
RFC: HCA Data Store Reindexing - DEVELOP
DEVELOP - This is the current “DEVELOP” version of this specification, please use
comments or “suggesting” mode only.

RFC: HCA Data Store Reindexing DEVELOP

Use Cases

Verify

Repair

Reindex

Stand-up new replicas

Handle diverse metadata schemata

Requirements

Concurrent submissions

Concurrent deletions

Concurrent searches

Concurrent notifications

Concurrent subscriptions

Missed notifications

Design Decisions

Introduce index generations

Use Elasticsearch aliases

Disallowing more than one maintenance operation at a time

Handling concurrent submissions and notifications

Disabling concurrent deletions during repair and index

Using AWS Step Functions for batch processing

Admin API signatures

create_index_maintenance(…)

get_index_maintenance(operation_id: str)

delete_index_maintenance(operation_id: str)

Architecture

Reindexing operation

Verify and repair operations

Failure Handling

Cancelling operations

Indexing specific bundles

Logging

Internal functions

create_index_maintenance(…) → operation_id

IndexMaintenanceVisitation.initialize(…)

prepare_index_maintenance(replica) → generation_id

index_bundle(mode, replica, bundle_id[, generation_id]) → generation_id

complete_index_maintenance(replica)

get_index_maintenance(operation_id)

delete_index_maintenance(operation_id)

index_maintenance_cancelled()

Appendix

Alternative ways to handle concurrent notifications

Alternative 1: Allow concurrent notifications

Alternative 2: Defer submissions

Implementation plan

Future extensions

Use Cases

Verify
A system outage or human error is suspected to have caused the Elasticsearch index to
become inconsistent with the primary storage in a replica, e.g. the bucket in S3. The potential
inconsistencies are

●​ Stale bundles (document in index is out of date)
●​ Missing bundles (document is missing from index)
●​ Ghost bundles (document in index refers to non-existing bundle)

To estimate the degree of inconsistency, an index verification operation is initiated
administratively. That operation reports inconsistencies only and does not modify the
Elasticsearch index.

Repair
A system outage or human error has caused the index to become inconsistent with primary
storage in a replica. To fix the inconsistencies, a repair operation is initiated administratively in
order to fix either a single stale/missing bundle, a set of specific stale/missing bundles or all
bundles, and optionally all ghost bundles. The repair modifies the Elasticsearch index in place.

Reindex
The Elasticsearch index is missing, empty, has been corrupted to a degree that it can’t be relied
on or a new software release of the data store fundamentally changed the way documents are 1

stored in the index. A reindex operation is initiated administratively. The reindexing does not
modify the index in place. Instead it works on an offline copy that’s atomically brought online at
the end.

Stand-up new replicas
When bringing up an entirely new replica from scratch, the Elasticsearch index has to be
populated with the bundles in storage for that replica. This is very similar to the reindexing use
case.

Non-use case: Handle diverse metadata schemata
Support for multiple metadata schemata (or schema versions) does not require reindexing.
Blue-box supports those by maintaining separate document indexes in Elasticsearch. That
touches on reindexing only inasmuch as that reindexing has to populate those indexes. A single
reindexing operation will populate the schema-specific indices simultaneously.

Requirements
Each use case involves a distinct type of operation: verify, repair and reindex. We’ll refer to
these operations as index maintenance operations.

Below are the non-trivial requirements satisfied by those operations. The word "should"
indicates an optional requirement while "must" indicates a mandatory one.

Concurrent submissions
Submission of new bundles must be allowed while index maintenance is in progress.

1 A fundamental change is is one that affects the shape of the documents significantly enough to cause
the Elasticsearch mapping (aka schema) to reject those documents. Note that this is different to a change
of the metadata schemata which should not require reindexing.

Concurrent deletions
Administrative deletion of bundles should be allowed while index maintenance is in progress.

Concurrent searches
Searches must not be affected by an ongoing verification operation. An ongoing repair
operation may affect searches insofar as that search results will increasingly reflect the repairs
as the operation progresses. Once a reindexing operation finishes, searches hit the new index.
Concurrent searches should include concurrent submissions and deletions.

