UPDATE: Please go here for an updated version:

https://vicco-group.github.io/DNN_vs_brain-and-behavior/

This list is fully up to date (but surely not complete!) until 2018/06, afterwards likely more incomplete

For updates, follow me on Twitter: @martin_hebart

DNN vs. Human Reviews / Commentaries (sorted by year):

Kriegeskorte, N. (2015) – Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual review of vision science, 1, 417-446.

https://doi.org/10.1146/annurev-vision-082114-035447

Gauthier, I., & Tarr, M. J. (2016). Visual object recognition: Do we (finally) know more now than we did? Annual review of vision science, 2, 377-396.

https://doi.org/10.1146/annurev-vision-111815-114621

Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). Toward an integration of deep learning  and neuroscience. Frontiers in Computational Neuroscience, 10, 94.

https://doi.org/10.3389/fncom.2016.00094

Excellent, very complete review of the ML/cortex frontier. It argues in favour of a computational neuroscience that researches the brain’s cost functions and their optimisation processes, rather than specific circuits. It debates what ML can learn from neuroscience and vice-versa.        

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature neuroscience, 19(3), 356

https://doi.org/10.1038/nn.4244

Gentle introduction to Convolutional Neural Networks and their use for predicting the encoding strategy of sensory areas. Mostly conversational, does not present hard analytical or data-driven results other than as a review.

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258.

https://doi.org/10.1016/j.neuron.2017.06.011

General view, including historical perspective, of AI/Neuroscience relationships. Particularly focused on the cognitive/behavioural level (transfer learning, reinforcement learning, attention, memory). By DeepMind founder Demis Hassabis and colleagues.

Kay, K. N. (2017). Principles for models of neural information processing. NeuroImage. http://dx.doi.org/10.1016/j.neuroimage.2017.08.016

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40.

https://doi.org/10.1017/S0140525X16001837

VanRullen, R. (2017). Perception science in the age of deep neural networks. Frontiers in psychology, 8, 142.

https://doi.org/10.3389/fpsyg.2017.00142

Aru, J., & Vicente, R. (2018). What deep learning can tell us about higher cognitive functions like mindreading?. arXiv preprint arXiv:1803.10470.

https://arxiv.org/abs/1803.10470

Barrett, David GT, Ari S. Morcos, and Jakob H. Macke. "Analyzing biological and artificial neural networks: challenges with opportunities for synergy?." arXiv preprint arXiv:1810.13373 (2018). https://arxiv.org/abs/1810.13373

Good overview on challenges and opportunities in comparing DNNs with BioNets. What analysis methods can be used on both? What methods can be used to compare them to each other?

Glaser, J. I., Benjamin, A. S., Farhoodi, R., & Kording, K. P. (2018). The Roles of Supervised Machine Learning in Systems Neuroscience. arXiv preprint arXiv:1805.08239.

https://arxiv.org/abs/1805.08239 

How can machine learning be used in neuroscience? 1. Solving engineering problems; 2. Identifying predictive variables; 3. Benchmarking simple models; 4. Serving as a model for the brain.

Majaj, N. J., & Pelli, D. G. (2018). Deep learning—Using machine learning to study biological vision. Journal of vision, 18(13), 2-2

https://doi.org/10.1167/18.13.2

Cichy, R. M., Kaiser, D. (2019). Deep neural networks as scientific models. Trends in Cognitive Sciences. 

https://doi.org/10.1016/j.tics.2019.01.009

Kietzmann, T. C., McClure, P., & Kriegeskorte, N. (2019). Deep neural networks in computational neuroscience. In Oxford Research Encyclopedia of Neuroscience. Oxford University Press. doi: http://dx.doi.org/10.1093/acrefore/9780190264086.013.46

http://oxfordre.com/neuroscience/view/10.1093/acrefore/9780190264086.001.0001/acrefore-9780190264086-e-46

Storrs, K. & Kriegeskorte, N. (2019). Deep Learning for Cognitive Neuroscience. In The Cognitive Neurosciences, 6th Edition. https://arxiv.org/abs/1903.01458 

Chén, O. Y. (2019), The Roles of Statistics in Human Neuroscience. Brain Science, 9(8), 194.

Sinz FH, Pitkow X, Reimer J, Bethge M, Tolias AS, Engineering a less artificial intelligence Neuron 103(6). doi: https://doi.org/10.1016/j.neuron.2019.08.034 

Learning in DNN vs. Brain; Bio-plausible learning (reviews)

Marblestone et al. (2016). Toward an integration of deep learning and neuroscience. See above.

