Bl PUBaMM

BUILD AND PUBLISH PYBAMM-COOKIECUTTER AS A
TEMPLATE FOR NEW PYBAMM-BASED PROJECTS
GSoC Project proposal for PyBaMM by Santhosh Sundaram

Personal Details and Contact Information

- GitHub Username - santacodes

- Email - santhoshsundaram9650@gmail.com
- University - Anna University, Chennai, India
- Time-zone - UTC+5:30 (IST)

- Address - Chennai, India

- IRC nick - santacodes

Synopsis

This project aims to build and publish python-cookiecutter templates for new PyBaMM-based
projects. This template, upstream at https://github.com/pybamm-team/pybamm-cookiecutter/,
originally was a part of GSoC 2023 and is designed to simplify the setup process of the
development environment for researchers and scientists interested in utilizing PyBaMM for
battery modeling but may lack familiarity with managing Python environments or repositories.
The project intends to enhance the accessibility and usability of PyBaMM for newbies and
experienced users alike. Providing a standardized template with best practices and automation
tools, would lower the barrier to entry for adopting PyBaMM in battery modeling projects. This
would in turn make battery modeling more accessible, efficient, and collaborative for the
research community which could potentially increase the user base of PyBaMM.

Potential mentors for this project would be Saransh Chopra, and Agriya Khetarpal, who were
the initial contributors to the cookiecutter template repository, additionally Arjun Verma, and
Ferran Brosa Planella as per the PyBaMM GSOC reference site.

Benefits to the Community

PyBaMM’s cookiecutter template would help scientists and researchers, especially those with
limited knowledge of Python environments or repositories find PyBaMM easier to use. It could
potentially grow PyBaMM's current contributors' community and general usage as a result of its
increasing simplicity and utility.

PyBaMM's already established automation infrastructure and workflows, and best practices,
present in the template would make it easier to start and set up new projects. This would
simplify the procedure and free up researchers to concentrate more on experimentation and
modeling than wasting their precious time on setting up development environments.

The availability of a user-friendly template will help in future extensibility with PyBaMM as it will
include features such as Model entry points which would allow community users to define their
models using and use PyBaMM'’s established GitHub infrastructure to run, test, and deploy their
models.

Current Status of the Project

Currently, the PyBaMM cookiecutter template is a basic established template that works and
can be considered as the groundwork. The base directory structure has been initialized and the
basic configurations have been set up and look like this -

~/Github/test project

There is no provided documentation for installation steps to set up the development
environment from the cookiecutter template.

Several additions and improvements can be implemented to make it a full-fledged ready-to-use
template so that it can be packaged and utilized by the user base which is discussed in the
following Goals section.

Goals

Currently, the upstream repository for the PyBaMM cookiecutter template lacks the following
things, with some being major and some being minor. | would sort the following tasks based on
their priorities -

Goal 1

e Add functionality for Model entry points (major)

Originally mentioned here, the cookiecutter template should allow community
users to create their own models with their own licenses and specifications.
The lack of contributors adding models to PyBaMM stems from complexities in its
submodel structure, uncertainty around ownership when adding models directly to
PyBaMM's repository, and potential disagreements. To eliminate these issues, it was
proposed to implement "Model entry points", allowing community contributors to create
and share models of their repositories using the cookiecutter template without directly
adding them to PyBaMM. This would not only let community contributors retain
ownership and choose license terms but also grant flexibility to the PyBaMM team in
supporting models. Including all of GitHub's functionality and infrastructure contained
within PyBaMM in the template repository, including issues, discussions, and pull
requests, would build a collaborative community. The implementation would involve
making necessary changes to PyBaMM to support model entry points, defining entry
points for models, and creating a cookiecutter repository for streamlined setup, testing,
documentation, and versioning, laying the groundwork for future developments
separating the model and PDE code within PyBaMM. Model entry points then need to be
bootstrapped using a mapper to the models in pyproject.toml similar to PyBaMM’s
parameter sets.

e Adding Documentation (major)

Pybamm cookiecutter template lacks documentation for the usage and setting up
of the development environment for users. The documentation can be implemented
through either sphinx or jupyter notebooks to directly initialize the development
environment. As originally stated in - #issue 5, the documentation should provide
technical details such as - Installation steps, command line prompts that could be linked
to additional functionalities and procedures, a user guide to provide details on styles and

https://github.com/pybamm-team/PyBaMM/issues/3839#issuecomment-1966614301
https://github.com/pybamm-team/PyBaMM/issues/3839#issuecomment-1966614301
https://github.com/pybamm-team/pybamm-cookiecutter/issues/5

naming conventions, data paths linked to a directory within the template (originally
discussed at Data path discussion), guide to parameter sets and third-party parameter
sets, etc. In addition to that details surrounding the infrastructure and testing should also
be added and also for deployment models such as docker if decided upon execution.

