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Nomenclature: archive, disk, staging areas,
caches and buffers

Technological, funding and scientific prospects are forcing data management
systems, storage providers and experiment computing models to evolve.

One-size-fits-all approach is no longer sustainable in future distributed storage.
Optimization of resources is the main goal and comes with an engineering challenge
in the way data is stored, organized and accessed.

Files continue to be the same immutable entity from client perspective but internally
to storage files can have different characteristics and evolve:

● On-demand redundancy: file replication shall no longer be integer number of
replicas but fractions (Erasure Coding)

● QoS: different types of storage with different properties in terms of reliability,
price and performances

● File workflows: files will transition and flow with time among different states
and properties

These three storage characteristics will be provided by a conjunction of storage
specialized sites (Data and Compute Centers). A subset of DCCs will define a
Datalake.

Data processing oriented sites (Compute Centers) will be connected to the Datalake
through an orchestrated mechanism of Staging Areas (latency hiding layer) and
Caches.



Let’s define these terms:

Datalake
Set of sites, associated by proximity, providing together storage services to an
identified set of user communities capable to carry out independently well defined
tasks. Operationaly, is more efficient that VOs use the same Datalake boundaries.
Proximity could be defined by geography, connectivity, funding or a shared user
community. This requires that their combined storage capacity and bandwidth can
meet the demands of the designated task and that usage of the different sites is
transparent to the users. This means that some form of trust relationship has to
exists and a way to locate data. This can range from a simple file catalogue to a full
fledged namespace.
While access for users is transparent during job execution, the population and
management of the storage within the Datalake is a planned and managed activity.
This includes the transitions between QoS levels. These operations are done on the
granularity of the Datalake. Data is moved to a Datalake, not to a specific site, the
storage resource management within the Datalake is the responsibility of the
Datalake.
Data access between Datalakes is possible, but will be done in a managed way, as
and example: leveraging the population of data by data management frameworks
and re-population of data after data loss.

Example: A group of sites, not further than a RTT of 50ms apart, well connected with
enough storage to hold the working set (all Mini and Nano AOD) for analysis for an
experiment. Using a simple file catalogue. The data for the ongoing processing
campaign is moved there by central data management tools (ie. Rucio)

The advantage of Datalakes is in the reduction of replication of functionality,
economy of scale of the large scale providers, reduction of complexity for users and
experiment data management.

Staging Areas
This is storage that is used to give unimpeded access to workloads that are active or
will become active very shortly. These Staging Areas are located at the edge of sites,
data is moved and removed there by data management systems and discovery is
through storage system and some form of simple file catalogue. Staging areas are a
planned way of latency hiding and can be used as gateways to resources that are



not connected directly to global networks, like HPC centres or IaaS. It is a
technicality whether the deletion of data is managed by the data management tools
of the experiments, or by the store itself. The requirements for data reliability are low,
due to the transient nature of the usage, access requirements in terms of I/O
operations and bandwidth can be high, depending on the use case. The size can be
limited to handle the amount of data needed for up to a week of operation.
Read/write functionality is required in use cases where the edge service connects
different authorisation domains. The implementation of the staging area is
transparent to the users.
In areas with sites being located sufficiently close, in matters of bandwidth and
latency, this staging area can be shared.

Benefits are that for a limited amount of storage data accessibility can be
significantly improved. For the use of resources like HPC farms this can be
mandatory, otherwise it depends on the scale of the Datalake whether these are
beneficial.

Cache
A self-managed transient storage layer at the edge of a site. To be truly useful the
Cache has to be streaming and providing read-ahead functionality. The content of
the Cache is only known by the Cache while for users and data management
services (ie. Rucio) the cache is fully transparent. The role of the local cache is
twofold:

● a) Reduce the required wide area network bandwidth by holding frequently
used files in the cache

● b) Ability to read ahead to reduce the impact of latency and peak bandwidth
requirements for the first reading of the file.