Whittington and Bogacz, Theories of Error Back-propagation in the Brain, Trends in Cog Sci 2018 https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(19)30012-9 

A review with a particular focus on bio-plausible implementations of backpropagation in artificial neural networks.

Pieter R. Roelfsema & Anthony Holtmaat, Control of synaptic plasticity in deep cortical networks, Nat Rev Neurosci 19, 166–180 (2018) https://www.nature.com/articles/nrn.2018.6

Bio-oriented. Neuroscience review on how the brain may solve the “credit assignment problem” by means of neuromodulation and feedback that “gate” and “steer” plasticity in earlier layers, based on the outcome of the action and on what synapses contributed to the decision.

Lillicrap, T., Santoro, A., Marris, L., Akerman, C., Hinton, G. (2020). Backpropagation and the brain Nature Reviews Neuroscience https://dx.doi.org/10.1038/s41583-020-0277-3

DNN vs. Brain Imaging / Recording Papers (sorted by year and alphabetically):

Please no medical imaging papers! Also, any paper before 2014 please at the bottom, there is a separate section for that.

2014:

Cadieu et al (2014) – Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition – PloS Comput Biol

Khaligh-Razavi  & Kriegeskorte (2014) – Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation – PloS Comput Biol

https://doi.org/10.1371/journal.pcbi.1003915

Yamins et al (2014) – Performance-optimized hierarchical models predict neural responses in higher visual cortex – PNAS

Performance-optimized hierarchical models predict neural responses in higher visual cortex

2015:

Güçlü & van Gerven (2015) – Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream – J Neurosci

https://doi.org/10.1523/JNEUROSCI.5023-14.2015

Güçlü & van Gerven (2015) – Increasingly complex representations of natural movies across the dorsal stream are shared between subjects – Neuroimage

https://doi.org/10.1016/j.neuroimage.2015.12.036

B. Vintch, J. A. Movshon, and E. P. Simoncelli. A Convolutional Subunit Model for Neuronal Re- sponses in Macaque V1. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(44):14829–41, 2015.

2016:

Cichy et al (2016) - Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence – Sci Reports

https://www.nature.com/articles/srep27755

Güçlü et al (2016) – Brains on beats – NeurIPS

https://papers.nips.cc/paper/6222-brains-on-beats.pdf

Hong et al (2016) – Explicit information for category-orthogonal object properties increases along the ventral stream – Nature Neuroscience

https://www.nature.com/articles/nn.4247

Yamins & DiCarlo (2016) – Using goal-driven deep learning models to understand sensory cortex – Nature Neuroscience

https://www.nature.com/articles/nn.4244

J. Antolík, S. B. Hofer, J. A. Bednar, and T. D. Mrsic-flogel. Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes. PLoS Comput Biol, pages 1–22, 2016. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1004927.

E. Batty, J. Merel, N. Brackbill, A. Heitman, A. Sher, A. Litke, E. J. Chichilnisky, and L. Panin- ski. Multilayer network models of primate retinal ganglion cells. Nips, 2016.

 

2017:

Cichy et al (2017) – Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks – Neuroimage

https://doi.org/10.1016/j.neuroimage.2016.03.063

Eickenberg et al (2017) – Seeing it all: Convolutional network layers map the function of the human visual system – Neuroimage

https://doi.org/10.1016/j.neuroimage.2016.10.001

Güçlütürk, Güçlü, Seeliger, Bosch, van Lier, van Gerven (2017) – Reconstructing perceived faces from brain activations with deep adversarial neural decoding – NeurIPS

http://papers.nips.cc/paper/7012-reconstructing-perceived-faces-from-brain-activations-with-deep-adversarial-neural-decoding.pdf

Güçlü & van Gerven (2017) – Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks – Front Comput Neurosci

https://dx.doi.org/10.3389%2Ffncom.2017.00007

Horikawa & Kamitani (2017) – Hierarchical neural representation of dreamed objects revealed by brain decoding with deep neural network features – Front Comput Neurosci https://doi.org/10.3389/fncom.2017.00004

 