Goal 2

The present directory structure is quite simple and does not resemble the original
proposed directory structure for the project mentioned in #issue 1. Optional directories
can be flagged using the command line prompts and a more organized directory
structure should be incorporated into the project template.

e Publishing, CI/CD pipelines, and testing (major)

The template currently only resides in the pybamm-cookiecutter repository and is
not published on PyPI. It also lacks CI/CD testing and deployment infrastructures.
Multi-container testing for unit and integration and pipelines for publishing the template
to PyPI testing should be implemented.

e Support cruft and copier (major)
cruft already fully supports cookiecutter templates while copier might be made to
support cookiecutter templates using its own project specifications which use YAML
instead of JSON as mentioned here.

Goal 3

e Creating better support for build systems (minor)
Hatch is the default backend builder in the current cookiecutter template and
other backed builders like flit and setuptools could be implemented and used by
selecting through command line prompts.

e Optional dependencies prompts (minor)
During the template project setup procedure, command line prompts can be
added to flag optional dependencies under [dev] and [docs]. This would make the

template more customizable and a user can minimize the project defaults as per their
needs.

https://github.com/pybamm-team/pybamm-cookiecutter/issues/1#issuecomment-1655889615
https://github.com/pybamm-team/pybamm-cookiecutter/issues/1
https://github.com/pybamm-team/pybamm-cookiecutter/
https://github.com/pybamm-team/pybamm-cookiecutter/issues/1#issuecomment-1655481889

Deliverables

The main goal of this deliverable model is to get the important things done and running. Once
established a strong base, features, and other improvements should be implemented in a
waterfall-like model.

Deliverable 1 -

e Making model entry points with a defined directory structure
e |Initial documentation with installation and setting up procedures

Deliverable 2 -

e Supporting systems for cruft and copier templating tools
e CI/CD Pipelines for Publishing into PyPi and for Unit & Integration testing

Deliverable 3 -

e Command line prompts for cookiecutter template for more customizability
and flagging optional dependencies
e Adding more backend build systems and implementing bootstrapping methods

Expected Results

Upon completion of the project at the end of the coding period, PyBaMM community can expect
the following outcomes -

e A Model entry point for the PyBaMM community for the users to define and
implement their own models.

e A complete cookiecutter template for PyBaMM, packaged and deployed to
PyPi.
A user guide and documentation for the usage of the template.
CI/CD pipelines and workflows to not only check the correctness of the
template but to also test the models added to it by the contributors.

Approach

The first and foremost operation to perform would be to create a well-defined directory
structure for the project such as the one mentioned below.

~/Github/test project

The project template should use PyBaMM as a dependency for the community users to use it
and define their model entry points. The project clones should be runnable across different
systems with the same dependency stack, therefore making it portable. This would be the first
building block of a cookiecutter template as it would just provide a defined structure for the
development environment of model entry points and then further bootstrapping it to be shared
within the community.

With the template structure defined, we could implement it in cookiecutter with
pyproject.toml as we could define a directory structure like this to make it more organized
and extensible for the community users. By adding prompts in cookiecutter. json we could
also make some directories optional for example the test directory.

Implementing Model Entry Points (PoC)

a N

PyBaMM

—>| pyproject.toml L\

l

User defined
models

mapperpy | [«

Maps new _ dict P
models — Variables 7/ get_model]) /4—>{ User
——» Equations ' '
—— Constants
—3eConditions
\ 1/

gt

Creating entry points for the model -

[project.entry-points."pybamm_models™]
Example _model =

"pybamm.models.full_battery_models.test_model.test_model:get model”

Getting the models from pyproject.toml

importlib.metadata.entry_points(group=group_name)
models = dict()

for entry_point in self.get_entries("pybamm_models"):
self.models[entry_point.name] = entry_ point

Loading the model from entry points

model.load = models[model name]
this would either return a dict() or a json object

Documentation could be implemented through sphinx and nbsphinx/myst-nb for both
usage and installation documentation as well as user-defined documentation for portraying use
cases and examples for their own battery models (model entry points). The documentation
builders are already defined in pyproject.toml. As for the user guide for the cookiecutter
template, the documentation can be either added to PyBaMM documentation or implemented
separately in the PyBaMM cookiecutter documentation.

