
DAC21 Notebook/logbook

Notebook purpose: same spirit as the FDR “live” document, basis for
the EC project report. The document is shared among the whole WP2,
task and activity leads, sites, experiments, experts. Everyone is
invited and strongly encouraged to contribute.

Table of contents (and direct links)

DAC21 high-level goals:

Experiments plan/goals/metrics

DAC21 Activities Logbook
FAIR

mCBM Ingestion (Marek on “ingestion” and Pierre/Eoin on “replay”)
R3B Ingestion (Maisam M. Dadkan)
CBM Simulation (Eoin + Paul)
PANDA Reconstruction (Ralf)
mCBM Reconstruction (Eoin)
R3B Data Analysis (Maisam M. Dadkan)

KM3NeT
CTA

Use case 1 (Agustin B)
2021-11-23 - Test 1:
2021-11-24 - Test 2:
2021-11-24 - Test 3:
2021-11-25 - Test 5
2021-11-26 - Tests 2 and 6

Use Case 4 (Gareth)
Update 1.12.2021:
Update 3.12.2021:

CTA Summary
SKAO

Log book
Test summaries

SKAO_DLaaS (22-11-21)
Subscription test (22-11-21)
End to end data lifecycle test - IDIA (23-11-21)
End to end data lifecycle test - AARNET (24-11-21)
Long haul transfer tests (25-11-21 to 26-11-21)

MAGIC
LOFAR
LSST

Infrastructure “bootnotes”

1

Robustness
Performance
Concluding remarks

ATLAS
22/11/21
23/11/21
24/11/21
25/11/21
24/11/21

CMS
EGO/VIRGO
CENTRAL SERVICES
PIC/IFAE
LAPP
IN2P3-CC
GSI
CERN
DESY
SURF/SARA
RUG
The report of contribution of University of Groningen to DAC21 is discussed under the
FAIR section since our use case, R3B, is part of the FAIR-GSI facility.
INFN
ASTRON

DAC21 high-level goals:
●​ Run production Data Management, Processing and Analysis workloads

○​ Data Management: acquisition, injection, replication, lifecycles
○​ Data Processing: Production (= experiment “data preparation”). Use cases: reprocessing,

reconstruction, calibration, etc. requiring input and output from/to the Data Lake. This includes
demonstrating ability to group scientifically related observations using datasets and containers
(hierarchical if necessary) and utilize them in pracitce.. Activity requiring potentially “large”
resources and scale up ability: computing farms, cloud provisioning, HPC, etc. Collaboration
with WP3 for software repos, image registry, etc. Possible leverage with EOSC-ACE for
punctual and at-scale compute resources.

2

○​ Data processing: User Analysis. Use cases: put the “prepared” data at the disposal of
scientists (users), teaching purposes, citizen science (WP6), etc. Activity targeting, “small”
resources: analysis platforms, online notebooks, personal computers, laptops, etc. Driven
together with WP5: ESAP and Data Lake integration.

○​ Demonstrate Data Lake orchestration layer sustainability after ESCAPE (towards
EOSC)

■​ Leverage, integrate and use experiment and site’s dedicated installations,
e.g. RUCIO and FTS.

○​ Demonstrate integration and interplay of these several instances in a common Data
Lake/storage infrastructure.

●​ End-to-End AAI proven for all sciences and workflows exercised at the DAC21.
○​ Assessment ranging from experiments experts, to advanced users to newcomers and to

sporadic web-based access (i.e. citizen science => evaluate possibility for WP6 collaboration
on “people’s science” project).

○​ Token-based Authentication. Is it realistic as a target to have at least one workflow running
100% on tokens?

○​ Ability to “flag” and address use cases for embargoed data, e.g. CTA and CMS

3

Experiments plan/goals/metrics

Experiment
and point of
contact

Test name Description
and the running
method (cron,
script,...)

Method (cron script,
interactive)
Cron Offset

Anticipated timeline
Success metric

Estimated #Files, data
volume

QoS
requirem
ents

replicas / RSEs

Data
access/
analysis
plans?

Completed?
Link to summary
of each test

FAIR
Marek Szuba

mCBM
ingestion

Registration of data
acquired by the
mCBM detector on
FAIR-ROOT

Python script, run as an
inotify-driven persistent
service a cron job +
interactively

Raw mCBM data is
successfully registered in
the data lake.