Horikawa & Kamitani (2017) – Generic decoding of seen and imagined objects using      hierarchical visual features – Nat Commun

https://dx.doi.org/10.1038%2Fncomms15037

Kalfas, Kumar, Vogels (2017) – Shape Selectivity of Middle Superior Temporal Sulcus Body Patch Neurons – eNeuro

https://doi.org/10.1523/ENEURO.0113-17.2017

Karimi-Rouzbahani et al (2017) - Hard-wired feed-forward visual mechanisms of the brain compensate for affine variations in object recognition - Journal of Neuroscience

https://doi.org/10.1016/j.neuroscience.2017.02.050

Khaligh-Razavi et al (2017) – Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models – J Math Psych

https://doi.org/10.1016/j.jmp.2016.10.007

Klindt, Ecker, Euler, Bethge (2017) – Neural system identification for large populations separating “what” and “where” – NeurIPS

http://papers.nips.cc/paper/6942-neural-system-identification-for-large-populations-separating-what-and-where

Ratan Murty & Arun (2017) – A balanced comparison of object invariances in monkey IT neurons – eNeuro

https://doi.org/10.1523/ENEURO.0333-16.2017

Scholte et al (2017) - Visual pathways from the perspective of cost functions and multi-task deep neural networks - Cortex

https://doi.org/10.1016/j.cortex.2017.09.019

Seeliger et al (2017) – Convolutional neural network-based encoding and decoding of visual object recognition in space and time – Neuroimage

https://doi.org/10.1016/j.neuroimage.2017.07.018

Seeliger et al (2017) - Generative adversarial networks for reconstructing natural images from brain activity. NeuroImage 181 http://www.sciencedirect.com/science/article/pii/S105381191830658X

(preprint: https://doi.org/10.1101/226688 )

Tacchetti, Isik, Poggio (2017) – Invariant recognition drives neural representations of action sequences – PloS Comput Biology

https://doi.org/10.1371/journal.pcbi.1005859

Tripp et al (2017) – Similarities and differences between stimulus tuning in the inferotemporal visual cortex and convolutional networks - IJCNN

https://arxiv.org/abs/1612.06975

Wen et al (2017) – Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision – Cerebral Cortex

https://doi.org/10.1093/cercor/bhx268

Zhuang, Wang, Yamins, Hu (2017) Deep learning predicts correlation between a functional signature of higher visual areas and sparse firing of neurons – Front Comput Neurosci

https://doi.org/10.3389/fncom.2017.00100

2018:

Abdelhack, Kamitani (2018) – Sharpening of hierarchical visual feature representations of blurred images – eNeuro

https://doi.org/10.1523/ENEURO.0443-17.2018

Bankson, Hebart, Groen, Baker (2018) – The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks – Neuroimage

https://doi.org/10.1016/j.neuroimage.2018.05.037

Banino et al (2018) - Vector-based navigation using grid-like representations in artificial agents - Nature

https://doi.org/10.1038/s41586-018-0102-6

Bonner, Epstein (2018) – Computational mechanisms underlying cortical responses to the affordance properties of visual scenes – PloS Computational Biology        

https://doi.org/10.1371/journal.pcbi.1006111

Devereux, Clarke, Tyler (2018) - Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway

- Scientific Reports  https://doi.org/10.1038/s41598-018-28865-1

- biorXiv: https://doi.org/10.1101/302406

Dezfouli, A., Morris, R., Ramos, F. T., Dayan, P., & Balleine, B. (2018). Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models. In Advances in Neural Information Processing Systems (NeurIPS; pp. 4228-4237).

https://www.biorxiv.org/content/10.1101/328849v2

Fong, Scheirer, Cox (2018) - Using human brain activity to guide machine learning - Scientific Reports

https://doi.org/10.1038/s41598-018-23618-6

Greene & Hansen (2018) - Shared spatiotemporal category representations in biological and artificial deep neural networks - PloS Comput Biol

https://doi.org/10.1371/journal.pcbi.1006327

Groen et al (2018) – Distinct contributions of functional and deep neural network features to scene representation in brain and behavior – eLife

https://doi.org/10.7554/eLife.32962

Kell, Yamins, Shook, Norman-Haignere, McDermott (2018) – A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy – Neuron

https://doi.org/10.1016/j.neuron.2018.03.044

Kuzovkin, Vicente, Petton, Lachaux, Baciu, Kahane, Rheims, Vidal, and Aru. - Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex - Communications biology 

https://doi.org/10.1038/s42003-018-0110-y

O’Connell and Chun (2018) – Predicting eye movements from fMRI responses to natural scenes – Nature Communications

