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Abstract  

MIMIC-III has proven to be one of the commonest databases researchers use for their 

studies since it contains almost all the information one might need to perform real-world medical 

studies. However, most researchers find it is time-consuming to write codes and extract data 

from the database. With this challenge in mind, in this work, we present a tool that will enable 

researchers extract data from MIMIC-III as appropriate. From the data we extracted when testing 

the tool, a machine learning model is developed using eXtreme Gradient Boosting (XGBoost) to 

predict 28-day mortality in ICU for COPD patients and is explained using SHAP value. We 

further developed a much complex model by adding more features that were calculated on 

Elixhauser, Clinical Cut Point (CP) and ROC CP Scoring methods. Three other machine learning 

models were developed and compared with our main models. Both of the XGBoost models 

performed well based on AUROC, Accuracy and F1-score. 

 

 

 

 

 

 

 

 

 

1 
 



Table of Contents 

Abstract​ i 

Table of Contents​ ii 

List of Figures​ iv 

List of Tables​ v 

1​ Introduction​ 1 

2​ Related Work​ 2 

2.1​ MIMIC III​ 2 

2.2​ Data extractor​ 2 

2.3​ COPD​ 3 

2.4​ XGBOOST and SHAP​ 3 

2.5​ Logistic Regression​ 4 

2.6​ K-Nearest Neighbors​ 4 

2.7​ Random Forest​ 5 

3​ Methodology​ 6 

3.1​ Extraction Tool​ 6 

3.2​ Cohort recruitment and default features​ 6 

3.3​ Comorbidities​ 7 

3.4​ Additional Feature Selection​ 8 

4​ Experiments​ 11 

4.1​ Cohort​ 11 

4.2​ Statistical analysis​ 11 

4.3​ Inclusion Criteria​ 14 

4.4​ Experiment 1​ 16 

4.4.1​ Basic model​ 16 

2 
 



4.4.2​ Model performance and Explanation​ 16 

4.5​ Experiment 2​ 20 

4.5.1​ Extra-Features Model​ 20 

4.5.2​ Model performance and Explanation​ 21 

5​ Discussion​ 24 

6​ Conclusion​ 26 

Acknowledgement​ 27 

References​ 28 

Appendix A​ 32 

 

3 
 



List of Figures 

 

Figure 1 Proposed System Architecture​ 6 

Figure 2 ICD9_CODES search​ 7 

Figure 3 Adding comorbidities​ 8 

Figure 4 Search for item_id in the database​ 10 

Figure 5 Searching item values (features) and adding feature column to the data frame​ 10 

Figure 6 ROC curve for Scoring Models​ 14 

Figure 7 Recruitment Inclusion Criteria​ 15 

Figure 8 AUROC: Area Under Receiver Operating Curve for Basic model.​ 17 

Figure 9 SHAP values for the single instance​ 18 

Figure 10 SHAP Value impact on model output​ 19 

Figure 11 Average SHAP Value Importance for XGBoost with basic feature​ 20 

Figure 12 AUROC: Area Under Receiver Operating Curve for all models tested on extra featured 

dataset. (KNN. LR, RF, XGBoost)​ 21 

Figure 13 Average SHAP Value Importance for XGBoost with more featues​ 22 

 

 

 

 

 

 

 

List of Tables 

4 
 



 

Table 1Mimic 3 tables descriptions (source Mimic 3 website)​ 9 

Table 2 Demographic data and outcomes regarding to mortality in COPD patients​ 12 

Table 3 Univariable and Multivariable Regression Analyses of Mortality​ 13 

Table 4 Model comparison results (AUROC, Accuracy, and F1-score)​ 23 

 

 

 

5 
 



1​ Introduction 

Having access and being able to easily get data from a medical database is one of the 

most desired things for medical researchers. There are several data sources from which 

researchers can get data for their various studies; some are public and others are private. Some 

sources have the data already grouped in different categories and diseases with all features 

related to it (i.e. vital signs, lab tests and medication) already predefined. For other sources, 

however, one has to search for the links between the disease features. In most cases, these 

databases offer more information than the predefined ones.  Some of these data sources include 

the Healthcare Cost and Utilization Project (HCUP), data.gov, Kent Ridge Bio-medical Dataset, 

UCI machine learning repository, as well as MIMIC databases. 

 The Medical Information Mart for Intensive Care (MIMIC)-III database has data for 

over 40,000 patients from Beth Israel Deaconess Medical Center (BIDMC) [1] that were 

admitted to the intensive care units (ICU). Mimic-III database is one of the free databases which 

is widely used by many researchers globally. Despite having access to such, some researchers 

especially those that are not familiar with medical databases find it difficult to navigate through. 