The user guide would contain initialization procedures for installing and using
python-cookiecutter, followed by grabbing and using PyBaMM'’s cookiecutter template for
personal use. Example -

S cookiecutter pybamm-cookiecutter/

Model entry points could be implemented similar to the parameter sets in PyBaMM. Using
self-contained model classes in the project template, which can be further used by community
users.

Calling the model with the author name or the model name would return a JSON object or a
Python Dictionary with key and value pairs as discussed here.

Similar to the parameter sets we could create a directory to define the models which could be
further mapped in pyproject.toml to declare the models.

This could serve as a bootstrapped model for the community users to define their models and
use the models within the community without them being part of the parent PyBaMM repository.

Further after defining the template structure, CI/CD pipelines and workflows should be
implemented to package and publish the cookiecutter template to PyPi. For testing, pytest
could be used as a parallel GSOC 2024 project that is involved in migrating PyBaMM’s testing
infrastructure to pytest this year in the parent repository. The testing infrastructure should not
only accommodate the existing test cases but also ensure the community users define their test
cases for their models in the GitHub workflow infrastructure.

Other minor changes may include adding user-friendly prompts to the cookiecutter template to
make it more extensible and customizable as per the user’s need. For example, the user could
choose the backend build systems out of the options hatch, flit, setuptools, and

available licenses. A user could also be made to choose to install optional dependencies such

https://github.com/pybamm-team/PyBaMM/tree/develop/docs
https://github.com/pybamm-team/pybamm-cookiecutter/tree/main/docs
https://github.com/pybamm-team/pybamm-cookiecutter/issues/1#issuecomment-1959971400

as jax or odes solvers. Other customizable prompts might also include

mypy, pre-commit hooks, ruff, ruff format, local/pygrep hooks,
blacken-docs etc.

For type checking, PyBaMM’s pre-commit hooks can be included within the project
template by default or maybe a command line prompt to include it can be implemented for better
customizability.

LJ

PyBaMM's
Infrastructure

@ DocumeTw:tion
O g O, A
Community

Project/Model entry
‘ points S

License

PyBaMM Cookiecutter
Main

Cookiecutter ﬁ’lﬂ A&
Templates docker

Unit Integration Dockerhub
Testing Testing _ﬁ pgpi

Documentation

PyBaMM Cookiecutter
Development

Proposed Project Architecture

Timeline

Period

After proposal submission

May 1 - 26
Community Bonding Period

Week 1 and 2

May 27 - June 10

Week 3 and 4

June 10 - June 24

Week 5 and 6

June 24 - July 8

Mid-term evaluation period

Week 7 and 8

July 12 - July 26

Task

Taking relevant issues and solving them to get
familiar with the code base better.

Getting familiar with parameter sets to implement
similar features in Model entry points.

Knowing project requirements for initial
packaging.

Setting up the requisite structure for implementing
Model entry points inside a project.

Adding the initial documentation for installation and
setting up the development environment.

Getting to know the changes that need to be
incorporated to implement Model entry
points.

Working on implementing model entry points and
documenting the user guide for it.

Add guidelines to define and declare model sets
and map them in pyproject.toml

Writing tests for the template using pytest.
Incorporating unit and integration tests in GitHub
workflows.

July 8 - July 12

Publishing the template as a package on PyPi
using CI/CD pipelines.

Supporting cruft and copier (alternate
template builder tools).

Week 9 and 10
e Supporting other backend builders and adding

July 26 - August 9 more customizability to the template.

Week 11 and 12 Concluding the project working on missing minor

features and issues and delivering the template
August 9 - 26 and its documentation for community usage.

Final student evaluations August 26 - September 2

As per the NUMFOCUS guidelines | will also be posting a total of 6 blogs, i.e., one blog each
in detail every two weeks on my personal website to record the progress, changes | made, and
the next goals | will be tackling. If | were facing any issues, | would also document them and
explain them with technical details.

About Me

I am Santhosh Sundaram, pursuing Bachelor of Engineering in Computer Science at Anna
University, Chennai. Programming has been my long-driven passion since | was in high school,
from my early projects written in BASIC to me contributing to open-source projects, my trait of
accepting and adapting to knowledge has stayed persistent. This trait has led me to use the
opportunity to work with various kinds of technologies.