https://doi.org/10.1038/s41467-018-07471-9 

Rajalingham et al (2018): Large-Scale, Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks. Journal of Neuroscience 38. (preprint: http://dx.doi.org/10.1101/240614 )

http://www.jneurosci.org/content/38/33/7255

Ratan Murty, Arun (2018) – Multiplicative mixing of object identity and image attributes in single inferior temporal neurons – PNAS

https://doi.org/10.1073/pnas.1714287115

Shi et al (2018) – Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision – Human Brain Mapping

http://dx.doi.org/10.1002/hbm.24006

Sinz, Ecker, Fahey, Walker, Cobos, Froudarakis, Yatsenko, Pitkow, Reimer, Tolias Stimulus domain transfer in recurrent models for large scale cortical population prediction on video -- NeurIPS https://papers.nips.cc/paper/7950-stimulus-domain-transfer-in-recurrent-models-for-large-scale-cortical-population-prediction-on-video.pdf        

Tang, Schrimpf, Lotter, Moerman, Paredes, Caro, Hardesty, Cox, and Kreiman (2018) – Recurrent computations for visual pattern completion –

Wen et al (2018) – Deep Residual Network Reveals a Nested Hierarchy of Distributed Cortical Representation for Visual Categorization – Scientific Reports

https://www.nature.com/articles/s41598-018-22160-9

Wen et al (2018) – Transferring and Generalizing Deep-Learning-based Neural Encoding Models across Subjects –

Wenliang, Seitz (2018) - Deep neural networks for modeling visual perceptual learning - J Neurosci

https://doi.org/10.1523/JNEUROSCI.1620-17.2018

Zhang, Qiao, Wang, Tong, Zeng, Yan (2018) – Constraint-free natural image reconstruction from fMRI signals based on convolutional neural network –

2019:

Bashivan, Kar, DiCarlo (2019) - Neural population control via deep image synthesis -

Cadena, Sinz, Muhammad, Froudarakis, Cobos, Walker, Reimer, Bethge, Tolias, Ecker. "How well do deep neural networks trained on object recognition characterize the mouse visual system?." (2019). https://openreview.net/forum?id=rkxcXmtUUS

Cadena, Denfield, Walker, Gatys, Tolias, Bethge, Ecker (2019) - Deep convolutional models improve predictions of macaque V1 responses to natural images - PLoS Computational Biology

https://doi.org/10.1371/journal.pcbi.1006897

Preprint: https://doi.org/10.1101/201764

Kar, Kubilius, Schmidt, Issa, DiCarlo (2019). Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience

https://doi.org/10.1038/s41593-019-0392-5

Preprint: https://doi.org/10.1101/354753

Kietzmann, T.C., Spoerer, C.J., Sörensen, L., Cichy, R.M., Hauk, O., & Kriegeskorte, N. (2019). Recurrence is required to capture the representational dynamics of the human visual system. Proceedings of the National Academy of Sciences, p. 1-10

https://doi.org/10.1073/pnas.1905544116 

Kubilius*, Schrimpf*, Kar, Hong, Majaj, Rajalingham, Issa, Bashivan, Prescott-Roy, Schmidt, Nayebi, Bear, Yamins, DiCarlo - Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs - NeurIPS 2019 (Oral)
https://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns

Ponce, C., Xiao, W., Schade, P., Hartmann, T., Kreiman, G., Livingstone, M. (2019). Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences Cell  177(4), 999-1009.e10.

Sharmistha Jat, Hao Tang, Partha Talukdar, Tom M Mitchell -Relating Simple Sentence Representations in Deep Neural Networks and Brain -ACL 2019

Link: https://www.aclweb.org/anthology/P19-1507/ 

Shen, G., Horikawa, T., Majima, K., & Kamitani, Y. (2019). Deep image reconstruction from human brain activity -

Ukita, Yoshida, Ohki, K (2019) - Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network - Scientific Reports https://www.nature.com/articles/s41598-019-40535-4

VanRullen & Reddy (2019) – Reconstructing faces from fMRI patterns using deep generative neural networks –

Walker, Sinz, Cobos, Muhammad,Froudarakis, Fahey,  Ecker, Reimer, Pitkow, & Tolias (2019) - Inception loops discover what excites neurons most using deep predictive models -

2020

Zeman, A., Ritchie, J. B., Bracci, S., & de Beeck, H. O. (2020). Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex.