The size of the cache depends on the data type being used at the site. From cache
simulation studies it has become clear that the reuse rate depends on the data type.
The optimal size is given by the frequently reused files and enough storage to serve
the running jobs that process files only once. First studies, based on data popularity
studies, indicate that a very modest size, compared to current T2 storages is
sufficient.
The support of write access from the site would allow to also improve the
performance of tasks that produce sizeable amounts of data. However, the same
benefits can be achieved by using a Staging Area from where results are moved by
the storage management services to the final destination.
These Caches can be implemented in many ways, as standalone services,
distributed over all processing nodes at the site, etc. The different advantages have
to be studied for the different use cases.



Cache activity is driven by client activity, with clients requesting data from a cache. If
the requested data is stored locally then the cache will serve the client’s request
using the cached data. If the requested data is not stored locally then the cache will
request the data from the remote source. Existing caching technologies (ie. XCache)
provide a rich set to express preferences regarding the location of the data.

It has to be noted that on large sites with many active clients the I/O demands on
cache nodes will be substantial.

Client Buffer
To achieve the behaviour of an intelligent (streaming, read-ahead) cache with
respect of managing latency and bandwidth the application can manage the I/O in
most cases. Investments by CMS and ALICE have shown that by employing
advanced asynchronous I/O techniques and tools to select and predict those subsets
of data that will be used by the application, the throughput/efficiency of the workload
can be maintained with losses below 5%, despite significant latency. Most of these
techniques are available and integrated in the analysis frameworks that we currently
use (ROOT), however care has to be taken to configure them correctly for the
situation at hand.

Straw Models for Datalakes

Abbreviations
TC = Tape center = location that has a tape archive.
Throughout we assume that the total data is available across all TCs. I.e. an individual TC
does not have all the data.
DCC = Data and computer center
CCC = Compute center with cache.
CCNC = Compute center without cache. A CCNC relies on accessing all data via the
network from either a CCC or a DCC.

Frank’s Model



1) Distributed working set per lake with caches.
a) Model components: TC, DCC, CCNC
b) Assumptions:

i) There are multiple data lakes in the world. One data lake per region.
ii) The data lakes may have 0,1, or more TCs. I.e. the TCs are

fundamentally not connected logically to a data lake as they need to
feed all data lakes.

iii) The data lake notion is useful only for analysis. Centrally organized
processing should be thought of as an activity across data lakes.

iv) Each data lake has a complete copy of the analysis working set
distributed across a set of DCCs in that region. Each DCC within the
region is assigned a subset of the total working set. Very popular
datasets may be hosted in more than one DCC within some data
lakes, but not others.

v) Each TC has some modest size disk as tape buffer only to feed the
DCCs.

vi) A given center may be both a DCC and a TC, but this is not required
from any center. It’s possible to have a TC only center.

vii) There are possibly three types of disk usage at the DCC:
(1) Buffer space for processing campaigns where data is placed

only for the duration of the processing, and placement is
managed as part of the workflow.

(2) Replica management system managed space. We need to
make sure that one copy of the working set is guaranteed to be
on disk. This guarantee implies that the storage system for this
space is either replicated at the DCC, or that two copies are
replicated across two (or more) different DCCs on
non-replicated storage. The latter is probably the more
effective use of disk space.

(3) Cache space. Each DCC has a namespace attached to its
cache space. These namespaces between DCCs may overlap
in order to maximize the total CPU that can hit a given dataset
within the namespace. Other than that, this cache space is not
centrally managed. The namespace that is managed by a
cache at a DCC may be changed dynamically by the
operations team of the experiment.

viii) It is an operational decision by the experiments to shrink or grow the
cache space vs replica space vs buffer space. E.g. in general,
processing campaigns are not running all year, and buffer space may
thus be reallocated as cache space for part of the year to increase the
availability of data to CPU.