Johnson et al. [2] in their research provided examples on how to do recruitment of cohorts and 

also emphasized on the idea of reproducible studies. This is a concern to many who are trying to 

do a me-too study as the code(s) may produce different results from the original study [3].  

In this study, we develop a tool to help researchers extract enough information to get 

them started with their research. This tool is tested by extracting COPD data and developing a 

model to predict mortality in COPD patients admitted in the ICU up to 28 days. 

 

1 
 



2​ Related Work 

2.1​ MIMIC III 

MIMIC-III is relational databases which consist of health-related data associated with 

over forty thousand patients who stayed in critical care units of the Beth Israel Deaconess 

Medical Center (BIDMC) between the years 2001 and 2012. A variety of information like 

demographics, bedside vital sign measurements, laboratory test results, procedures, medications, 

notes from caregiver, imaging reports, and mortality (together with post-hospital discharge) are 

included in this database. The data in MIMIC-III database was first de-identified in accordance 

with Health Insurance Portability and Accountability Act (HIPAA) standards using structured 

data cleansing and date shifting before it was added to the database. 

MIMIC-III has two information systems for critical care that were in place during the 

data collection period as described, in which are the Philips CareVue Clinical Information 

System (models M2331A and M1215A; Philips Health-care, Andover, MA) - just known as 

CareVue, and iMDsoft MetaVision ICU (iMDsoft, Needham, MA) - known as MetaVision.  

Several researchers around the world conduct miscellaneous range of analytical studies 

spanning from epidemiology, clinical decision-rule improvement, and development of electronic 

tools on MIMIC-III [2]. One of the reasons MIMIC-III is popular and a good database for 

researches is that its data ranges from time-stamped, several physiological measurements verified 

by nurses, free-text interpretations of radiology department images for studies. 

2.2​ Data extractor 

Data extraction is the process of retrieving data from a source or various sources into a 

more useful format for further processing or storage. There are several tools that were developed 

to do data extraction; some are open-source, while others are off-the-shelf. These data-extraction 

tools allow the retrieval of data from well-structured, poorly-structured and unstructured data. 

Many works have developed different data extraction tools for different sources. For example, 

Ferrara et al. [4] focused on web scrapping tools and techniques in their study. Examples of 

web-extraction tools include importio, myTrama, Octoparse, Hevo, and many more [5]–[7]. 
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Others devoted their work on developing a PDF data-extraction tool. The PDF Data Extractor 

(PDE) - which is an R package - extracts data from full-text articles from PDF based on 

keywords that are defined by the user, without the requirement of a training set[8]. Some 

researchers[3], [9], [10] worked on data extraction tools for relational databases.  

2.3​ COPD 

Chronic Obstructive Pulmonary Disease (COPD) accounted for nearly 3.2 million deaths 

globally in the year 2017 and ranked third among the leading causes of death worldwide. By the 

year 2020, COPD is believed to have caused an estimate of 6 million global deaths annually [11]. 

The WHO [12] expressed that COPD is mostly associated with risk factors ranging from poor 

nutrition, smoking, exposure to fumes and smoke, occupational hazards. Despite having several 

risk factors, COPD also has several comorbidities associated with it [13], [14]. 

2.4​ XGBOOST and SHAP 

Extreme Gradient Boosting popularly knowns as XGBoost, is an advanced machine 

learning algorithm (MLA) that was based on a gradient-boosting decision tree. It combines a set 

of algorithms to come up with a much better MLA as a whole. XGBoost offers a parallel tree 

boosting (GBDT, GBM) which is the reason many science problems are solved fast and with 

high accuracy. Recently, several studies have employed the use of XGBoost to solve many 

scientific problems [15]–[17]. It is one of the leading few machine learning libraries used for 

solving problems for classification, ranking as well as regression. Some of the advantages of 

XGBoost are that it is scalable, and fast.  

It is noted that most of the machine learning models developed using XGBoost such 

as[18]–[20] are explained well using SHAP. 

“SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the 

output of any machine learning model. It connects optimal credit allocation with local 

explanations using the classic Shapley values from game theory and their related extensions” 

[21] 
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Above is the definition of SHAP from the developers, but on their blog, Dario Radecic 

[22], they simplified the definition further by saying, “they are measures of contributions each 

predictor (feature) has in a machine learning model.” 

In their study, Lundberg et al. [19] demonstrated how  inconsistent  popular techniques 

for feature attribution  can be. This is to say that the methods can lower a feature’s assigned 

importance when the true impact of that particular feature is essentially high which casts doubt 

on any comparison between features. This is a fundamental problem was addressed using SHAP 

values, which are the unique, reliable plus locally precise attribution values. The study Lundberg 

et al.  [19] compared SHAP with other feature attribution methods like Saabas, Gain, 

Permutation, and Split Count on two simple tree models. 