Dwivedi, Cichy, and Roig (2020). Unraveling Representations in Scene-selective Brain Regions Using Scene-Parsing Deep Neural Networks

Preprints:

Agrawal et al (2014) - Pixels to Voxels: Modeling Visual Representation in the Human Brain - arXiv https://arxiv.org/pdf/1407.5104.pdf 

Bracci, Kalfas, Op de Beeck (2017) – The ventral visual pathway represents animal appearance over animacy, unlike human behavior and deep neural networks – bioRxiv

https://doi.org/10.1101/228932

Burg, Cadena, Denfield, Walker, Tolias, Bethge, Ecker. "Learning Divisive Normalization in Primary Visual Cortex." bioRxiv (2019): 767285. https://www.biorxiv.org/content/10.1101/767285v3

Cichy et al (2017) - Neural dynamics of real-world object vision that guide behaviour - bioRxiv

https://www.biorxiv.org/content/early/2017/06/08/147298

Dwivedi, Roig (2018) - Task-specific vision models explain task-specific areas of visual cortex - bioRxiv

https://www.biorxiv.org/content/early/2018/08/28/402735

Gwilliams & King (2017) - Performance-optimized hierarchical models only partially predict neural responses during perceptual decision making - bioRxiv

https://www.biorxiv.org/content/early/2017/11/20/221630.full

King, Groen, Steel, Kravitz, Baker (2018) - Similarity judgments and cortical visual responses reflect different properties of object and scene categories in naturalistic images – bioRxiv

https://doi.org/10.1101/316554

Kindel, Christensen, Zylberberg (2017) – Using deep learning to reveal the neural code for images in primary visual cortex – arxiV

https://arxiv.org/abs/1706.06208

Kuzovkin et al (2017) - Activations of Deep Convolutional Neural Network are Aligned with Gamma Band Activity of Human Visual Cortex - BioRxiv

https://doi.org/10.1101/133694

Long et al (2017) - A mid-level organization of the ventral stream - BioRXiv

https://doi.org/10.1101/213934

Lotter, Kreiman, Cox (2018) – A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception – arXiv

https://arxiv.org/abs/1805.10734

Mehrer, J., Spoerer, C.J., Kriegeskorte, N., & Kietzmann, T.C. (2019). Individual differences among deep neural network models. bioRxiv, 898288
https://doi.org/10.1101/2020.01.08.898288 

Nayebi, Bear, Kubilius, Kar, Ganguli, Sussillo, DiCarlo, Yamins (2018) - Task-Driven Convolutional Recurrent Models of the Visual System - arXiv

https://arxiv.org/abs/1807.00053

O’Connell & Chun (2017) - Predicting eye movements with deep neural network activity decoded from fMRI responses to natural scenes - bioRxiv

https://doi.org/10.1101/166421 

Pinotsis, Siegel, Miller (2019) - Sensory processing and categorization in cortical and deep neural networks - bioRxiv

https://doi.org/10.1101/647222

Qiao, Zhang, Wang, Yan, Chen, Zeng, Tong (2018) – Accurate reconstruction of image stimuli from human fMRI based on the decoding model with capsule network architecture – arXiv

https://arxiv.org/abs/1801.00602

Rajaei, Mohsenzadeh, Ebrahimpour, Khaligh-Razavi (2018) – Beyond core object recognition: Recurrent processes account for object recognition under occlusion – bioRxiv

https://doi.org/10.1101/302034

Ramakrishnan et al (2017) - Characterizing the temporal dynamics of object recognition by deep neural networks: role of depth - bioRxiv

https://doi.org/10.1101/178541

Schrimpf*, Kubilius*, Hong, Majaj, Rajalingham, Issa, Kar, Bashivan, Prescott-Roy, Schmidt, Yamins, DiCarlo - Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like? - bioRxiv 2018
https://www.biorxiv.org/content/10.1101/407007v1

Kshitij Dwivedi, Michael F. Bonner, Radoslaw Martin Cichy, Gemma Roig (2020) –

Unveiling functions of the visual cortex using task-specific deep neural networks – bioRxiv

https://www.biorxiv.org/content/10.1101/2020.11.27.401380v1 

DNN vs. Behavior Papers (sorted by year and alphabetically):

2014:

 

Ghodrati et al (2014) – Feedforward object-vision models only tolerate small image variations compared to human – Front Comput Neurosci

https://dx.doi.org/10.3389%2Ffncom.2014.00074

2015:

Lake et al (2015) - Deep neural networks predict category typicality ratings for images - Cogn Psych

http://gureckislab.org/papers/LakeZarembaFergusGureckis.CogSci2015.pdf

Nguyen et al (2015) – Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images – IEEE Comput Vis Patt Recog

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf

Rajalingham et al (2015)  Comparison of object recognition behavior in human and monkey. Journal of Neuroscience

http://www.jneurosci.org/content/35/35/12127

2016:

Eberhardt et al (2016) – How deep is the feature analysis underlying rapid visual categorization – NIPS                                  

http://papers.nips.cc/paper/6218-how-deep-is-the-feature-analysis-underlying-rapid-visual-categorization

                

Farzmahdi et al (2016) – A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans – Sci Rep

https://dx.doi.org/10.1038%2Fsrep25025

Greene et al (2016) – Visual Scenes Are Categorized by Function – JEP:General

http://psycnet.apa.org/fulltext/2015-58122-004.html

Kheradpisheh et al (2016) – Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition – Sci Rep

https://www.nature.com/articles/srep32672

Kheradpisheh et al (2016) – Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder – Front Comput Neurosci

https://dx.doi.org/10.3389%2Ffncom.2016.00092

Kubilius et al (2016) – Deep Neural Networks as a Computational Model for Human Shape Sensitivity – PloS Comput Biol

https://doi.org/10.1371/journal.pcbi.1004896

2017:

Jozwik et al (2017) – Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments – Front Psychol

https://doi.org/10.3389/fpsyg.2017.01726

Karimi-Rouzbahani, Bagheri & Ebrahimpour (2017) – Invariant object recognition is a personalized selection of invariant features in humans, not simply explained by hierarchical feed-forward vision models – Scientific Reports

https://doi.org/10.1038/s41598-017-13756-8

Love et al (2017) – Deep Networks as Models of Human and Animal Categorization - Cogn Psych

https://mindmodeling.org/cogsci2017/papers/0283/paper0283.pdf

Lukavský, J., & Děchtěrenko, F. (2017). Visual properties and memorising scenes: Effects of image-space sparseness and uniformity. Attention, Perception, & Psychophysics, 79(7), 2044–2054.

https://doi.org/10.3758/s13414-017-1375-9 

Song, Yang, Wang (2017) – Reward-based training of recurrent neural networks for cognitive and value-based tasks – eLife

https://dx.doi.org/10.7554%2FeLife.21492

Suzuki et al (2017) - A Deep-Dream Virtual Reality Platform for Studying Altered Perceptual Phenomenology - Scientific Reports

https://doi.org/10.1038/s41598-017-16316-2

Wallis et al (2017) – A parametric texture model based on deep convolutional features closely matches texture appearance for humans – JoV

http://jov.arvojournals.org/article.aspx?articleid=2657215

Wichmann, F. A., Janssen, D. H., Geirhos, R., Aguilar, G., Schütt, H. H., Maertens, M., & Bethge, M. (2017). Methods and measurements to compare men against machines. Electronic Imaging, 2017(14), 36-45.

https://doi.org/10.2352/ISSN.2470-1173.2017.14.HVEI-113

Tang, Schrimpf, Lotter, et al (2017) - Recurrent computations for visual pattern completion - arXiv https://arxiv.org/abs/1706.02240 

2018:

Baker, Lu, Erlikhman, Kellman (2018) – Deep convolutional networks do not classify based on global object shape – PLoS Computational Biology

https://doi.org/10.1371/journal.pcbi.1006613

Elsayed, G., Shankar, S., Cheung, B., Papernot, N., Kurakin, A., Goodfellow, I., & Sohl-Dickstein, J. (2018). Adversarial Examples that Fool both Computer Vision and Time-Limited Humans. NeurIPS
https://arxiv.org/abs/1802.08195