Concurrent notifications
Existing subscriptions should be notified for concurrent additions. Notifications must not
happen as pre-existing bundles are repaired or re-indexed, unless the corresponding index
document is missing (See Missed notifications). Notifications for concurrently submitted bundles
should not happen more than once.

Concurrent subscriptions
Subscription registrations must not be affected by ongoing index maintenance. Concurrently
registered subscriptions should be notified about matching bundles submitted concurrently.

Missed notifications
If the reindexing or repair process determines that a pre-existing bundle in the replica’s storage
bucket had not been added to the index and therefore a notification had not likely been sent,
that missed notification should be sent as part of the reindexing or repair process.

Design Decisions

Introduce index generations
For documents—as well as for subscriptions—there currently is one Elasticsearch index per
tuple (replica,stage). The upcoming support for handling multiple metadata schemas
requires the inclusion of the metadata schema version in that tuple such that, at least for
document indices, the tuple becomes (schema,replica,stage). Finally, to support concurrent
searches, this specification adds the index generation as an ISO timestamp to the tuple for
document indices (generation,schema,replica,stage). For any given combination of
stage and replica, the following statements apply:

●​ More than one generation can exist but only one generation is ever actively used by
searches.

●​ Typically (during normal operation), only one generation exists.

●​ During reindexing, two generations exist: the old generation that’s actively being used by
searches and the new generation currently being populated by the reindexing process.

Use Elasticsearch aliases
Elasticsearch (ES) aliases are used to refer to the document indices in the active generation
that is used by search requests. An ES alias is a symbolic reference to one or more indices.
Aliases can be updated atomically allowing for seamless transition from one generation to the
next. Activating a generation involves atomically updating the alias to refer to the indices in that
generation thereby implicitly deactivating the previously active generation. The name of an alias
is derived from the tuple (replica,stage). Each alias initially refers to indices matching
(t1,*,replica,stage) where t1 is an ISO timestamp. After the first reindexing completes,
that alias will refer to indices matching (t2,*,replica,stage) where t1 < t2.

In addition to the aliases that direct searches to the active generation, the system uses a special
index to track the generation that new submissions are being indexed into. The so called
generations index contains a single document with two fields:

●​ generation_id — the identifier of the generation used for indexing new bundle
submissions

●​ operation_id – the identifier of the next available operation (see see below)

Normally, the generation_id field references the same generation as the alias. The same is
true for ongoing verification and repair operations. However, during a reindexing operation, the
generations index refers to the new generation while the alias still refers to the old one.

Disallowing more than one maintenance operation at a time
… is a cheap way to avoid race conditions. create_index_maintenance() raises an exception
if this constraint would be violated. The constraint is enforced by storing the next available 2

operation ID in the generations index in Elasticsearch and relying on the uniqueness
constraint enforced on execution names by AWS' StartExecution API which is used by the
visitation (batch) code.

Handling concurrent submissions and notifications
During verification and repair only one generation is active. That generation handles searches,
repairs and concurrent submissions. Furthermore, notifications are driven by that generation as
well, even during repair or verification. Consequently, notification endpoints that run
Elasticsearch queries against the system are being served results consistent with the
notification. In other words, if an endpoint gets notified about the addition of a bundle and in turn

2 Note that running multiple concurrent REPAIR or VERIFY operations with disjunct date ranges (for bundle
modification date) would be harmless, albeit inefficient. If that turns out to be a use case, it could be
implemented more efficiently by allowing multiple data ranges per REPAIR or VERIFY operation.

uses the search API to query for that bundle, the bundle will be returned by that search. This
applies to searches by bundle identifier as well as searches that match more than one bundle.

After a system software update to the indexer code it can't generally be assumed that the old
index generation would accept the document shape emitted by the indexing function. This is
because the function might have been updated emit a document shape that's incompatible with
the Elasticsearch mapping in the old generation. That’s why the reindex operation populates a
separate set of offline indexes i.e, the new generation. Submissions that happen concurrently to
an ongoing reindex operation also end up in the new generation. If concurrent notifications were
strictly required, even in that use case, those notifications would then have to be driven by the
new generation. The problem with this approach is that notification endpoints that run ES
queries against the system would keep searching the old generation yielding search results that
are inconsistent with the notification: the bundle that is the subject of a notification would be
missing from the results. This may be acceptable for endpoints that perform analysis tasks but
we don’t think it is for endpoints in user interfaces and portals. To accommodate this scenario,
the system defers concurrent notifications until a reindexing is complete and the new generation
is fully populated. See the appendix for alternatives to this design choice and their respective
trade-offs.