2.5​ Logistic Regression 

Logistic Regression (LR) is a classification method in statistical model, which was 

borrowed into machine learning. It is a choice in many medical data classifications used to 

compute the likelihood of certain classes or events, and it also allows modeling and multivariate 

analysis of binary dependent variables. In the study to categorize type 1 and type 2 diabetes 

patients A. L. Lynam et al. [23] used logistic regression as their algorithm. The coefficients of 

predictors included in the final model are estimated using the multivariate analysis and are then 

adjusted based on the predictors of the model. The risk estimate of the outcome is quantified by 

the contribution of each predictor. 

2.6​ K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is a simple supervised learning machine learning algorithm 

that assumes similar things exists in close proximity and looks for a pattern in those occurrences. 

KNN can be used for both classification problems or regression problems. Despite being a 

simple algorithm, it can still give competitive results. However, in the industry, KNN is widely 

used in classification problems. Theerthagriri et al. in their study [24] used KNN to predict 
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COVID-19 possibilities with an 80.4% prediction accuracy compared with other models in their 

study. 

2.7​ Random Forest 

Random Forest (RF) is an ensemble machine learning algorithm, which puts together 

multiple decision trees to predict the outcome based on the average probability of all the trees on 

each subset of data samples to obtain better predictive performance that can’t be obtained by a 

single algorithm. In particular, Spathis et al. [25] used RF in diagnosing asthma and COPD. 

Apart from producing precise predictions, being fast and easy to implement, with even a large 

number of input variables RF can perform quite well without overfitting. 
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3​ Methodology 

In this section, we discuss the system architecture and methodology applied in this study. 

3.1​ Extraction Tool 

This tool was developed using python 3.8, JupyterLab 3.0.14; the PostgreSQL database 

server is running on Ubuntu 20.04 server.  Basically, it includes three main parts: Cohort 

recruitment with default features, Comorbidities, Additional Features. Figure 1 shows the main 

building blocks of our project. 

 

Figure 1 Proposed System Architecture 

3.2​ Cohort recruitment and default features 

In MIMIC-III, getting patients with similar disease is easier when the International 

Classification of Diseases, Ninth Revision, Clinical Modification (icd9_cm) [26] are used to do 

the search than using name search. The first query when getting default features using icd9_code 

for the primary disease, we try to include as many patient demographic features as possible. The 

default demographic data extracted include: age, gender, ethnicity, length of stay in hospital, 
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length of stay in the ICU, hospital expire flag, admit time, discharge time, admission type, 

insurance, language, religion, marital status, Sofa score.  

Figure 2 ICD9_CODES search 

3.3​ Comorbidities 

Some studies like [13], [14], [27]–[29]  may require researchers to find some 

comorbidities [30] associated with the primary disease. As similar as the primary reason of 

admission, icd9_codes are used to identify comorbidities that a patient has during each 

admission. The tool searches for comorbidities by icd9_code and then creates a column with a 

name provided by the user marking ‘1’ where the comorbidity is present, and ‘0’ where it is not. 

Figure 3 shows how the comorbidities are searched and how the column is created. 
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3.4​ Additional Feature Selection 

In this part of the extraction, we have basic demographic features which we call default 

features, and then the other part consists of features from vital signs, lab measurements, and 

treatment interventions, which can be added to the data frame by the researcher. These are what 

we refer to as dynamic features in this study. To search for an item, we use item ID’s to find the 

item value from different tables. This part has two functions, the first one is to search for the item 

ID using a substring so that item ID’s can be identified. MIMIC-III has two tables that have 

item_id definitions, d_items and d_labitems [1], [2], these tables are regarded as dictionaries of 

local codes known as ITEMIDs which are in the MIMIC-III database. The second function is to 

use the item_id to get the values. Figure 4 shows how the first function works, and Figure 5 

shows how to get the feature with the item_id. Once the item is found, a column is created and 

the values are mapped to each row base on its subject id. The data is exported to a csv file 

format. Table 1 shows table name and a brief description in the MIMIC-III database. 