Flesch, Balaguer, Dekker, Nili, & Summerfield (2018) Comparing continual task learning in minds and machines – PNAS

https://doi.org/10.1073/pnas.1803839115

Geirhos, Medina Temme, Rauber, Schütt, Bethge, Wichmann (2018) - Generalisation in humans and deep neural networks - NeurIPS

https://arxiv.org/abs/1808.08750

Masse, Grant, & Freedman (2018) – Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization – PNAS

https://doi.org/10.1073/pnas.1803839115

Ponce, Lomber, Livingstone (2018) - Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding - Journal of Neuroscience

http://www.jneurosci.org/content/37/19/5019

Rajalingham et al (2018): Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks. Journal of Neuroscience 38. (preprint: http://dx.doi.org/10.1101/240614 )

http://www.jneurosci.org/content/38/33/7255

Watanabe et al (2018) - Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction - Frontiers in Psychology

https://doi.org/10.3389/fpsyg.2018.00345

Wenliang, Seitz (2018) - Deep neural networks for modeling visual perceptual learning - J Neurosci

https://doi.org/10.1523/JNEUROSCI.1620-17.2018

Xu, Garrod, Scholte, Ince, Schyns (2018) - Using Psychophysical Methods to Understand Mechanisms of Face Identification in a Deep Neural Network - CVPRW

https://0ceabf3e-a-62cb3a1a-s-sites.googlegroups.com/site/skytianxu/xu2018%20Using%20Psychophysical%20Methods%20to%20Understand%20Mechanisms%20of%20Face%20Identification%20in%20a%20Deep%20Neural%20Network.pdf

Dezfouli, A., Griffiths, K., Ramos, F., Dayan, P., & Balleine, B. W. (2019). Models that learn how humans learn: the case of decision-making and its disorders. PLoS computational biology, 15(6), e1006903.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006903

Dezfouli, A., Morris, R., Ramos, F. T., Dayan, P., & Balleine, B. (2018). Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models. In Advances in Neural Information Processing Systems (NeurIPS) (pp. 4228-4237).

https://www.biorxiv.org/content/10.1101/328849v2

2019:

Dezfouli, A., Ashtiani, H., Ghattas, O., Nock, R., Dayan, P., & Ong, C. S. (2019). Disentangled behavioral representations.  In Advances in Neural Information Processing Systems (NeurIPS).

Geirhos; Rubisch, Michaelis, Bethge, Wichmann, & Brendel (2018) - ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness

ICLR 2019 (Oral) https://openreview.net/forum?id=Bygh9j09KX

Kubilius*, Schrimpf*, Kar, Hong, Majaj, Rajalingham, Issa, Bashivan, Prescott-Roy, Schmidt, Nayebi, Bear, Yamins, DiCarlo - Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs - NeurIPS 2019 (Oral)
https://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns

Lindh, D., Sligte, I.G., Assecondi, S. et al. Conscious perception of natural images is constrained by category-related visual features. Nat Commun 10, 4106 (2019) doi:10.1038/s41467-019-12135-3

Zhou, Z., & Firestone, C. (2019). Humans can decipher adversarial images. Nature Communications, 10, 1334.

https://www.nature.com/articles/s41467-019-08931-6

2020:

Doerig, Bornet, Choung,  & M. H. Herzog (2020) - Crowding Reveals Fundamental Differences in Local vs. Global Processing in Humans and Machines

Vision Research; doi: https://doi.org/10.1016/j.visres.2019.12.006

Geirhos, R., Meding, K. and Wichmann, F.A. (2020). Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency - NeurIPS 2020 https://arxiv.org/pdf/2006.16736.pdf

Preprints:

Peterson et al (2016) – Adapting deep network features to capture psychological representations – ArXiv

https://arxiv.org/abs/1608.02164

Battleday, Peterson, Griffiths (2017) – Modeling Human Categorization of Natural Images Using Deep Feature Representations - ArXiv

https://arxiv.org/abs/1711.04855

Dekel (2017) - Human perception in computer vision - arXiv

https://arxiv.org/abs/1701.04674

Doerig, Schmittwilken, Sayim, Manassi, & Herzog (2019) - Capsule Networks as Recurrent Models of Grouping and Segmentation

bioRxiv 747394; doi: https://doi.org/10.1101/747394

Fan, Yamins, & Turk-Browne (2017) – Common object representations for visual production and recognition – bioRxiv

https://www.biorxiv.org/content/early/2017/01/03/097840

Geirhos, Janssen, Schütt, Rauber, Bethge, & Wichmann (2017) – Comparing deep neural networks against humans: object recognition when the signal gets weaker – ArXiv

https://arxiv.org/abs/1706.06969

Lin et al (2017) – Transfer of view-manifold learning to similarity perception of novel objects – ArXiv

https://arxiv.org/abs/1704.00033

Lindsay & Miller (2017) - Understanding Biological Visual Attention Using Convolutional Neural Networks – biorXiv