Since documents are strictly derived, indexing is inherently idempotent. It would be harmless,
for example, if a concurrent submission during REPAIR is picked up by a maintenance worker at
the same time as it is handled by the regular indexer. One will overwrite the document written by
the other, but with exactly the same content. However, to prevent both from considering the
document for sending notifications, Elasticsearch’s optimistic concurrency control (aka
versioning) should be used. In the above case, both the worker and the regular indexer assume
that they are adding a document. With versioning, one of them would fail to add the document
and in turn skip considering notifications.

Disabling concurrent deletions during repair and index
Concurrent deletions are subject to a races between indexer and reindexer. It’s possible that the
reindexer adds a bundle that the indexer just deleted.

Using AWS Step Functions for batch processing
The visitation batch system visits each bundle once with a high throughput mechanism that can
be throttled and monitored. This can be accomplished with a sentinel-worker threading pattern
implemented with AWS Step Functions, a lightweight, serverless environment providing graceful
error handling and monitoring.

The number of workers is set initially but can be dynamically adjusted as needed, ideally
controlled by system load. It may also be desirable to throttle individual workers.

Although this mechanism is initially intended to back index maintenance operations, it can serve
as a general batch processing platform for other DSS operations.

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/docs-index_.html#index-versioning

The Sentinel calls workers, and monitor for completion and failure.

The worker visits each bundle once, calling the re-indexing function directly (as opposed to via a
lambda), based on a two letter prefix.

Both are implemented as AWS Step Functions.

Sentinel Step Function diagram:

Walker Step Function diagram:

Admin API signatures
These are AWS lambdas that can be invoked via an admin script.

create_index_maintenance(…)

Initiate an index maintenance procedure and return a handle to it.

●​ Parameters
○​ mode: enum, required, one of VERIFY|REPAIR|REINDEX​

Select maintenance mode. See section Use Cases above for description.
○​ replica: str required​

The name of the replica to check on.
○​ bundles_added_after: dateTime, optional, only allowed for VERIFY and

REPAIR, no default. Restricts the maintenance operation to bundles submitted
on or after the specified date. If absent, there is no lower bound on the bundle

○​ bundles_added_before: dateTime, optional, only allowed for VERIFY and
REPAIR. No default. Restricts the maintenance operation to bundles submitted
before—but not on—the specified date.

●​ Return value

○​ operation_id: str​
An opaque handle to the asynchronous operation

●​ Raises
○​ ConflictException(operation_id: str)​

A maintenance operation is currently ongoing.

get_index_maintenance(operation_id: str)

Return progress information about an ongoing index maintenance operation.

delete_index_maintenance(operation_id: str)

Cancel an ongoing index maintenance operation. VERIFY and REPAIR operations can be
cancelled without detriment. Cancelling a REINDEX operation may cause bundles that were
submitted during the REINDEX to be missing from search results. To fix this, another REPAIR or
REINDEX operation must be started and left running to completion.

Architecture

A REST API handler is a lambda that is invoked indirectly by way of a AWS API Gateway which
handles REST requests. Regular lambdas are invoked directly through AWS Lambda service.
The symbol for Python functions is used to call out specific functionality. These function will
always run in the context of the lambda that invokes it.

Reindexing operation
The diagram below illustrates the sequence of events during a REINDEX maintenance
operation.

1.​ An admin initiates a maintenance operation by invoking the
create_index_maintenance(…) lambda. The handler reads the current
operation_id from the generations index.

2.​ The handler attempts to start an execution of the visitation sentinel state machine using
the operation_id to name the execution. If that fails due to the uniqueness constraint
on execution names, the handler raises an exception, indicating a conflict.

3.​ Otherwise, the sentinel lambda invokes the maintenance preparation function which …
4.​ … generates a new generation identifier and updates the generations index with it.

