
Service architecture of the Global Resource
Coordinator
oysteine@chromium.org, February 2017

***** PUBLIC DOC ****

Main GRC doc here.

The Plan
The Name Of The Service [In Code]
Key First Moves

Interfaces
Existing interfaces

Memory_instrumentation
MemoryCoordinator

New interfaces
PerformanceTimeline

The GRC's goal is centralize the code used for gathering performance metrics and for
coordinating Chrome’s use of limited system resources, to be able to make informed decisions
from a bird’s-eye view. The core of the GRC is a Mojo service that does the actual global
coordination. While there are a large number of existing and future systems that can/will form
parts of this Mojo service, there’s a few immediate steps we can do to bootstrap the global
resource coordinator. This document describes those steps.

The Plan
The MemoryCoordinator and the memory instrumentation code are our starting point to
creating the GRC service. MC is already using mojo interfaces but is not service-fied, and
memory-instrumentation is already set up as a service. So bootstrapping the global coordinator
service is mostly a matter of moving code around, and starting up the service in the browser
process.

https://docs.google.com/document/d/1dx4KDbDFvP-GWwwrSPg8Gxx4kboIoPi8kDKTSXoTbC4/edit#
https://docs.google.com/document/d/1PNYF83Ktl47SeILPMu_yNAEQE-V_N5HEwC2ieRZga48/edit#heading=h.b9v92te45i0e
https://docs.google.com/document/d/1PNYF83Ktl47SeILPMu_yNAEQE-V_N5HEwC2ieRZga48/edit#heading=h.b9v92te45i0e

The Name Of The Service [In Code]
We will eventually have /services/x/, for some value of X. We discussed a variety of options:
resource_coordinator, global_coordinator, coordinator, speed.

We settled on resource_coordinator.

Key First Moves
The first key moves are mainly revolving around servicifying existing code:

●​ Rename /services/memory_instrumentation to /services/resource_coordinator (this is
the memory-infra service). This will be coordinated with existing memory-infra
servicification efforts to not block/interfere with their work.

●​ Move the memory-infra interfaces to
/services/resource_coordinator/memory/instrumentation

●​ Move /content/browser/memory to /content/browser/resource_coordinator/memory
(this includes the MemoryCoordinator)

●​ Move the central controller part of MemoryCoordinator from the /content/browser
location above, to /services/resource_coordinator/memory/coordinator, and its public
interfaces to /services/resource_coordinator/public

●​ Once/if /base/perf gets created as part of TracingV2, move the /base parts of the
MemoryCoordinator into a subdirectory here.

Interfaces
The interfaces provided by the resource_coordinator service will evolve over time, within the
general theme of “measure Chrome’s performance, report metrics from that data, and use it to
guide Chrome’s use of system resources”.

Existing interfaces
The initial set of interfaces will be the consolidated set of interfaces we’ll get by the existing
code moved into the service:

Memory_instrumentation
Memory_instrumentation has currently two interfaces: The Coordinator which registers callback
interfaces that can have memory dumps requested from them and is implemented by the
service, and the ProcessLocalDumpManager interface which will be implemented once per
process to provide memory dumps.

MemoryCoordinator
The MemoryCoordinator has one interface implemented by the service: the
MemoryCoordinatorHandle which each child process uses to register a
ChildMemoryCoordinator interface callback.

The above gives us two process-level bindings to the resource_coordinator service, one for
memory_instrumentation and one for the MemoryCoordinator. Both of these are process-wide
and should be merged at some point as they’re basically both doing the same thing.

New interfaces
The first new interfaces are the CoordinationUnitProvider and the CoordinationUnit interfaces.
The former is used to request a messagepipe to an internal CU given a CUID, which is a unique
identifier that can be re-created anywhere in the codebase (the idea being that you can
construct one using a user-defined string, which will then connect to a specific CU in the
service). The CoordinationUnitProvider is only usable by the browser process, which is
responsible for validating any requests from child processes for CU messagepipes.

The CoordinationUnit interface will have functions for setting up parent/child relationships
between themselves, for sending events to a CU (i.e. “i am playing audio now”), and for setting
up callbacks for the client of a CU to receive resource usage policies which are calculated based
on the received events (i.e. “should this process be backgrounded”, “what’s my memory
limitations” etc).

PerformanceTimeline
The PerformanceTimeline interfaces will receive performance-related events from other parts of
Chrome, which systems within the service (and outside, in some cases) can listen for. See the
main GRC doc for a high-level overview. Potential event types:

●​ Memory APIs: OnPurge/OnSuspend, MemoryUsage, MemoryProcessDump,
MemoryPressureState

●​ Task APIs: OnLongTask, WorkQueueSize, TimersThrottled
●​ Loading APIs: OnPaint, OnStyleRecalc, OnLoad, breakdowns of subsystems (time in

script, time in layout, etc).
●​ Embedder events: OnVisibilityChanged, TabCreated

https://docs.google.com/document/d/1dx4KDbDFvP-GWwwrSPg8Gxx4kboIoPi8kDKTSXoTbC4/edit#

The general idea is to have a clientlib part of the service which can receive
high-frequency/granularity events, and forward/aggregate events to the service as appropriate.
See PCU.

https://docs.google.com/document/d/1krDGttBMV70A3zsN2leu_4U3Vf1PrtOH2t8kLUHB6Sw/edit

	Service architecture of the Global Resource Coordinator
	The Plan
	The Name Of The Service [In Code]
	Key First Moves

	Interfaces
	Existing interfaces
	Memory_instrumentation
	MemoryCoordinator

	New interfaces
	PerformanceTimeline