ix) A DCC may have multiple CCNC assigned to it. The CCNC have only
compute power, and are configured to access data only from the DCC
they are assigned to. The assignments of CCNC to DCC are based on
some maximum RTT. Network bandwidth at the CCNC must be
commensurate with the total processing power of the center. Network



bandwidth at the DNC must be commensurate with the sum of
processing power across all assigned CCNC plus the processing
power of the DNC itself.

x) The workload management system sends jobs to start at DCCs or
their assigned CCNC based on the namespace the DCC is configured
to serve. I.e. the RTT between DCCs is too large to efficiently run jobs
with remote access.

xi) DCCs may be distributed. E.g. two physical centers that are close in
RTT such that it does not matter which one hosts what data may
configure their shared diskspace as one DCC.

xii) None of the above addresses the issue of user data.
(1) User data is generally not expected to be backed up to tape. It

thus needs reliable storage to host it, or be replicated across
more than one DNC within a data lake.

(2) Unless user data is registered with the replica management
system, it would be confined to the data lake that was used to
produce it, as it could not transfer across data lake boundaries.

(3) Hm, this needs more thinking.

Markus-Xavi’s model

Situation:

The world is divided in DataLakes with a radius of roughly 20ms in network latency. Each
DataLake has a full set of Mini and NanoAODs of an experiment: O(50) and O(1) PB
respectively.
The data is stored on 3-4 Data and Compute Centers (DCC) that will define a DataLake
Files are stored without internal redundancy.
As first approximation we assume there are less than 10 of these DataLakes.
The data can be located by using logical/trivial file catalogues. These allow the trivial
mapping from fileName → DataSet → DataLakes → Site
All processing sites access data through a latency hiding cache. This cache has a few
additional abilities to the current Xcache implementation (they could be added). In the
following text this cache will be referred to as CACHE+ and will be located close to the
processing nodes of the Compute Centers
The additional characteristics are:

● The CACHE+ can do the mapping of the trivial file catalogues



● The CACHE+ is aware of the surrounding DataLakes and knows the distance to
them in units of latency and bandwidth

● The CACHE+ can redirect the access request of a file if it isn’t accessible within the
local DataLake

● The CACHE+ is stateless by definition. Impact of not having the cache (equivalent to
a file miss) is only reflected in latency (jobs continue getting data)

Storage systems in Data and Compute Centers in the DataLakes have the following
additional abilities:

● When a broken disk is found they create a list of lost files in a standardised format.
○ This ability is already present in the current systems, but it isn’t standardised

or automated
● Like the CACHE+, the storage system can do the trivial file catalogue mapping
● Like the CACHE+, the storage system is aware of the nearest neighbour DataLakes
● The storage has access to bulk data managing services that can do third party

copies

We assume that the disk failure rate is 1%/year. Which is a conservative assumption based
on the measurements at CERN (0.89%).

It is understood that there is a second layer of storage for software/ conditions data/ etc.

Normal Operation
The jobs on the WNs at a site access files through the CACHE. The ability of caches to hide
latency has been studied and results can be found here Ref [Laura and Corentin].
From cache studies based on data popularity we learned that for AODs and DAODs small
caches (<<10% of SE size) already cover a significant fraction of the active working set.
Studies in line with the FW model have to be done, but require new popularity data.

Direct access to remote sites 20ms away leads without latency hiding techniques,
dependent on the workload, to significant degradation of the throughput. Measurements
have shown that client site approaches currently are capable up to 10ms.

Data not found in the local cache can be (where n is the number of DCCs in the lake) :
- Read from the closest DCC (<20ms) in streaming mode while it is persisted at

cache level with 1/n probability

Disk Failure

CERN measured in 2017/18 a failure rate of 0.86 %/a for the disks in EOS. A rate of 1% /a
can be used as a conservative approximation.