 

 

Table 1Mimic 3 tables descriptions (source Mimic 3 website) 
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Table Description 
ADMISSIONS This table contains every unique hospitalization identified by hospital admission ID 

(HADM_ID) for each patient  
PATIENTS This table defines SUBJECT_ID which is for every unique patient. 
ICUSTAYS Contains every unique ICU stay which is defined by an ICUSTAY_ID. 
CHARTEVENTS All charted observations for patients are contained in this table. 
INPUTEVENTS_CV This stores the intake for patients monitored using the CareVue system during their 

stay in the ICU. 
INPUTEVENTS_MV This is for all the intake for patients monitored using Metavision system while in they 

were in the ICU. 
OUTPUTEVENTS This table, like the input events, contains output data for patients during ICU stay. 
PROCEDUREEVENTS_MV It contain all procedures for the subset of patients in the ICU who were monitored 

using MetaVision. 
DIAGNOSES_ICD This is considered as a dictionary for all the ICD9_CM codes . 

LABEVENTS All laboratory measurements for all patients in the database are stored in this table. 
D_ITEMS This is a dictionary of all the ITEMIDs in the database, with and exception to those 

that are related to the laboratory tests. 
D_LABITEMS Like the d_items, this table is a dictionary of ITEMIDs for laboratory tests only. 

CALLOUT When a patient was cleared for both ICU discharge as well as hospital discharge,  the 
information is stored in this table. 

SERVICES The service under which a patient is currently or was previously registered. (clinical) 

TRANSFERS This provides information about patient bed to bed transfers within the hospital/ICU or 
discharged. 

CAREGIVERS it keeps details of the caregivers who were responsible for recording data in the 
database. 

CPTEVENTS It keeps codes for procedures done on various patients using CPT_codes. 

DRGCODES In order for the hospital to properly bill it keeps codes for Diagnosis Related Groups 
(DRG) in this table. 

NOTEEVENTS This table stores all the de-identified notes captured from different departments of the 
hospital. 

DATETIMEEVENTS For all the observations like dates and time are recorded in this table. 

MICROBIOLOGYEVENTS For items microbiology measurements and sensitivities recorded from the hospital are 
kept in this table. 

PRESCRIPTIONS This is for all patient medications that were ordered, and even if not administered. 

PROCEDURES_ICD Using ICD code all patient procedures details are stored in this table. 

D_CPT This is a dictionary of all the CPT codes used in MIMIC-III. 

D_ICD_DIAGNOSES Dictionary of ICD codes that are relating to diagnoses. 

D_ICD_PROCEDURES This defines all the ICD codes relating to procedures. 
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Figure 4 Search for item_id in the database 

 

 

Figure 5 Searching item values (features) and adding feature column to the data frame 
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4​ Experiments 

In this chapter, we will present a brief description of our sample dataset, and the models 

that were developed from the dataset. We used COPD for this study to predict mortality for 

between 1 to 28 days of ICU admission. We conducted two experiments with the same dataset. 

In experiment one, we used exactly the same features extracted using the tool. In experiment 

two, we added extra features based on some calculations on the extracted data. 

4.1​ Cohort 

Data for the study was determined using the International Classification of Diseases, 

Ninth Revision, Clinical Modification (ICD-9-CM) codes for COPD. (COPD '490', '4910', '4911', 

'4912', '49120', '49121', '49122', '4918', '4919', '492', '4920', '4928', '494', '4940', '4941', '496',) 

[31], [32]. Basically, MIMIC-III contains a lot of records, in this study, the data was extracted for 

all the patients admitted in the ICU with COPD as morbidity, and from this cohort we also 

identified patients that were diagnosed with other underlying comorbidities. 

Apart from comorbidities, COPD, medications, laboratory tests and other clinical 

variables were extracted or calculated: BMI calculated from weight and height, age calculated 

from the date of birth, first day of hospital admission, and the Elixhauser Comorbidity Index - 

calculated based on the same weights that were used in the study [33] using Van Walraven (VW). 

4.2​ Statistical analysis 

We conducted statistical analyses on the data extracted. Continuous data were expressed 

as median (IQR) and were evaluated by two-tailed Student’s t-test, while categorical data were 

expressed as frequencies (%) and were analyzed by the Chi-square tests. The t-test tells us 

how significant the differences between groups are. In other words, the t-test informs us if these 

differences (which are measured in means) could have occurred by chance. The bigger the 

t-value, the more likely it is that the results are repeatable. The demographic information and 

mortality status were presented in Table 1. We had the following scoring model-building process.  