https://www.biorxiv.org/content/early/2017/12/20/233338 

Fruend, Stalker (2018) – Measuring human sensitivity to perturbations within the manifold of natural images – bioRxiv

https://doi.org/10.1101/320531

Leibo et al (2018) - Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents - arXiv

https://arxiv.org/abs/1801.08116

Linsley, Scheibler, Eberhardt, Serre (2018) – Global-and-local attention networks for visual recognition – arXiv

https://arxiv.org/abs/1805.08819

Hugo Richard, Ana Pinho, Bertrand Thirion, Guillaume Charpiat (2018) – Optimizing deep video representations to match brain activity – arXiv

https://arxiv.org/abs/1809.02440

Rosenfeld, Solbach, Tsotsos (2018) – Totally Looks Like - How Humans Compare, Compared to Machines – arXiv

https://arxiv.org/abs/1803.01485

Wallis, T. S. A., Funke, C. M., Ecker, A. S., Gatys, L. A., Wichmann, F. A., & Bethge, M. (2018). Image content is more important than Boumas Law for scene metamers. BioRxiv. https://doi.org/10.1101/378521

Fruend, I. Simple, biologically informed models, but not convolutional neural networks describe target detection in naturalistic images. bioRxiv. https://doi.org/10.1101/578633

Kim, B., Reif, E., Wattenberg, M., Bengio, S. (2019). Do neural networks show gestalt phenomena? An exploration of the law of closure. https://arxiv.org/abs/1903.01069

Spoerer, C.J., Kietzmann, T.C., & Kriegeskorte, N. (2019). Recurrent networks can recycle neural resources to flexibly trade speed for accuracy in visual recognition. bioRxiv, 677237

https://www.biorxiv.org/content/10.1101/677237v3 

Koch, G.E., Akpan, E., & Coutanche, M.N. (2020). Image memorability is predicted at different stages of a convolutional neural network. bioRxiv. https://www.biorxiv.org/content/10.1101/834796v2

Work using older DNN models (e.g. HMAX)

(everything else, obviously incomplete)

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural networks, 1(2), 119-130.

Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331(6158), 679. https://www.nature.com/articles/331679a0

van Gerven, Marcel AJ, Floris P. de Lange, and Tom Heskes (2010). "Neural decoding with hierarchical generative models." Neural computation 22.12 (2010): 3127-3142.

Zeman et al (2013) The Müller-Lyer Illusion in a Computational Model of Biological Object Recognition. PLoS ONE8(2): e56126. https://doi.org/10.1371/journal.pone.0056126

Zeman et al (2014) - Complex cells decrease errors for the Müller-Lyer illusion in a model of the visual ventral stream - Front. Comput. Neurosci. 8:112. https://doi.org/10.3389/fncom.2014.00112 

Ramakrishnan K, Scholte HS, Groen IIA, Smeulders AWM, Ghebreab S (2015) -Visual dictionaries as intermediate features in the human brain  - Front Comput Neurosci

https://www.frontiersin.org/articles/10.3389/fncom.2014.00168/full 

(HMAX vs bag-of-words tested against fMRI)

Tang, Schrimpf, Lotter, et al (2017) - Recurrent computations for visual pattern completion - arXiv https://arxiv.org/abs/1706.02240 

S. Nishimoto and J. L. Gallant. A Three-Dimensional Spatiotemporal Receptive Field Model Explains Responses of Area MT Neurons to Naturalistic Movies. Journal of Neuroscience, 31 (41):14551–14564, 2011. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.6801-10.2011. URL http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.6801-10.2011

R. Prenger, M. C. K. Wu, S. V. David, and J. L. Gallant. Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Networks, 17(5-6):663–679, 2004. ISSN 08936080. doi: 10.1016/j.neunet.2004.03.008.

B. Lau, G. B. Stanley, and Y. Dan. Computational subunits of visual cortical neurons revealed by artificial neural networks. Proceedings of the National Academy of Sciences, 99(13):8974–8979, 2002. ISSN 0027-8424. doi: 10.1073/pnas.122173799. URL http://www.pnas.org/cgi/ doi/10.1073/pnas.122173799.

S. R. Lehky, T. J. Sejnowski, and R. Desimone. Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns. The Journal of Neuroscience, 12(9):3568– 3581, 1992. ISSN 0270-6474. URL http://www.jneurosci.org/content/12/9/3568. short{%}5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/1527596.