Potential strategies to deal with disk failures:

Storage System:
The storage systems in this scenario can deal with failed disks in the following way:

1. After detection create the list of lost files using their namespace
a. A 100PB storage system will lose, on average 1PB per year. On a daily basis

this corresponds to 2.75 TByte. With an average file size of 1.5GB the system
has to do close to 2000 namespace queries in addition to the normal
operation. EOS namespace query rates are in the O(kHz) range. Within 10
minutes the list of lost files can be produced with less than 1% of the query
rate.

2. The list has to run through the mapping: fileName → DataSet → DataLakes → Site
a. This is a simple string based manipulation, or a database query. Implemented

in the least efficient way a query rate of 10Hz should be possible. This step
adds less than 10 minutes.

3. This list has to be given to a storage management system, like FTS or RUCIO, to
copy the lost data to the local storage system from the remote site.

a. The time to copy depends on:
i. the bandwidth that can be allocated to this task. In a large site the I/O

rates are frequently O(10GB/sec). Assuming 0.5 GB/sec, to limit the
interference with normal operations, the average amount that has to
be copied will take ~1.5 hours before it has been copied back.

The number of sites contributing to the recovery, if we assume 10 DataLakes each one with
3 DCCs, this means 29 sites potentially contributing to the recovery. If we assume ⅓ of the
sites hold part of the lost files, then the recovery time is x10 faster, ie. 10 mins with same
level of background recovery throughput (0.5GB/s) This means that the average time
between data loss and restoring the data by replication from another DataLake will take
about 2 hours. If we take into account the granularity of disks, assuming modern disks of
10TB, this means that for a 100PB system the time to restore a lost disk will take ~7.3 hours
(30 mins with the above described overall contribution by the whole DataLakes system). This
will occur every 3.6 days (on average).

How many/which fraction of jobs will be affected?
During the first 73 minutes of the recovery all jobs that require the data will not be able to
access the data directly. From then on every hour 1/6th of the data will be restored.
Without some assumptions on the distribution of files on disks and the data demands of the
jobs running at the site it isn’t possible to calculate the number of jobs affected.

Approach B) Dealing with absolute numbers of files.
All data is read over a certain time, the files are distributed randomly. During the restoration of the disk
a number of files will be accessed on the broken disk that is proportional to the restoration time and



the fraction of files that are accessed on the failed disk/hour. This has to be compared to the total
number of files accessed during the same time. This makes the ratio independent of the assumed
processing time of the whole data set since it takes into account that the failed disk holds a fraction of
the data and that only a fraction will be accessed.
In our example, with the 100PB site build of 10TByte disks we will have a miss rate during
reconstruction of the disk of 0.53 ‰ . This corresponds to an average file access miss rate of 0.036‰.
1 access in 27780 will request a file currently not present, in worst case the file will be back in 6 hours.
This has to be compared to the normal job failure rates of the experiments. From Panda log
file analysis we know that for production jobs is O(10%).

For more details and experiments :
https://docs.google.com/spreadsheets/d/1qKY6LfE8Uyr-Uc9li0iYNi9pe-Z7Re4uBHfElVostgw
/edit?usp=sharing

Input parameters:
fail rate/year [1/a] 0.01

storage size [PB] 100

size of disk [TB] 10

Average file size [GB] 1.5

NameSpace operations/sec [OP/s] 1000

Fraction of OP/s for restore 0.01

Trivial Catalogue, mappings/sec [1/s] 10

Bandwidth for restoring data [GB/s] 0.5

time for all data being accessed [d] 10onts

1 disk failing, time to restore:
This will happen per year [1/a] 100

Per day [1/d] 0.27

Data loss/day [TB/d] 2.7

Number of files per failed disk 6666

Number of files per day [1/d] 1826

Time to build lost file list for 1 disk [s] 666

Time to do the mapping for 1 disk [s] 666

Time to copy data for 1 disk [h] 5.5

Total time to restore 1 disk[h] 5.9

Impact of lost disk, file misses, relative impact:
Total Number of files on site 66666666

