The following equations describe water boiling vs. water decomposing: $H_2O(1) \Rightarrow H_2O(g)$ $2H_2O(1) \Rightarrow 2H_2(g) + O_2(g)$ a) What types of bonds must be broken in each case? b) Given that water boils at 100° C but decomposes at 3000° C, what does thi say about the relative strength of the bonds involved in each case? Explain.	a) liquid => gas = imfs compound ⇒ elements = covalent bonds b)Since decomposition requires a much higher temperature, it implies that covalent bonds are much stronger than intermolecular forces. Yes. When molecules become very large, they have
4. Is it possible for the dispersion forces in a particular substance to be stronger than the hydrogen bonding forces in another substance? Explain your answer.	more electrons and a greater surface area, making them more polarizable so that even though individual instances of dispersion may be weak, many such instances add up to an overall strong imf.
4	
35. Identify the most important types of interparticle forces present in the solids of each of the following substances.	a)dispersion
a. Ar e. CH ₄	b)dispersion, dipole-dipole
b. HCl f. CO c. HF g. NaNO ₃	c)dispersion, dipole-dipole, hydrogen bonding
d. CaCl ₂	
	d)ionic bonds
	e)dispersion
	f)dispersion, dipole-dipole
	g)ionic bonds, covalent bonds (within the polyatomic ions)
6	
11.2 (a) What kind of intermolecular attractive force is shown in each of the following cases? (b) Predict which	a)hydrogen bonding
two interactions are stronger than the other two. [Section 11.2]	b)dispersion
(a) H F (c) National G	c)ion-dipole
	d)dipole-dipole

	e)CH ₃ OH - h-bonding
12	c)erryerr in containing
11.23 (a) What atoms must a molecule contain to participate in hydrogen bonding with other molecules of the same	a)an O-H, N-H, or F-H bond and a lone pair
kind? (b) Which of the following molecules can form hydrogen bonds with other molecules of the same kind: CH ₃ F, CH ₃ NH ₂ , CH ₃ OH, CH ₃ Br?	b)CH ₃ NH ₂ , CH ₃ OH
14	
 39. Rationalize the difference in boiling points for each of the following pairs of substances: a. n-pentane CH₃CH₂CH₂CH₃ 36.2°C 	a)Pentane has the higher BP since it has a greater surface area for dispersion forces to occur
CH₃	b)HF has hydrogen bonding
neopentane H ₃ C—C—CH ₃ 9.5°C CH ₃ b. HF 20°C	c)LiCl is held by ionic bonds, which are much stronger than imfs
HCl -85°C c. HCl -85°C LiCl 1360°C	d)hexane is larger, with more electrons, is more polarizable, and so has greater dispersion force
d. n-pentane CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 36.2°C n-hexane CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 69°C	
15	
11.21 Butane and 2-methylpropane, whose space-filling models are shown, are both nonpolar and have the same molecular formula, yet butane has the higher boiling point (-0.5 °C compared to -11.7 °C). Explain.	Butane has the higher BP since it has a greater surface area for dispersion forces to occur
99	
(a) Butane (b) 2-Methylpropane	
16	
11.5 The following molecules have the same molecular formula (C ₃ H ₈ O), yet they have different normal boiling points, as shown. Rationalize the difference in boiling points.	Both molecules have similar dispersion and dipole-dipole attractions, but propanol is able to hydrogen bond to other molecules due to the O-H group making the overall imf stronger.
(a) Propanol (b) Ethyl methyl ether 97.2 °C 10.8 °C	