This directs the indexer to add concurrently submitted bundles to the new generation.

5.​ The visitation sentinel launches a configurable # of worker state machines.
6.​ Each worker …

6.1.​ … performs a distinct prefix query for a range of bundles in the bucket and
invokes the index_bundle function for each resulting bundle

6.2.​ When reindexing, the index_bundle function performs largely the same steps as
during normal indexing (7.4) with the following differences:

■​ Notifications are not sent out but deferred until the end of reindexing. This
is done to avoid sending notifications for bundles in the new generation
while the old generation is still being used by searches.

■​ The generations index is not examined. Instead the target generation is
passed in from the sentinel, through the worker.

7.​ Meanwhile,
7.1.​ a new bundle is submitted concurrently
7.2.​ The replica’s storage bucket event triggers the index lambda, invoking the index

function
7.3.​ The index function examines the generations index and determines the

appropriate document index to add the document to.
7.4.​ It creates the index if necessary, composes the document representing the

bundle and places the document into the index.
8.​ Concurrent searches are performed against the old generation.
9.​ Once the visitation sentinel determines that all workers are done processing their

partitions of bundles from the replica’s storage bucket, it invokes the maintenance
completion function. The new index generation is now consistent with the bundles in
storage. The maintenance completion function …
9.1.​ … subtracts the set of bundle IDs in the old generation …
9.2.​ … from that in the new generation: X = new - old. Set X contains …

■​ bundles that are present in the bucket but missing in the old index
■​ bundles added concurrently during reindexing

In either case, every bundle in that set should be considered for notifications
because the system either missed considering the bundle for notifications or
deferred doing so for concurrent submissions during reindexing.

9.3.​ The maintenance completion function prepares the new generation of indices for
subscription notifications by populating them with percolate queries from the
subscriptions index . 3

9.4.​ It switches the alias to the new generation, …
9.5.​ … notifies matching subscriptions about the bundles in set X, …
9.6.​ … and drops the old generation of indices and finally
9.7.​ … increments the operation_id in the generations index, effectively opening

the gate for subsequent maintenance operations.

3 Doing this at the end and against a fully populated index avoid known issues with early registration of
percolate queries on an empty index that uses dynamic mappings.

Verify and repair operations
REPAIR and VERIFY mode follow a similar sequence as REINDEX.

​
The differences to REINDEX mode are as follows:

●​ Step 2 does not generate a new generation identifier but reads the current generation’s
identifier from the generations index instead.

●​ When verifying or repairing a bundle, the indexer
○​ reads the current version of the corresponding document from the index and

compares it with a newly composed one (6.1). If they are different or if the
document is missing from the index, it will log the differences.

○​ Additionally, REPAIR mode
■​ overwrites the current document with the newly composed one (6.2)
■​ and notifies any matching subscriptions (6.3).

●​ Step 7 (concurrent submissions) does not defer notifications but sends them out
immediately (7.5).

●​ The maintenance completion function skips all 9.x steps except step 9.7 which
increments the operation_id.

Failure Handling
A failure of the index function should not be treated as catastrophic. In the initial implementation,
a worker should retry the index function a fixed number of times for any given bundle. Later
revisions could distinguish between fatal and retryable exceptions as well as let users specify a
threshold for the number of bundles that are allowed to fail being reindexed before the repair or
reindexing operation is automatically cancelled.

Cancelling operations
A maintenance operation can be cancelled administratively by invoking the DELETE
/index/maintenance API. The corresponding DSS lambda invokes the AWS StopExecution
API action to forcibly terminate any current executions of sentinel and worker state machines. It
then waits long enough to be sure that all running step functions have returned and calls a
function in the indexer code to remove left-overs like the new generation that was being
populated by REINDEX mode.

Cancelling a REPAIR operation may, of course, leave a number bundles inconsistent or missing.
but it will never increase that number.

There also is a caveat in cancelling a REINDEX operation: since it indexes concurrent
submissions into the new generation and cancelling a REINDEX operation involves simply
dropping that generation, concurrent submissions will be lost until a REINDEX is restarted. The
lost submissions will eventually be indexed and,once the REINDEX completes, considered for
notifications like any other missed notification. This could be avoided by adding concurrent
submissions that occur during a REINDEX operation into both the old and the new generation but
the main use case for reindexing is that the old generation cannot be populated by newly
deployed code.