number of files accessed during 1 hour [1/h] 277778

https://docs.google.com/spreadsheets/d/1qKY6LfE8Uyr-Uc9li0iYNi9pe-Z7Re4uBHfElVostgw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1qKY6LfE8Uyr-Uc9li0iYNi9pe-Z7Re4uBHfElVostgw/edit?usp=sharing


fraction of total number of files accessed in an hour [1/h] 0.0042

fractional size of the failed disk 0.0001

number of files accessed on the failed disk per hour [1/h] 28

files missed during locating replicas 10

files missed during replication (files are gradually moved) 77

total number of files missed during recovery (6h) 87

total number of files accessed during recovery 1646090

Fraction of files missed during reco period 0.000053

Above in ‰ 0.53

Average file miss rate in ‰ 0.036

Strategies to deal with missing data

Ignore and try again later:
This will be handled by the re-submission mechanisms of the experiments. Since they
clearly can handle O(10%) of failed jobs, an addition 0.036‰ will not be noticable. If this rate
increases to 1% (=factor 1000) it will be still barely noticeable.

Proceed and suffer from extra latency:
Since all reads will happen in this model through the CACHE, it is the CACHE noticing the
absence of data. Equipped with ability to map the missing file via the trivial file catalogue to
an instance of the file(s) in a neighboring DataLake and access it from there. The increased
latency will have an impact on the throughput of the running job. The scale will depend on
the type of job, measurements of this impact of latency beyond 20ms on CACHE
performance are currently done. With 20ms latency and an empty cache we measured a
maximum degradation of throughput of less than 10%. Given the small fraction of jobs
affected, the main advantage of this approach is that for a small loss in efficiency of the
running job no re-submission is needed.

N.b. Usage of buffering on the client side is encouraged. It has demonstrated the ability of
efficiently hide latency on jobs running in streaming node (start processing data on the fly)
with no special (or very little tuning) on the client.

Strategies to deal with temporary unavailabilities

Data can be temporary unavailable without implying irrecoverable data loss at the site. This
type of incidents does not require data re-replication.
Possible cases can be: diskserver maintenance (OS upgrade, security patch), PDU failure,
broken motherboard, networking incident (NIC, cable, switch, ToR,...)



Hence we deal with scheduled and unscheduled situations with a common signature: big
fraction of data is not available at the corresponding site for a short period of time, ranging
from a full diskserver node to a complete rac.

Measures should be in place to distinguish this recoverable incidents from the the
unrecoverable incidents where data re-replication will be triggered. Regarding scheduled
interventions we know how to deal with in WLCG operations using different means, while for
the unscheduled situations we should put in place mechanisms to alleviate it: reading data
from a neighbour lake as first measure and schedule new jobs accordingly.

The solution to overcome this situation sits in a delicate terrain. Being too much reactive can
easily clog the system in case of small glitches or flapping situations. The risk is that the
system notice diskserver A is down, start triggering actions, and shortly after diskserver A is
back. With the number of nodes we will have even 1% of this “false” alarms can induce
some chaos in the scheduling and the state of the whole system. We need to take this in
mind and put resilience to glitches (usually means add more time until taking a decision).

The impact on the running jobs is being estimated in the spreadsheet below.

Strategies to deal with data centers failing
In addition to the incremental failures of individual disks we have suffered in the past and will
suffer in the future from events that render complete centres unavailable for several months.

Following the described scenario this means that within a DataLake ¼ - ⅓ of the data will
become unavailable for several months.

“Ignore and try again later” is no option in this scenario, however, the CACHEs can be
re-directed for the missing data to use the data from the closest DataLakes. Since not all
sites within the DataLake will access the same neighbouring sites the impact can be split
between several places. This might be best done by using a special mapping during the
rebuilding of the site.
Over the last 10 years WLCG has experienced a few events that made complete sites
inaccessible for extended periods or destroyed significant fractions of storage. Tracked over
the years the impact in volume is comparable to the “statistical” loss of individual disks.

