| The following equations describe water boiling vs. water decomposing: $H_2O(1) \Rightarrow H_2O(g)$ $2H_2O(1) \Rightarrow 2H_2(g) + O_2(g)$ a) What types of bonds must be broken in each case? b) Given that water boils at 100° C but decomposes at 3000° C, what does thi say about the relative strength of the bonds involved in each case? Explain. | a) liquid => gas = imfs compound ⇒ elements = covalent bonds b)Since decomposition requires a much higher temperature, it implies that covalent bonds are much stronger than intermolecular forces. Yes. When molecules become very large, they have | |---|---| | 4. Is it possible for the dispersion forces in a particular substance
to be stronger than the hydrogen bonding forces in another
substance? Explain your answer. | more electrons and a greater surface area, making them more polarizable so that even though individual instances of dispersion may be weak, many such instances add up to an overall strong imf. | | 4 | | | 35. Identify the most important types of interparticle forces present in the solids of each of the following substances. | a)dispersion | | a. Ar e. CH ₄ | b)dispersion, dipole-dipole | | b. HCl f. CO
c. HF g. NaNO ₃ | c)dispersion, dipole-dipole, hydrogen bonding | | d. CaCl ₂ | | | | d)ionic bonds | | | e)dispersion | | | f)dispersion, dipole-dipole | | | g)ionic bonds, covalent bonds (within the polyatomic ions) | | 6 | | | 11.2 (a) What kind of intermolecular attractive force is
shown in each of the following cases? (b) Predict which | a)hydrogen bonding | | two interactions are stronger than the other two.
[Section 11.2] | b)dispersion | | (a) H F (c) National G | c)ion-dipole | | | d)dipole-dipole | | | | | | e)CH ₃ OH - h-bonding | |---|--| | 12 | c)erryerr in containing | | 11.23 (a) What atoms must a molecule contain to participate in hydrogen bonding with other molecules of the same | a)an O-H, N-H, or F-H bond and a lone pair | | kind? (b) Which of the following molecules can form hydrogen bonds with other molecules of the same kind: CH ₃ F, CH ₃ NH ₂ , CH ₃ OH, CH ₃ Br? | b)CH ₃ NH ₂ , CH ₃ OH | | 14 | | | 39. Rationalize the difference in boiling points for each of the following pairs of substances: a. n-pentane CH₃CH₂CH₂CH₃ 36.2°C | a)Pentane has the higher BP since it has a greater surface area for dispersion forces to occur | | CH₃ | b)HF has hydrogen bonding | | neopentane H ₃ C—C—CH ₃ 9.5°C CH ₃ b. HF 20°C | c)LiCl is held by ionic bonds, which are much stronger than imfs | | HCl -85°C
c. HCl -85°C
LiCl 1360°C | d)hexane is larger, with more electrons, is more polarizable, and so has greater dispersion force | | d. n-pentane CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 36.2°C
n-hexane CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 69°C | | | 15 | | | 11.21 Butane and 2-methylpropane, whose space-filling models are shown, are both nonpolar and have the same molecular formula, yet butane has the higher boiling point (-0.5 °C compared to -11.7 °C). Explain. | Butane has the higher BP since it has a greater surface area for dispersion forces to occur | | 99 | | | (a) Butane (b) 2-Methylpropane | | | 16 | | | 11.5 The following molecules have the same molecular formula (C ₃ H ₈ O), yet they have different normal boiling points, as shown. Rationalize the difference in boiling points. | Both molecules have similar dispersion and dipole-dipole attractions, but propanol is able to hydrogen bond to other molecules due to the O-H group making the overall imf stronger. | | | | | (a) Propanol (b) Ethyl methyl ether 97.2 °C 10.8 °C | |