Interactions with multi-schema support
Multi-schema support maintains multiple document indices per replica and stage. We refer That
set of indices Things to watch out for

●​ ES cannot write to an alias that references multiple indices.

Logging
During REPAIR and VERIFY, the bundle ID of every inconsistent bundle is logged at level WARN.
The corresponding old and new documents will be logged at DEBUG. Workers should periodically
log their progress, along with their unique identifier and the overall operation ID, such that log
filtering and aggregation can be used to determine the overall progress manually.

For implementing get_index_maintenance(operation_id), log filtering is not an option. The
workers should persist their progress in a special ES index. Inconsistent bundles should also be
persisted to that index, including the verbatim copies of the differing documents.

Internal functions

create_index_maintenance(…) → operation_id
New. Implements steps 1 and 2. See create_index_maintenance(…).

IndexMaintenanceVisitation.initialize(…)
New. Implements steps 3, 5 and 9.

prepare_index_maintenance(replica) → generation_id
New. Implements step 4.

index_bundle(mode, replica, bundle_id[, generation_id]) → generation_id
Extracted from process_new_indexable_object(…). Implements steps 6.{2,3} and 7.{3,4,5}.

○​ Eliminate bucket_name argument by inferring it from replica and Config.
○​ The mode argument is an enum of INDEX, VERIFY, REPAIR or REINDEX.
○​ The generation_id argument is disallowed for INDEX and required for the other

modes.
○​ Invoked by the batch worker for VERIFY, REPAIR and REINDEX operations

complete_index_maintenance(replica)
New. Implements steps 9.*.

get_index_maintenance(operation_id)

New. See get_index_maintenance(operation_id: str)

delete_index_maintenance(operation_id)

New. See delete_index_maintenance(operation_id: str)

index_maintenance_cancelled()

New. Invoked by the sentinel after the workers are shut down. Notifies the index maintenance
code that a maintenance operation has been cancelled. Makes sure that the cancelled
operation leaves nothing behind.

Appendix

Alternative ways to handle concurrent notifications
This section is informational only.

Alternative 1: Allow concurrent notifications

●​ Pro: timely notifications
●​ Con: it would require pre-populating the mapping but that also has advantages

Currently an Elasticsearch index is created lazily when the first document is to be added to that
index. Similarly, the mapping, i.e. the Elasticsearch schema governing the index is inferred from
documents added to the index over time. The inferred mapping does not allow for field type
changes, field deletions or renamed fields. That’s why we need one index per metadata schema
set version (different spec). To immediately notify about concurrent submissions that are only
indexed into the new generation—because the old generation does not accept them, a
possibility in the System Update use case—the new generation will need to support subscription
notifications from the beginning. Notifications make use of percolate queries which in turn
require the presence of an accurate mapping. Consequently, the indices in a new generation will
need to be pre-populated with a mapping as well as the set of percolate queries for all currently
registered subscriptions. This also means that all indices in the new generation would have to
be prepopulated.

Deriving the Elasticsearch mapping from the bundle metadata schema is straight-forward
because index documents are a simple combination of the metadata entities in a bundle.

Pre-populating mappings also has advantages:

●​ Mapping inferral can make the wrong type choice depending on the order in
which documents are submitted. Prepopulating a mapping derived from the
metadata schemas avoids this.

●​ Percolate queries can be registered right away and are type checked against a
complete mapping. The inferred mapping may be immature and allow for queries
that a complete mapping would reject.

●​ It’s generally desirable to have a second line of defense against metadata errors.
A pre-populated mapping that’s derived from the metadata schemas could serve
as that.

●​ OTOH: Templates can be used to steer the mapping inferral in the right direction

Alternative 2: Defer submissions

Concurrent submissions could be held in a queue until reindexing finishes. From an external
user’s point of view this behaves similarly to deferred notifications. This queue would have to be
in place in all use cases. In contrast, the system as currently specified here only defers
notifications if the old generation can not accept concurrent submissions.