11 
 



Table 2 Demographic data and outcomes regarding to mortality in COPD patients 

 

Variable 
Median (IQR); (n, %) 

Total 
(N=1,358) 

Dead 
(N=310) 

Survive 
(N=1048) 

P value 

Age 72.0 
(63.0-80.0) 

75.0 (67.0-82.0) 70.0 (62.0-79.0) 0.0192* 

Sex (Male) c 748 (55.1) 163 (52.6%) 585 (55.8%) 0.3137 
Comorbidity Status 
(Elixhausr>0) 

145 (10.7%) 37 (11.9%) 108 (10.3%) 0.2405 

Major Comorbidity     
 CAD 539 (39.7%) 118 (38.1%) 421 (40.2%) 0.5053 
 HTN 755 (55.6%) 150 (48.4%) 605 (57.7%) 0.0036*

* 
 CKD 354 (26.1%) 109 (35.2%) 245 (23.4%) <0.0001

** 
 Cancer  083 (06.1%) 030 (9.7%) 53 (5.1%) 0.0029*

* 
 DM 350 (25.8%) 80 (25.8%) 270 (25.8%) 0.9878 
Clinical Values     
 BMI 027.2 

(22.7-32.5) 
25.8 (21.1-30.8) 27.7 (23.4-33.1) <0.0001

** 
 HbA1c 6.4 (6.4-6.4) 6.4 (6.4-6.4) 6.4 (6.4-6.4) 0.1954 
 FPG 139.4 

(119.0-139.4) 
139.4 
(121.0-150.0) 

139.4 
(118.0-139.4) 

0.0026*
* 

 SBP 116.0 
(102.0-133.0) 

110.0 
(97.0-126.0) 

117.0 
(104.0-135.0) 

<0.0001
** 

 PIP (N=1335) 19.8 
(16.0-24.0) 

20.0 (16.0-27.0) 19.8 (16.0-23.0) 0.0001*
* 

 MAPS (N=1332) 9.0 (8.0-11.0) 9.5 (8.0-12.0) 9.0 (7.0-10.0) <0.0001
** 

 WBC 10.7 (8.0-14.6) 11.3 (8.0-16.3) 10.6 (8.1-14.3) 0.0424* 
 Neutrophil 
(N=1,199) 

81.4 
(73.4-88.0) 

84.9 (75.9-90.4) 80.4 (73.0-87.0) <0.0001
** 

 Lactate 1.5 (1.0-2.1) 1.7 (1.1-2.6) 1.4 (1.0-2.0) <0.0001
** 

 CREAT 1.0 (0.7-1.4) 1.2 (0.7-2.0) 1.0 (0.7-1.4) <0.0001
** 

 SOFA Score 5.0 (3.0-7.0) 5.5 (3.0-9.0) 4.0 (3.0-6.0) <0.0001
**  

Medication     
 Norepinephrine
​  

463 (34.1%) 184 (059.4%) 279 (26.6%) <0.0001
** 
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 Epinephrine 140 (10.3%) 035 (11.3%) 105 (10.0%) 0.5179 
 Vasopressin 150 (11.1%)  91 (29.4%)  059 (05.6%) <0.0001

** 
Outcomes      
ICU length of stay 3.6 (2.0-6.5) 5.0 (2.5-8.5) 3.4 (2.0-6.0) <0.0001

** 
Respiratory failure 1040 (76.6%) 260 (83.9%) 780 (74.4%) 0.0006*

* 
Renal replacement   
therapy  

69 (05.1%) 25 (8.1%) 44 (4.2%) 
0.0065*
* 

c Chi-square test. Mann-Whitney U test. *p<0.05, **p<0.01. CAD: Coronary artery disease; HTN: Hypertension; CKD: Chronic 

kidney disease; DM: diabetes mellitus; BMI: Body mass index; HbA1c: hemoglobin A1c; FPG: Fasting plasma glucose; SBP: 
Systolic blood pressure; PIP: Peak inspiratory pressure; MAPS: Mean airway pressure; WBC: White blood cell; CREAT: Creatinine; 

SOFA score: the sequential organ failure assessment score; ICU: intensive care unit 

 

 

Variable Univariable Multivariable Model 1 
 OR (95% CI) P value OR (95% CI) P value 
Age 1.03 

(1.02-1.04) 
<0.000
1*  

1.04 
(1.03-1.06) 

<0.0001* 

Sex (Male) 0.88 
(0.68-1.13) 

0.3139  0.76 
(0.55-1.07) 

0.1164 

DM 1.00 
(0.75-1.34) 

0.9878 1.06 
(0.72-1.57) 

0.7638 

HTN 0.69 
(0.53-0.89) 

0.0037
* 

0.73 
(0.52-1.03) 

0.0722 

CKD 1.78 
(1.35-2.34) 

<0.000
1* 

1.36 
(0.89-2.09) 

0.1562 

Cancer  2.01 
(1.26-3.21) 

0.0034
* 

2.35 
(1.28-4.30) 

0.0057* 

BMI 0.97 
(0.95-0.99) 

0.0002
* 

0.95 
(0.93-0.97) 

<0.0001* 

FPG 1.01 
(1.00-1.01) 

0.0002
* 

1.01 
(1.00-1.01) 