TBC. Note that this will be
zero-copy ingestion, i.e.
storage will effectively
expand as new files are
added

N FAIR-ROOT N Completed
successfully

FAIR
Marek Szuba,
Maisam
Dadkan

R3B
ingestion

Ingestion and
replication of
simulated R3B data

Combination of shell and
Python scripts, run
interactively or by cron

●​ Data is
successfully
registered​

●​ Data is
successfully
replicated​

●​ The associated
metadata is
assigned​

●​ Data can be
discovered using
the configured
ESCAPE-Rucio
client

Main: ~300 files x ~5 GB
Aux: ~300 files of negligible
size
runs: 1
output replicas: 2
Total: 4 TB

Y FAIR-ROOT + 1x
QOS=SAFE

Y Completed
successfully

FAIR
Marek Szuba,
Ralf Kliemt

PANDA
ingestion

Ingestion and
replication of
simulated and
digitised raw PANDA
fallback data

Shell script ƒ

Fallback input data: 500 GB x
1 replica

Y FAIR-ROOT,
QOS=SAFE,
QOS=FAST

Y Completed, but
many files stuck in
REPLICATING
state

FAIR
Marek Szuba,
Ralf Kliemt

PANDA
simulation

Particle-transport
and digitisation of
Monte-Carlo events.
Live ingestion of

Batch jobs Data successfully
processed and sent to the
data lake

Output size: 1150 TB per run
runs: 1
output replicas: 3
Total: 3.95 TB

Y FAIR-ROOT,
QOS=SAFE,
QOS=FAST

Y Completed, but
many files stuck in
REPLICATING
state

4

simulated data.

FAIR
Marek Szuba,
Eoin Clerkin

CBM
simulation

Particle-transport
and digitisation of
Monte-Carlo events

Cron or batch jobs Success may be
determined via the
successful retrieval and
upload of material. Suggest
hashes of datasets are
stored locally at each step
and compared to determine
success.

Fallback input data: 1 run - ~
3 MB x 1 replica
Output size: ~5 GB/run
runs: 84
Lifetime of output data: 48h
output replicas: 1
Total: 122 GB peak

N FAIR-ROOT N

Completed
Successfully

FAIR
Marek Szuba,
Ralf Kliemt

PANDA
reconstructi
on

Retrieval of stored
RAW data from the
data-lake,
processing of the
data and storing the
processed data back
to the data lake

Batch jobs Data successfully retrieved,
processed and returned to
the data lake

Fallback input data: 500 GB x
1 replica
Output size: 30 MB per run
runs: 84
output replicas: 2
Total: 505 GB

Y FAIR-ROOT,
QOS=OPPORTUNIS
TIC

N Small Test
completed
successfully, full run
failed due to files
stuck in
REPLICATING
state.

FAIR
Marek Szuba,
Eoin Clerkin

mCBM
reconstructi
on

Retrieve raw mCBM
data from the data
lake, run
reconstruction on it
and store the results

Cron or batch jobs
Success determined by the
successful completion of
event reconstruction as well
as the successful
upload/retrieval from data
lake

Fallback input data: 10 files x
10 GB x 1 replica
Output size: ~1 GB/run
runs: 84
Lifetime of output data: 48h
output replicas: 1
Total: 125 GB peak

N FAIR-ROOT N Completed
Successfully

FAIR
Marek Szuba,
Maisam
Dadkan

R3B data
analysis

Analyse simulated
R3B data stored in
the data lake, upload
resulting histograms
and bitmaps to the
DL

JupyterHub (kernels:
Python, possibly C++)

●​ Successful
authn/authz for
user

●​ Gain access to
the data lake and
perform the
analysis

●​ Write results back
to the data lake

Failsafe input data: 1 run -
100 GB x 2 replicas (max.)
Analysis output: ~10 GB per
run
runs: 30
output replicas: 2
Total: 201 GB

Y FAIR-ROOT,
QOS=CHEAP-ANALY
SIS, QOS=FAST,
QOS=SAFE

N Was not able to
download files from
DL using OIDC.
completed
successfully using
x509.

KM3NeT
Mieke
Bouwhuis

KM3NET00
1

Ingestion of raw data
from the shore
station (remote RSE)
and replication

cron
shell
python

-​ Raw data are successfully
registered and replicated
in data lake

-​ Daily procedure

-​ 4 files/day; ~3 GB/file;
5days = 60 GB

-​ 2 replicas of the ingest
data= 120 GB

Y SAFE & FAST(x2)
SARA-DCACHE-TAP
E
IN2P3-CC-DCACHE

Y Completed
Summaryedh

5

Total: 180 GB

SARA-DCACHE

KM3NeT
Mieke
Bouwhuis

KM3NET00
2

Download raw data
from data lake,
calibrate, and ingest
into the data lake

shell
python
C++

-​ Raw data findable in data
lake

-​ Calibrated data
successfully registered in
data lake

-​ Daily procedure

-​ Input are the data from
KM3NET001

-​ 20 files x 3 GB = 60 GB

Total: 60 GB

Y FAST,
SARA-DCACHE

N Completed
Summary

KM3NeT
Mieke
Bouwhuis
V. Pestel

KM3NET00
3

Conversion of
calibrated and
reconstructed data to
a format for high
level analysis