Impact on different workflows without using a CACHE
Based on the impact of latency on different workloads studies by our summer students we
added some scenarios for two studied workloads. The summary for one example is
summarised in the table below. Even workflows that suffer from more than an eightfold
increase in wallclock time when the latency increases to 20ms, the average impact of
reading data during the recovery periods is only 2.8 10-4, even when the required data is
located 60ms away.



Latency 1 ms 20ms 40ms 60ms

A1 relative wallclock
increase 1.095 1.9 3.8 5.7

same for A2 1.0425 8.5 17 25.5

Average increase A1 1.04E-06 2.09E-05 4.18E-05 6.27E-05

Average increase A2 4.67E-06 9.34E-05 1.87E-04 2.80E-04

Data lake straw model sketch

Site Classification



Aerial view of several latency areas







Missing:
● Extending the model to cover AOD and DAOD (+ntuple) based

analysis
● List of functionality that is used in the model, but currently not

implemented

AOD/DAOD + ntuple based analysis in the Data Lake
The current Straw Man model is based on the CMS assumptions of data
rates and Mini/Nano AOD sizes.
ATLAS analysis uses a combination of AOD/DAODs and recent (2017)
monitoring data indicates that there is roughly the same space needed
for AODs and dAODs. Together they use about 90PByte of disk space.
This includes already the space needed for the replicas, with a
replication rate for AODs/dAODs of (I have to look it up, but I remember
that for 2018 data it was close to 2). HL-LHC will provide 5-7 times the
nominal luminosity, but the trigger rate is expected to be increased by a
factor of 10. In addition the increased pileup will have an impact on the
size of AODs for this 2.5 is assumed. Applying these scaling factors
based on the increase in luminosity and pileup we can assume that this
style of analysis would require for the AOD/DAODs about 2300 PB. In
this AOD based analysis model the AODs aren’t accessed very
frequently. The N-Tuples used in the final steps of analysis aren’t
included in the accounting. Given the indicated data volumes of the
different data types the final N-Tuples are 10-6 the size of xAODs
(GB/PB). While between each reduction step a factor 1000 is gained,
the number of different formats has to be taken into account. For the
intermediate analysis format (TB scale) ~100 formats are produced and
for the final n-tuple (GB scale) ~1000. While the intermediate formats
can be seen as transitory the full space doesn’t need to be provided at
the same time. In any case this would add at most 10% to the storage
needed for xAODs ( ~50PB). For the n-tuples we can assume that
~2.3PB should be sufficient.
Given the uncertainties of conditions of our current understanding the
space needed for these final analysis objects can be ignored at the
moment and due to the small size and specificity to different analysis



teams they should be probably stored outside the data lake with a very
high (local) QoS level.
A complete working set of AOD/DAODs will not fit within a single Data
Lake. The experiment that follows this model will have to split the data
between different Data Lakes and schedule the Derivation and
ROOT-based analysis accordingly. Having a distributed replica, the
approach with no local data redundancy will still be feasible. In the
Derivation step events are dropped (Skimming), objects from the event
data tree (Thinning) and within the objects variables are removed
(Slimming). While this is an I/O intensive process, data can be streamed
to hide latency during access. Since the data is stored in ROOT format
data from different events is stored intertwined and event’s can’t be
skipped trivially. Test with an ATLAS derivation job run through an
Xcache instance indicate that the impact of 20ms latency can be limited
to less than 10%.
The modified spreadsheet indicates that the effect of data loss and
non-availability …. Is different???? (I assume yes, one replica only→
increased restoration times…. Other effects should be close to the
Mini/Nano use cases……….

Fig[ANT] AOD and N-Tuple based analysis model



2017 disk space usage by different data types, N-Tuples aren’t included