In my high school and freshman years, | was an active freelancer on Fiverr and used to make
applications and automation scripts using Python and JavaScript. Later in my sophomore year, |
worked on a cross-modal deep learning model for the re-identification of a person between IR
and RGB images and wrote a research paper on it. At the end of the last semester, | made a
server monitoring dashboard for IBM UNIX-AIX servers for an organization’s data center and
implemented asynchronous techniques in .NET MVC to reduce the latency and quicker update
times and wrote shell scripts to fetch and relay server health data.

| am relatively new to the PyBaMM community and familiar with the workflow. | have yet to get
acquainted with the core PyBaMM code base but | have familiarised myself with the
infrastructure and contributed and solved some relevant issues -

Contribution Status

PR: Migrated docker image from miniconda Closed and drafted another PR due to this
to manylinux2014 issue

PR: Migrated from miniconda to official Drafted and Open

python bullseye docker image

PR: Added pybamm user id to 1000 and set Open and work in progress

its group to root

PR: Added a weekly schedule on needs-reply Merged

workflow

PR: Improved distribution specific Merged

documentation for linux and removed old
dependencies

Issue: Update source installation instructions Closed

for linux to include more distro-specific
instruction

My plans after GSoC

GSoC was a great opportunity to find reasons to contribute to open-source. Once | had started
contributing | immediately fell in love with the process and it kept on driving me to contribute
more. | plan to keep on contributing to open-source and OSS and not limit myself but adapt
more to upcoming technologies to make the code base better with each commit.

Why you chose to work with PyBaMM

Mathematical computing and computational research in any relevant field have always been
interesting to me. The sheer complexity of heavy mathematical modules was always intriguing
from my perspective. PyBaMM provides a medium of combining battery modeling and
mathematical computation to simulate battery models and their parameters which would not
only help me acquire knowledge about the code base itself but also the principles of working
battery models which | am not acquainted with yet. The potential knowledge | could gain from
contributing to PyBaMM would help me progress, learn, and push my limits of aptitude by
tackling new problems. Technical skills such as CI/CD, packaging, and deployment would also
benefit me in the long run as they would contribute a lot to my professional career ahead.

https://github.com/pybamm-team/PyBaMM/pull/3874
https://github.com/pybamm-team/PyBaMM/pull/3874
https://github.com/pybamm-team/PyBaMM/issues/3879
https://github.com/pybamm-team/PyBaMM/pull/3901
https://github.com/pybamm-team/PyBaMM/pull/3901
https://github.com/pybamm-team/PyBaMM/pull/3947
https://github.com/pybamm-team/PyBaMM/pull/3947
https://github.com/pybamm-team/PyBaMM/pull/3891
https://github.com/pybamm-team/PyBaMM/pull/3891
https://github.com/pybamm-team/PyBaMM/pull/3914
https://github.com/pybamm-team/PyBaMM/pull/3914
https://github.com/pybamm-team/PyBaMM/pull/3914
https://github.com/pybamm-team/PyBaMM/issues/3898
https://github.com/pybamm-team/PyBaMM/issues/3898
https://github.com/pybamm-team/PyBaMM/issues/3898

How you plan to stay on track and finish the project successfully

I would allot myself up to 30 hours per week to work on this project and commit to it. The
mentioned duration for this project is 175 hours and | ideally would wish for my
deliverables(mentioned here) to end before those allotted hours as it would give me additional
time to improve and refine the features. | would stick to the timeline and abide by the waterfall
model to keep checking the goals one after one until full completion.

The amount of time you would be able to devote to the project

In total, | would be able to devote 30 hours a week to this project and will be available for calls
or meetings from 6 PM (18:00) IST to 12 AM (00:00) IST that is, from 12:30 PM (12:30) GMT to
6:30 PM (18:30) GMT. | have not yet received my end-semester examination schedule from my
university which might hinder my availability slightly during 2-3 weeks in between the community
bonding/coding period. | would work extra hours to compensate for that before and after my
examinations.

Other commitments during the summer, if any.

Currently, |1 do not have any commitments during the summer, if any I'll make sure to notify.

	
	BUILD AND PUBLISH PYBAMM-COOKIECUTTER AS A TEMPLATE FOR NEW PYBAMM-BASED PROJECTS
	Personal Details and Contact Information
	Synopsis
	Benefits to the Community
	Current Status of the Project
	Goals
	Goal 1
	Goal 2
	Goal 3

	Deliverables
	Deliverable 1 -
	Deliverable 2 -
	Deliverable 3 -

	Expected Results
	Approach
	
	Implementing Model Entry Points (PoC)
	Creating entry points for the model -
	
	
	Timeline
	
	About Me