DLaaS
Jupyter

-​ Data findable and data
conversion using DLaaS
interface

-​ Data ingest and
replication via DLaaS

-​ Executed only once per
large data set

-​ 56 files, corresponding to
65 GB (already on
CHEAP-ANALYSIS)

-​ 1 file of ~3GB to be
uploaded

Total: 70 GB

Y FAST,
CHEAP-ANALYSIS
IN2P3-CC-DCACHE
SARA-DCACHE

Y/N Completed
Summary

CTA
Agustin
Bruzzese
Jordi Delgado

CTA001 Long-haul transfer
and replication

●​ Python
●​ Cron

a.Data is successfully
transferred, replicated, and
file deleted on the origin
RSE.
b.Data transfer was
monitored.
c.Data can be discovered
using the ESCAPE or
CTA-RUCIO instance

Dependent on the test. Upto
50TB with ~2GB per file

N CTA-RUCIO @PIC:
non-deterministic (La
Palma) and
deterministic (PIC)
RSEs

N Completed

CTA
Frederic
Gillardo

CTA002 Data reprocessing a. Use of RUCIO and
DIRAC integration
b. The data (DL1) are
findable in the datalake
(CTA instance) and are
updated to a new version

100 TB, ~2 GB /file Y​
HOT &
COLD

CTA-RUCIO @PIC Y/N Postponed until
December

CTA​
Gareth
Hughes

CTA004 Data analysis Jupyterhub/mybinder via
ESAP

Higher-level analysis
products produced

Small MB level N Y Done.​
With caveats.​
Summary

SKAO​
James
Collinson,​
Rob Barnsley,​
Rohini Joshi,
Alex Clarke

SKAO_sub
scriptions

Data replication Python (cron,
rucio-analysis)

Data in correct place in
timely manner.

TBD N TBD N Done,
Success.
Summary

6

SKAO​
James
Collinson,​
Rob Barnsley,​
Rohini Joshi,
Alex Clarke

SKAO_long
haul

Long haul data
replication

Python (cron,
rucio-analysis)

Data in correct place in
timely manner.

100s of Gb / 3hr SKAO Rucio
(AUS/SA to UK
RSEs)

N Done.
Success.
Summary

SKAO​
James
Collinson,​
Rob Barnsley,​
Rohini Joshi,
Alex Clarke

SKAO_end
_to_end

End-to-end proof of
concept data
lifecycle test

Python (cron,
rucio-analysis)

Data passes through / ends
up in requested storage
sites

10s of Gb Y SKAO Rucio
(AUS/SA to northern
hemisphere sites)

N Done. Success.
Summary

SKAO​
James
Collinson,​
Rob Barnsley,​
Rohini Joshi,
Alex Clarke

SKAO_DLa
aS

Data analysis DLaaS (Jupyterhub) Successfully running
SKAO’s science data
challenge (1) pipeline using
data stored in datalake.

10s of GB. ​
​
Need custom jhub notebook
+ ~90Gb of memory
allocation (or as much as
poss)

N EULAKE Y Done. Success.
Summary

EGO/VIRGO
E. Cuoco,B.
Patricelli, R.
Poulton, A.
Petrocelli, E.
Marzini, A.
Staniscia, S.
Vallero, F.
Morawski, A.
Iess

EGO_Repo Storage Endpoint/
Data repository/data
analysis

Wavefier on Cloud system Data Visible/Available
through the ESCAPE Data
Lake Data Management
system

~ 2 Gb N CNAF Y

CMS
Diego
CIangiottini,
Daniele Spiga

CMS_DAS
K

Multi varies Analysis
Facility PoC with
data access via:
DASK, Marconi, and
large cluster

Python Interactive, batch
job submission

Plot result replicated and
stored back to the lake

10s of GB Not
required,
but
possible
to be
tested

CNAF
DCache

Y Done.
Success

CMS
Diego
CIangiottini,
Daniele Spig

CMS_Cach
e

Content delivery Python Interactive, batch
job submission

Plot result replicated and
stored back to the lake
Performance comparison
with above

- - CNAF

Y Done.
Success

CMS
Diego

CMS_Emb
argo

Data lake embargo
data test in CNAF

Manual copy tests with
tokens

Correctly managing
CMS-only data

10s of GB

Not
required

CNAF
DCache

Y Done.
Success

7

CIangiottini,
Daniele Spig

and DESY

CMS
Diego
CIangiottini,
Daniele Spig

CMS_xcpro
tocol

XCache Protocol
Translation: xroot
internal vs http
external

Manual copy tests Correctly read files with a
protocol different from the
original

-

Not
required

- Y

LSST
Lionel
Schwarz,
Fabio
Hernandez

LSST_raw_
replication

Simulate replication
of one night’s worth
of raw image data
between 2 Rubin
data facilities,
perform the exercise
several times

Bash and Python scripts
(using Rucio API)
manually run

All the images are
consistently replicated to
the destination

Each iteration is composed of
15TB, 800k files, ideally
replicated in 12 hours or less

Not
required

EULAKE →
IN2P3_CC_LSST_DE
ST

N Done.
Success

ATLAS
Arturo
Sánchez

Data
multiplicatio
n and
replication.