Implementation plan
1.​ ✅ #610: This document
2.​ REPAIR and VERIFY

○​ ✅ Multi-schema support (pre-requisite, in progress, Trent, Michael)
■​ ✅ #594: Document-related changes
■​ ✅ #598: Subscription-related changes

○​ ✅ #614: Batch visitation system (already in progress, Brian)
○​ #670: Remaining integration work (Hannes)

■​ create_index_mainteneance()

■​ prepare_index_maintenance()

■​ index_bundle()

■​ complete_index_maintenance()

■​ unit tests
3.​ REINDEX without deferring notification for concurrent submissions

○​ Add “generations” index and have indexer read it
○​ Switch new generation live by changing alias at the end of REINDEX

4.​ Send missed and deferred notifications
○​ Add conditional to defer notification
○​ At end of REINDEX, send deferred and missed notifications

5.​ get_index_maintenance()

6.​ delete_index_maintenance()

Future extensions
●​ Handle concurrent deletes once the Admin Deletion feature is spec'ed. It may be

inacceptable to delay admin deletes for several hours.
●​ Handle concurrent notifications, possibly at the expense of sending a minimal amount of

duplicate notifications. Concurrent notifications could be sent out with a flag indicating
their preliminary status.

●​ Gather consistency stats in special ES index
●​ Handle ghost bundles

○​ Ghosts are documents for which there is no corresponding bundle in storage.

○​ A REINDEX operation inherently fixes ghosts: when the old generation is dropped,
potential ghosts will disappear along with it. If the user wants a report on ghost

https://github.com/HumanCellAtlas/data-store/issues/610
https://github.com/HumanCellAtlas/data-store/issues/594
https://github.com/HumanCellAtlas/data-store/issues/598
https://github.com/HumanCellAtlas/data-store/issues/614
https://github.com/HumanCellAtlas/data-store/issues/670

bundles, step 10 can subtract the set of bundle identifiers of the old generation
from that of the new generation and report the differences.

○​ For REPAIR, ghost removal should be optional. I see two possible avenues: mark
and sweep, which requires updating a timestamp in every document, or iterating
over the index and checking for the existence of the corresponding bundle in
storage. The former wouldn’t work for VERIFY since it shouldn’t modify the index
in any way. The latter would work for VERIFY but it would be harder to implement,
and would have to be done in a distributed way. A rough outline would be to have
every maintenance worker query the ES index for document IDs starting with the
bundle ID prefix assigned to that worker and perform the set difference between
bundle IDs in storage and document IDs in ES. Paging further complicates this,
for example when a ghost ID falls between two pages.

	RFC: HCA Data Store Reindexing - DEVELOP
	Use Cases
	Verify
	Repair
	Reindex
	Stand-up new replicas
	Non-use case: Handle diverse metadata schemata

	Requirements
	Concurrent submissions
	Concurrent deletions
	Concurrent searches
	Concurrent notifications
	Concurrent subscriptions
	Missed notifications

	Design Decisions
	Introduce index generations
	Use Elasticsearch aliases
	Disallowing more than one maintenance operation at a time
	Handling concurrent submissions and notifications
	Disabling concurrent deletions during repair and index
	Using AWS Step Functions for batch processing

	Admin API signatures
	create_index_maintenance(…)
	get_index_maintenance(operation_id: str)
	delete_index_maintenance(operation_id: str)

	
	
	Architecture
	Reindexing operation
	
	Verify and repair operations

	Failure Handling
	Cancelling operations
	Interactions with multi-schema support
	Logging
	Internal functions
	create_index_maintenance(…) → operation_id
	IndexMaintenanceVisitation.initialize(…)
	prepare_index_maintenance(replica) → generation_id
	index_bundle(mode, replica, bundle_id[, generation_id]) → generation_id
	complete_index_maintenance(replica)
	get_index_maintenance(operation_id)
	delete_index_maintenance(operation_id)
	index_maintenance_cancelled()

	Appendix
	Alternative ways to handle concurrent notifications
	Alternative 1: Allow concurrent notifications
	Alternative 2: Defer submissions

	Implementation plan
	Future extensions
	

