Organic Chemistry. 2024. Vol. 27. Issue 27.
- Lei He. Applications of computational chemistry, artificial intelligence, and machine learning in aquatic chemistry research / Lei He, Lu Bai, Dionysios D. Dionysiou, Zongsu We, Richard Spinney, Chu Chu, Zhang Lin, Ruiyang Xiao // Chemical Engineering Journal. 2021 Vol. 426.
- 8. **Luwei Miao.** Progress toward adsorption mechanism exploration method for capacitive deionization: Experimental, mathematical model, computational chemistry and machine learning / Luwei Miao, Ming Gao, Weilong Xiao, Yuchen Kang, Ran Li, Hao Kong, Haiyan Mou, Wenqing Chen, Tianqi Ao // Desalination. 2024 Vol. 586.
- 9. **Haripriya Thalla.** Supervised Machine-Learning Algorithm using Low Data Sets: Flow Chemistry Optimization of the Key Urea Moiety Construction in Larotrectinib / Haripriya Thalla, Varshini Uma Jayaraman, Maheshkumar Uppada, Vishnuvardhan Reddy Eda, Saikat Sen, Rakeshwar Bandichhor, Srinivas Oruganti // Organic Process Research & Development. 2024.
- 10.**Markus Meuwly.** Machine Learning for Chemical Reactions / Markus Meuwly // Chemical Reviews. 2021 Vol. 121. Issue 16.
- 11.**John A. Keith.** Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems / John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger, Klaus-Robert Müller, Alexandre Tkatchenko // Chemical Reviews. 2021 Vol. 121. Issue 16.