Exercises (data
production,
replication and
documentation)
before and during
the DAC21. Include
the creation of
datasets for real-kind
final user analysis
examples using
current open-access
datasets

●​ Bash scripts
executed by the
user

●​ Jupyter
notebooks
scripting the
download and
multiplication of
samples

●​ ~200*10 = 2000
files uploaded in
the Datalake

●​ Two copies of
such files (rules)
into at least two
RSE’s

●​ 5-6 TB * RSE
availabilit
y.
* Replica
to go to
QoS=SA
FE
* Replica
to go to
QoS=CH
EAP-ANA
LYSIS

●​ LAPP/CNR
S RSEs

●​ NAPOLI /
INFN RSEs

YES

ATLAS
Arturo
Sánchez

Data
analysis in
multiple
forms. Final
user
analysis.

user analysis
pipeline tests on
experimental particle
physics using
augmented open
data
(http://opendata.atlas
.cern/software/)

●​ C++ compiled
code

●​ Jupyter
notebooks

●​ Testing and
validating the
reading access of
the samples via
de Jupyter rucio
extension

●​ Running multiple
analysis pipelines
that can last from
a few minutes to
a few hours
(<4hr).

●​ Outputs of ~100’s
MB

*
Transition
input from
SAFE to
CHEAP-A
NALYSIS
* Reading
from
CHEAP-A
NALYSIS,
write
output to
local RSE
*
Transition
output
from

●​ LAPP/CNR
S RSEs

●​ NAPOLI /
INFN RSEs

YES

8

FAST to
SAFE

MAGIC
Agustin
Bruzzesse
Jordi Delgado

MAGIC001:
Long haul
ingestion
and
replication

 ●​ Python
●​ Cron

●​ Data is
successfully
transferred,
replicated, and
file deleted on the
origin RSE.

●​ Data transfer was
monitored.

●​ Data can be
discovered using
the CTA-RUCIO
instance

TB N CTA-RUCIO:
non-deterministic and
deterministic RSEs

N Completed

MAGIC
Agustin
Bruzzesse
Jordi Delgado

MAGIC002:
Data
reprocessin
g

 ●​ Python
●​ Cron
●​ Jupyter

notebooks

●​ Replication of
DL3 file

●​ Validating the
reading access of
the samples via
de Jupyter rucio
extension

●​ Multiple analysis
using gammapy
library

Small GB level N deterministic RSEs Y Completed

LOFAR
Pandey, Yan
Grange

UseCase1
- Ingestion
and
replication

Ingestion of LOFAR
data from a remote
site
(non-deterministic
RSE) to the data
lake, transfer and
replication in off-site
RSEs and after
successful
replication the data
at origin can be
deleted.

Script for the initial transfer
Rucio python bindings for
registering the rule
definitions

Three days (one for the
upload, one to keep the
data on fast QoS, one to
check it is not on fast QoS
anymore).
Success metric is if
manually-uploaded data is
correctly registered and
managed.

Around 10 files (~2TB)

FAST,
SAFE

(this in
principle
would be
“disk” and
“tape” in a
non-QoS
world)

1 Non-deterministic
RSE
1 or 2 RSEs for the
next copies.

No (but
can be
convince
d :)).

Completed

LOFAR
Pandey, Yan
Grange

UseCase
2- Data
processing
(retrieval,
processing
and

The ability to process
data that is in the
data lake at an
external location.
And combine it with
other astronomical

Data upload, (lifecycle
rules), Data retrieval,
Processing, Archiving the
results. Will make use of
data relations (datasets,
containers) and show its

One full day. Can be in
parallel to number 1 since
this runs on different
hardware

Success metric is being

31 files, 140 GB + some data
from the VO that is an order
of magnitude less.

FAST,
SAFE

(same as
above,
but

1 RSE per QoS
level(?)

Yes.
Data
access
will be
from
datalake

Completed,
Successful

9

archiving) data to a
multiwavelength
image. Important to
note that we aim to
demonstrate
grouping related
observations and
resulting products
using concepts of
datasets and
containers. These
grouping relations is
then used in practice
to process data.

applicability in practice.

Also try to combine WP2,
WP4, WP5.
ESAP to locate data, both
in Rucio as the VO.
DLaaS with LOFAR
software and VO tooling.
Upload using DLaaS.

able to execute all the steps
seamlessly and at the end
having the resulting image
on the DL

basically
the
inverse
use case)

,
analysis/
procesin
g at
external
location.