0.0009* 

SBP 0.98 
(0.98-0.99) 

<0.000
1* 

0.99 
(0.99-1.00) 

0.0369* 

PIP 1.05 
(1.03-1.06)  

<0.000
1* 

1.03 
(1.01-1.05) 

0.0145* 
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MAPS 1.14 
(1.10-1.18) 

<0.000
1* 

1.10 
(1.05-1.16) 

0.0002* 

WBC 1.03 
(1.01-1.05)  

0.0005
* 

1.02 
(0.99-1.04) 

0.2249 

Neutrophil 1.01 
(1.00-1.02)  

0.3334    

LACTATE 1.36 
(1.25-1.48)  

<0.000
1* 

1.20 
(1.08-1.35) 

0.0012* 

CREAT 1.28 
(1.16-1.42) 

<0.000
1*  

1.11 
(0.95-1.30) 

0.1861 

SOFA Score 1.14 
(1.10-1.19) 

<0.000
1* 

1.00 
(0.95-1.06) 

0.9498 

Norepinephrine 4.03 
(3.09-5.25) 

<0.000
1*  

2.12 
(1.46-3.09) 

<0.0001* 

Vasopressin 6.96 
(4.86-9.97)  

<0.000
1*  

2.25 
(1.39-3.63) 

0.0009* 

ICU length of stay 1.06 
(1.03-1.08)  

<0.000
1* 

1.03 
(1.00-1.06) 

0.1072 

Respiratory failure 1.79 
(1.28-2.49) 

0.0006
*  

1.66 (0.94- 
2.91) 

0.0797 

Renal replacement   2.00 
(1.20-3.33)  

0.0074
* 

1.20 
(0.58-2.47)  

0.6301 

Table 3 Univariable and Multivariable Regression Analyses of Mortality 

 

c Chi-square test. Mann-Whitney U test. *p<0.05, **p<0.01. CAD: Coronary artery disease; HTN: Hypertension; CKD: 
Chronic kidney disease; DM: diabetes mellitus; BMI: Body mass index; HbA1c: hemoglobin A1c; FPG: Fasting plasma glucose; 
SBP: Systolic blood pressure; SPO2: oxygen saturation; PIP: Peak inspiratory pressure; MAPS: Mean airway pressure; WBC: 
White blood cell; CREAT: Creatinine; ICU: intensive care unit 

Model 1 adjusted for age, gender & diabetes status. 
 

First, the univariate analyses for all variables were performed and identified the variables 

with p-value <0.05. Second, all potential variables identified in the first step were entered into 

multivariate analysis simultaneously to adjust for the potential confounding effects, and only 

p-values <0.05 were retained in the multivariate model (Table 2). We only retained the variable 

with p-values <0.05 in the multivariate model in the scoring model. The scoring model was built 

according to clinical stand or receiver operating characteristic curve (ROC) detailed in Appendix 
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A. The ability of the scoring model in distinguish mortality status were performed via ROC and 

presented in Figure 2 below. 

 

 

Figure 6 ROC curve for Scoring Models 

 

 

4.3​ Inclusion Criteria 

Study participants were all the patients who were above 18 years and in this study, we 

only included the last record and the last day of admission to avoid having duplicated patient 

ID’s and to retain the actual outcome of their survival status. The recruitment procedure was that 

we first selected patients based on their length of stay in ICU; we excluded patients who stayed 

for less than 1 day and longer than 28 days. We then removed all data with > 15% of missing 

values. A study by H. Zhang found that MIMIC-III database can have as high as 74% of missing 
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data [34]. In  their study, N. Hou et al.  [15] also used XGboost for predicting 30-days mortality 

for MIMIC-III ; it removed all data with more than 20% missing variables. In this study, we tried 

to keep as much real values as possible, hence removing all the records with more than 15% 

missing values. Figure 7 provides a detailed procedure on how we enrolled our participants for 

the study. 
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Figure 7 Recruitment Inclusion Criteria 

4.4​ Experiment 1 

4.4.1​ Basic model 

In this experiment, we developed and trained an XGBoost model from the sample data 

we extracted. We extracted data for 5044 patients whose primary admission was COPD. The data 

was filtered based on length of stay (between 1 to 28 days in ICU) age greater than 18, and then 

we removed all those with more than 15% of missing values. The final cohort was 1358 patients 

and there are 19 features that were used for this training. The data was divided into 80% training 

data and 20% testing data. The model was interpreted by SHAP [21] which is currently being 

used in most XGBoost models as witnessed in [16], [17], [35], [36]. 