LOFAR
Pandey, Yan
Grange

Legacy
archive,
public data
access
RSE
(Optional
-> Actually
it is very
well - a
POST
DAC21 use
case. We
included it
as this use
case is a
direct
application
of WP2 on
a actual
system)

Include a read-only
RSE to a location
outside the data
lake. Get data from
there into the DL.
AAI: this could be a
challenge. Will aim at
the ambition
“crossing virtual
organisation” data
but if keeping all in
the same VO works
that would already
be great.

Rucio command line (goal
of the test is mostly at
higher-level systems)

Half a day.
Success metric is being
able to import data from the
external RSE

Small ~10ish GB level None
(though
this could
be
implemen
ted by an
EXTERN
AL QoS
level)

1 external RSE.
Current LOFAR LTA
seems liek a good
candidate, but that
could be too hard and
then we create a
specific one

See
above

In progress
Post-DAC21
activity.)

LOFAR
Pandey, Yan
Grange

Ingest &
Replication
(extension)
(Post
DAC21)

Extending Use Case
1 by using larger files
and actually pushing
to tape

Same scripts as use
case1

Same as UC1 Around 1000 files (<1000)
~20-30TB

FAST,
SAFE

(this in
principle
would be
“disk” and
“tape” in a
non-QoS
world)

1 Non-deterministic
RSE
1 or 2 RSEs for the
next copies.

No (but
can be
convince
d :)).

In progress

10

LOFAR
Pandey, Yan
Grange

Data
processing
all on
DLaaS
(Post
DAC21)

Extending Use Case
2 by running all
processing in the
DLaaS, requiering a
specific LOFAR
software DLaaS.

DLaaS One full day.

Success metric is having an
image on the DL with only
using DLaaS for processing

32 files, 140 GB + some data
from the VO that is an order
of magnitude less.

FAST,
SAFE

(same as
above,
but
basically
the
inverse
use case)

1 RSE per QoS
level(?)

Yes.
Data
access
will be
from
datalake
,
analysis/
procesin
g at
external
location.

In progress

11

DAC21 Activities Logbook

FAIR

mCBM Ingestion (Marek on “ingestion” and Pierre/Eoin on
“replay”)

[Fig. 1] Above image shows the mCBM experimental setup. The beam pipe is visible transversing
the lower right quadrant and the target box on the right centre of the photo. Each of the six detectors
subsystems are over-labelled.

All times are approximate and in UTC

Replay Side

●​ 2021-12-23, 15:00 - preparatory scripts for replay start. Several issues
needed to be overcome whereby locked-in commands tried to specific
ssh-keys where disabled by IT administrators. Our original plan therefore
needed a work around and an alternative approach was pursued.

12

●​ The process was achieved by rsync’ing of the experimental data over
Infiniband at ~150-200 MB/s, with 10 parallel copy jobs run on the GSI
Green IT Cube cluster, leading to a 2 GB/s average rate. This rate was
chosen to mimic the approximate high rate of mCBM data taking.

●​ The job array started at 18:32, most of them (9/10) finished around 18:36.
One of the files had a much reduced writing speed of 800 kB/s due to an
unknown reason. Writing for the final delayed file closed at 19:56.

●​ Infrastructure used:
○​ Source: two compute nodes of the miniFles cluster (experiment side

cluster of the mCBM), with each 5 HDD (4 TB) holding the original
data files of the “mCBM 2021” beam campaign. The files were
written in parallel so at least one file from each HDD is needed to
reconstruct a segment of any mCBM run.

○​ mFLES to Virgo (GSI batch cluster hosted in the GreenCube
building) Infiniband backbone

○​ 10 Virgo “logical nodes” (SLURM jobs with non-default ressources
options), with 8 GB RAM each, each executing an rsync process to
one of the mFLES HDD for the first 10 files of a “typical” mCBM run.

Ingestion Side

●​ 2021-11-19 - informed of last-minute decision of CBM Collaboration to
postpone mCBM cosmic-ray data taking till early December. During the
DAC we will instead replay acquisition of data taken by mCBM in July; from
the data-lake point of view this will functionally the same as if we had data
coming directly from the detector

●​ 2021-12-23, 15:30 - initial setup

●​ 2021-12-23, 17:30 - status check shows no replicas or rules having been
registered with Rucio in spite of the first batch of files having already
appeared in the source directory. Problem tracked down to file-system
notifications not functioning as expected, began converting the script to
polling mode

●​ 2021-12-23, 18:00 - tests of converted script repeatedly fail on connections
to the CERN Rucio server being refused. Eventually discovered that recent
changes to GSI network which allowed direct access to FAIR-ROOT from
our compute cluster, now require rucio-clients traffic from FAIR-ROOT to
the Rucio server to go through a local HTTPS proxy

●​ 2021-12-23, 18:30 - refactored script launched successfully, with forced
delay of 60 seconds between files to avoid pile-up. Replicas begin to be
added to the data lake

13

●​ 2021-12-24, 13:00 - status check shows 92 replicas registered successfully
but owing to a typo, the script only ran once instead of periodically. Ran the
script again to register the remaining 8 files

●​ 2021-12-24, 13:15 - final status check shows all 100 replicas registered
successfully. Conducted a random sampling of associated DIDs, all files
accessible

SUMMARY

●​ Achieved asynchronous zero-copy injection of mCBM data into the data
lake

●​ Registering a replica and a corresponding replication rule took 30-60 s per
each 4-GB file (having subtracted the aforementioned forced delay), i.e.
comparable to the rate at which the data has been replayed

●​ Current bottleneck: calculation of Adler32 checksums (which obviously has
to be done at least once, although with a bit of care one can avoid
repeating the calculations for unchanged data) on the client side prior to
registration of new replicas. This would ideally use checksums calculated
by the underlying file system at the time of data being stored (if available
and possible to be extracted at file rather than inode level), however
Adler32 appears to be supported by rather few modern file systems and
may not be available even when supported (e.g. at GSI - Lustre does
support Adler32 but our cluster uses CRC-32C for performance reasons)

○​ Possible future development in Rucio: add support for more modern
checksum algorithms (e.g. xxhash as “fast” hash and
SHA256/BLAKE2B as “strong” hash), ideally featuring a transition
path from the current “Adler32+MD5” scheme

14

R3B Ingestion (Maisam M. Dadkan)

[Fig. 2] An illustration of the R3B setup. The NueLAND is the modular neutron detection system that
is used to detect outgoing neutrons from the reaction of the radioactive beam with the target.

Introduction:
The R3B setup is a multi-purpose experimental setup used to study nuclear
structure properties of short-lived isotopes through inverse kinematic reactions.
The heart of the R3B setup consists of a fixed target, where the secondary beam
from the Super-FRS is shot on. The general goal of the R3B experiment is to then
provide a kinematically complete reconstruction of all particles participating in the
reaction, so that the nuclear structure of the beam isotope can be studied. In
order to accomplish this, the fixed target is surrounded by many different detector
systems (see Fig. 2). Each type of the outgoing particles are detected by one of
these detectors. The neutrons produced at the target, which are generally also
very forward-boosted, are detected by NeuLAND (Neu Large-Area Neutron
Detector). NeuLAND is a Time-of-Flight spectrometer that is meant to detect fast
neutrons in the range 200 MeV-1000 MeV. The problem of finding the shower head
among all the scintillator signals in Neu-LAND is challenging. Especially in the
situation where multiple neutrons have to be detected in coincidence, solutions are
far from trivial because of two reasons: 1) it is not (always) known a priori how
many neutrons were detected and 2) showers from distinct neutrons tend to
overlap quite often.Two analysis approaches have been developed to analyze the
data of the NueLAND: 1) Technical Design Report (TDR) 2) Deep Neural Network
(DNN). The R3B setup is under construction and, therefore, these two methods
are applied to the Monte Carlo data from the specially designed simulation and
data analysis framework of this experiment (R3BRoot). The data analysis workflow
of R3B is almost the same for both simulation and the real data (see Fig. 3).

15

[Fig. 3] The analysis workflow of the NeuLAND detector.

Ingestion:

For DAC21, we used part of the available simulated data of 12 and 23
double-planes in three different energies of 200, 600, and 1000 MeV. The following
steps was made to upload the data to the data lake:

●​ A portion of data including monte carlo points and other pre-processed data
files (all in the .root format) after digitization step with a volume of 2.6 TB
were chosen to upload.

●​ As a test, the Rucio-JupyterLab docker image with X509 Auth/z was used
to upload a test dataset but it gave some unfamiliar warning. Therefore, we
switched to the official rucio client docker image and it worked fine.

●​ The ingestion was started on 17/11/2021 at 16:00 using Rucio python client
in a docker container. The first portion (~ 70 GB) was uploaded to the
FAIR-ROOT rse. Due to work on having the GSI firewall allow access to
FAIR-ROOT from the GSI batch farm having (temporarily) blocked external
access to that RSE, the remaining data were uploaded to the GSI-ROOT
and the EULAKE-1 rses.

●​ Due to the voms proxy expiration, the uploading failed two times. The
ingestion was successfully completed on 18/11/2021 at 18:30.

●​ In total 1850 root files were uploaded to the data lake. All the files have a 9
months lifetime and are attached to the r3b_neuland_dataset.