4.4.2​  Model performance and Explanation 

The model performance is good, with AUROC of 0.836 as depicted in Figure 8. Model 

explanation was done using SHAP; In Figures 9 to 11, we explain how we interpreted the model 

in deferent ways using SHAP. To validate the model performance further, we perfomed a 5-Fold 

cross validation. K fold cross validation is a statistical method used to compare and select a 

model for a given predictive problem. This method randomly divides the data into the number of 

folds specified (k-groups), one of the folds is used as validation while the other folds are 

combined and regarded as a training set. The process is repeated until all the groups are used as 

validation sets and also training set. The result for 5-fold was 83.05% accuracy with standard 

deviation of 2.05%. 
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Figure 8 AUROC: Area Under Receiver Operating Curve for Basic model. 

 

First, we look at a single feature explanation on how the features contributed to the 

decision in prediction of COPD mortality. Below is a figure that shows the impact each feature 

pushes the model output to a base value. Features pushing the prediction higher are shown in red, 

while features pushing the prediction lower are in blue. In the first plot, we can see how our top 

feature “PEAK_INSPIRATORY_PREASURE” (PIP) which is in blue, contributed towards the 

prediction of mortality of the patient. Its value pushed the risk lower while the same feature in 

the second plot, its values pushed the risk higher. In this case, we can say the higher the PIP, the 

higher the risk of not surviving in COPD and the lower its value, the lower the risk. The same 

can be said to the other features in the plot. 
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After looking into the single value impact, we visualize an accumulative impact of all the 

feature values using summary plot. The summary plot sorts features by the sum of SHAP value 

magnitudes over all samples. It then uses SHAP values to show the distribution of the impact 

that  every single feature has on the output of model. Just like the single instance, colors shown 

in the plot represents the feature impact in which red is high and blue is low. 

 

Figure 10 SHAP Value impact on model output 

In an average feature importance plot, SHAP calculates the average impact of the feature 

values and plots the global importance of each feature. In Figure 8, the features were grouped 

into 6 domains, and the domains were also weighed based on the sum of the features and feature 

importance they had. The lab data domain was higher than other domains. Of all the features, 

Peak Inspiratory Pressure was the highest. 
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Figure 11 Average SHAP Value Importance for XGBoost with basic feature 

4.5​ Experiment 2 

4.5.1​ Extra-Features Model 

In our basic model, we used 19 features that were extracted with our tool. For this 

experiment, we added more features to the existing features and we had a total of 27 features. 
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Some of the additional features include Elixhauser Comorbidity Index and other medications. We 

also included Clinical stand and Receiver Operating Characteristic curve (ROC) cut points - 

which are two scoring methods. 

 

4.5.2​ Model performance and Explanation 

After adding new features, the models were assessed on performance using AUROC, 

Accuracy and F1-score. XGBoost outperformed the other models in both scores. Figure 9 shows 

the AUROC for all 4 models. 

 

Figure 12 AUROC: Area Under Receiver Operating Curve for all models tested on extra 
featured dataset. (KNN. LR, RF, XGBoost) 
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Table 4 Model comparison results (AUROC, Accuracy, and F1-score) 

Model Accuracy AUROC F1-Score 

LR 0.81 0.821 0.65 

RF 0.83 0.824 0.67 

KNN 0.82 0.730 0.62 

XGBoost (basic features) 0.82 0.833 0.71 

XGBoost (More features) 0.84 0.847 0.75 
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5​ Discussion 

A MIMIC-III data extraction tool was successfully developed which can extract data and 

has some functionalities that make it easy for researchers to get information without spending a 

lot of time.  As stated before, some researchers [3], [9], [10], [37] have done similar projects. But 

in their research [9], [10] developed web-based tools on MIMIC-II to visualize and extract data 

from the database, while our work is on the MIMIC-III database. S. Wang et al. [37] developed a 

data extraction tool on MIMIC-III, but this tool requires a lot of computation power with a 

minimum requirement of 50GM RAM, and it takes between 5 to 10 hours. This means that 

researchers with very minimal computation resources will not be able to utilize such an 

important tool. Our tool targets any researcher with a computer of at least 4GB RAM, and it 

takes less than 1 hour to produce basic cohort. 

In the study, we selected patients who were admitted to ICU with COPD as a primary 

reason, and mortality prediction models were. Two experiments were done, the first one was 

with basic features extracted using our extraction tool. This model had a good performance; for 

all the performance matrics that we used to compare it with in the other models that were 

developed in the second experiment, it came second to our main model on AUROC and F1-score 

(AUROC: 0.833 ACCURACY: 0.820, F1-score: 0.71) 

Comparison of the models was done and we ranked the performance based Area Under 

the Receiver Operating Characteristic (AUROC) curve analysis and we also checked accuracy as 

well as F1-score. We found that AUROC for predicting 28-day mortality in XGBoost (AUROC: 

0.847 ACCURACY:0.84   F1-score: 0.75) was better than the other machine learning models. 

Comparison results are shown in detail in table 4 above. 