●​ Attaching files to the dataset while uploading using rucio upload client in
python did not work properly. The rules information of the files disappear
after attaching. Therefore, we did file to the dataset attachment using rucio
CLI after the files were uploaded.

●​ The data replication was started on 23/11/2021 at 5:00 using the QoS
CHEAP-ANALYSIS label and 1 replica with 14 days lifetime. All the files
were successfully replicated.

PANDA Ingestion (Ralf)
Panda simulations of background events at 15 GeV/c have been performed with
the default detector setup. A total of 12500 jobs of 1000 events each were
simulated, once in advance as fallback data and once in live mode. All data was
sent from inside a container running on the Virgo cluster at GSI.

Task partially completed (2021-11-24):

●​ A small set of test data was sent successfully to the DataLake

16

●​ Fallback data (37500 files, ~2.3 TB) was sent by 125 parallel batch jobs
from the Virgo Cluster

●​ Live data (37500 files, ~2.3 TB) was sent as the simulation jobs were ready
directly from the cluster nodes. Almost all jobs were running at the same
time, potentially leading to peaking requests to the DataLake

●​ A large number of files are stuck in “REPLICATING” state

CBM Simulation (Eoin + Paul)

The future CBM experiment at FAIR in its electron configuration with a MVD, STS,
RICH, TRD, TOF and PSD detectors was simulated. (See Fig. 2)

[Fig.4] Left shows the CBM simulation geometries for the future CBM experiment at FAIR. Consists
of a blue magnet yoke on the right, followed by the RICH detector, the TRD, the TOF and PSD
detector on the left. The beam enters from the right. The STS detector is contained inside the
magnet. Right shows hits after transport from the demo scripts used during the DAC21 challenge.

Task Completed during (Thu 2021-11-25) and (Fri 2021-11-26)

○​ Several docker images were prepared by Paul and Eoin.
CBMROOT, our simulation software developed at GSI/FAIR for the
simulation of the CBM experiments is built upon FairRoot which in
turn is built upon FairSoft software packages. Docker images for
each of these steps, starting from the most recent stable
docker-hub Debian release were produced. Finally a fourth docker
image containing the necessary python, gfal, rucio, java,
voms-client and xrootd was built on top.

○​ Task, therefore, could be completed using a MacBook connected to
a network external to GSI running the docker container.

○​ Initial Monte Carlo data was uploaded to the data lake and followed
by an extraction from the data lake. File consistency was verified via
md5sum before and after uploads.

17

○​ A second demo script (demo2.sh) simulates the transport of
particles through the CBM experiment in its electron setup. Three
data files are uploaded to the data lake containing parameters,
geometry and transport data.

○​ It was decided that the demo script would run as a cron job running
every 5 minutes which started on Thursday evening and continued
through to Friday midnight.

○​ A third script (demo3.sh) extracted some of this transport data and
generated digitalisation data which was run ad-hocly during the two
days.

○​ Demonstration was sporadically successful. It should be noted

however that interaction with the datalakes gave error messages
due to server side issues. Additionally, timeout of voms proxy was
also an issue.

PANDA Reconstruction (Ralf)
The goal was to have batch jobs read from the DataLake and upload the
processed data.

Task partially completed (2021-11-25 – 2021-11-26)

●​ A small set of test data was successfully processed and the results were
uploaded

●​ The large scale job was not successful due to unavailable data / fallback
data in REPLICATING state

●​ A solution could not be found within the remaining time.

mCBM Reconstruction (Eoin)
Goal of this task was to reconstruct recent mCBM (July 2021) data interacting with
the data lake. Task was completed inside a docker container run on a Gentoo linux

18

desktop machine on the internal GSI network.

[Fig. 5] Shows the simulation geometries of the July mCBM setup. The figure is comparable to the
photo shown in Fig.1

2021-11-22 It was noted that much of our demo environment developed for
this task suddenly became obsolete due to changes in the development
branch of CBMROOT which required updated versions of FairSoft and
FairRoot. To make matters worse, these were major rather than
incremental changes which required modification of the installation
process. Bleeding-edge cbmroot was needed as software tools for
reconstruction of July data was being developed actively. The necessary
CBMROOT software was not available to complete this task on this day.

2021-11-23 Development of new Docker Images built on latest stable
debian, building a fairsoft image, on which a fairoot image was built
followed by a cbmroot image. Finally an image with rucio, gfal libraries,
xrootd and all necessary additions to CBMROOT necessary to complete
this task was built on top of the cbmroot image.

2021-11-24 Although unpacking of mCBM had been working for a week
prior to DAC21, unpackers had made it into cbmroot the week before by
Pierre, several developments in the reconstruction data still had not been
submitted to the CBMROOT development branch. It is therefore difficult to
prepare for this DAC21 task ahead of time. On this day, our CBMROOT
software was still able to not reconstruct the 2021 data and we seriously
planned to switch to plan B which meant reconstructing 2020 data instead.