On the machine learning models experiments, our main focus when comparing the 

models was on AUROC and F1-score. XGBoost performed better on both AUROC and 

F1-score. Using AUROC to measure model performance is considered to be the best way to 

measure a binary classification model than using accuracy. Accuracy in most cases is based on 

probability while AUROC is how well a model can classify the outcome. Using accuracy on 

imbalanced dataset is not a good practice because the model might just as well predict the 
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majority class only while missing the minor class which in case of mortality is dangerous. Since 

our dataset was unbalanced, we opted to use the AUROC to rank the model performance 

between our models developed. 

Further more, we performed K-Fold cross validation on all the models, still our method 

come out with the best mean accuracy in comparison with the other models. We applied 5-Fold 

cross validation so that we could determine which model will come out to be the best. KNN had 

an Accuracy: 78.35% and standard deviation of (1.55%), LR Accuracy: 82.70% standard 

deviation (0.69%), RF Accuracy: 82.25% standard deviation (1.74%) and XGBoost scored an 

Accuracy: 82. 99% standard deviation (1.96%) 

The following are the parameters used in XGBoost: learning_rate =0.025, 

n_estimators=400, scale_pos_weight=0.95, max_depth=12, min_child_weight=4, 

max_delta_step =10, subsample=0.9, colsample_bytree=1. Other parameters were left to be 

default parameters. 
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6​ Conclusion 

In this study, we proposed an extraction tool that can be used for extracting data from the 

MIMIC-III database effectively. This tool is very easy to use and will help to solve the problem 

of having unreproducible studies. By being able to easily pull data from MIMIC-III researchers 

will be able to reproduce results from other studies. This is not only for reproducing studies but 

also for new studies - which reduces the time that is spent on writing queries to pull data from 

the database. The tool developed in this research was able to extract data based on user inputs 

without them having to write any queries and, in the end, produced a data frame that can be 

worked upon for analysis and transformation. 

Five models for predictions of 28-day mortality in ICU for patients with COPD were 

developed and were compared based on AUROC, Accuracy and F1-scores. Among the five 

models, XGBoost model which had more features added, outperformed other machine learning 

algorithms in both AUROC curve and Model Accuracy - with an AUROC of 0.847. With the aid 

of SHAP, important features were discovered that would help in alerting health service providers 

in time to save lives. The prediction of mortality is important in healthcare and proper care of the 

patient can be done soon after the prediction is made in good time. For timely clinical 

intervention decisions  the models that were developed in this study will provide the much 

required help to health personnel for COPD patients. 

Future work is to the tool compatible with the new MIMIC IV database, so that users can 

select which database the want to use. 
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Appendix A 

Clinical Cut-Point                      

Factors Cut-point 
Age1 65 
BMI2 18.5-24.9 
FPG3 100-125 
SBP4 ≤120 
PIP ≤40 
MAPS ≤40 
LACTATE ≤2 
Creat Male:0.74-1.35 mg/dL 

Female: 0.59 to 1.04 mg/dL 
ICU LOS 7 

 

 

 

 

 

Score range from 0-10 

Total Score Frequency Percent 
0 2 0.15 
1 3 0.22 
2 44 3.24 
3 118 8.69 

4 https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.120.15026 

3 
https://care.diabetesjournals.org/content/diacare/suppl/2019/12/20/43.Supplement_1.DC1/Standards_of_Care_2020.
pdf 

2 https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html 
1 https://www.who.int/healthinfo/survey/ageing_mds_report_en_daressalaam.pdf 
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4 249 18.34 
5 332 24.45 
6 281 20.69 
7 173 12.74 
8 93 6.85 
9 45 3.31 
10 18 1.33 

 

 

 

 

 

 

 

 

 

 

 

ROC Cut-point                              

Factors Cut-point AUC 
Age 75 0.6029 
BMI 22.8 0.5803 
FPG 149 0.5546 
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SBP 104 0.5962 
PIP 26 0.5729 
MAPS 15 0.5956 
LACTATE 1.9 0.6011 
CREAT 1.6 0.5797 
ICU LOS 4 0.5875 

                      

 

 

 

Score range from 0-11 

Total Score Frequency Percent 
0 1 0.07 
1 39 2.87 
2 121 8.91 
3 222 16.35 
4 297 21.87 
5 278 20.47 
6 187 13.77 
7 108 7.95 
8 60 4.42 
9 33 2.43 
10 10 0.74 
11 2 0.15 
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