2021-11-25 Good news! Tracking Reconstruction Code merged to the
development branch of cbmroot by Valentina. These new CBMROOT
macros allow reconstruction of the real experiment 2021 data from the

19

SIS18 experiment shown in Fig.1. The simulation geometries shown in
Fig.3 is also used during the reconstruction process.

2021-11-26 13:00 New CbmRoot pulled and rebuilt within the running
Docker container. This was also done so as to not have to rerun the
docker image which was being used for the task.

2021-11-26 15:00-19:00 Several demonstration scripts tested and
completed our task although in an ad-hoc fashion. Decided a systematic
approach is warranted.

2021-11-26 18:47 Some raw mCBM data from run 1588 taken during July
2021 is uploaded to the data lake using a rucio-upload command. This
forms the basis for later reconstruction.

2021-11-26 20:05 Script (demo6.sh) pulls this mCBM data. If pull is
successful then continues, otherwise failure 1 is output to the log file. Next
the script reconstructs the data using standard mCBM reconstruction
macros merged into CBMROOT the day before. Upload reconstructed data
to data lake otherwise declare failure 2 to the log files. Only full completion
is considered a success.

2021-11-26 20:05 In order to get some success/failure statistics, this
demonstration was run one hundred with the script (demo6.sh) in a “for”
loop with a 60 second sleep between runs.

Statistics trial started at 21:04:50 and ended at 23:25:50. Of the 100 cases,
0 had ‘failure 1’, i.e. reading the raw mcbm data from the data lake using a
rucio-get command, 75 had ‘failure 2’, i.e writing the reconstructed mCBM
data the data lake using a rucio-upload command, and 25 were deemed
fully successful having no failures reported. The failure rates were high, as
one of the protocols failed on the clients side. The target RSE supported
both ‘root://’ and ‘davs://’ as protocols. When contacting the RSE via the
rucio upload command, the rucio client primarily chose ‘davs://’ as the
protocol.
The ‘davs://’ protocol was not supported in the client container due to a
minor error in the configured paths. gfal2, using its https plug-in, couldn't
resolve the libdavix dependencies correctly. It therefore reported that the
protocol is not supported.
The error message also contained "The requested service is not available
at the moment", which is misleading and lets a user believe that the service
is at fault.

mCBM Reconstruction (Eoin)
Goal of this task was to reconstruct recent mCBM (July 2021) data
interacting with the data lake. Task was completed inside a docker

20

container run on a Gentoo linux desktop machine on the internal GSI
network.￼

[Fig. 5] Shows the simulation geometries of the July mCBM setup. The
figure is comparable to the photo shown in Fig.1

2021-11-22 It was noted that much of our demo environment developed for
this task suddenly became obsolete due to changes in the development
branch of CBMROOT which required updated versions of FairSoft and
FairRoot. To make matters worse, these were major rather than
incremental changes which required modification of the installation
process. Bleeding-edge cbmroot was needed as software tools for
reconstruction of July data was being developed actively. The necessary
CBMROOT software was not available to complete this task on this day.

2021-11-23 Development of new Docker Images built on latest stable
debian, building a fairsoft image, on which a fairoot image was built
followed by a cbmroot image. Finally an image with rucio, gfal libraries,
xrootd and all necessary additions to CBMROOT necessary to complete
this task was built on top of the cbmroot image.

2021-11-24 Although unpacking of mCBM had been working for a week
prior to DAC21, unpackers had made it into cbmroot the week before by
Pierre, several developments in the reconstruction data still had not been
submitted to the CBMROOT development branch. It is therefore difficult to
prepare for this DAC21 task ahead of time. On this day, our CBMROOT
software was still able to not reconstruct the 2021 data and we seriously
planned to switch to plan B which meant reconstructing 2020 data instead.

2021-11-25 Good news! Tracking Reconstruction Code merged to the
development branch of cbmroot by Valentina. These new CBMROOT
macros allow reconstruction of the real experiment 2021 data from the
SIS18 experiment shown in Fig.1. The simulation geometries shown in
Fig.3 is also used during the reconstruction process.

2021-11-26 13:00 New CbmRoot pulled and rebuilt within the running
Docker container. This was also done so as to not have to rerun the
docker image which was being used for the task.

2021-11-26 15:00-19:00 Several demonstration scripts tested and
completed our task although in an ad-hoc fashion. Decided a systematic
approach is warranted.

21

2021-11-26 18:47 Some raw mCBM data from run 1588 taken during July
2021 is uploaded to the data lake using a rucio-upload command. This
forms the basis for later reconstruction.

2021-11-26 20:05 Script (demo6.sh) pulls this mCBM data. If pull is
successful then continues, otherwise failure 1 is output to the log file. Next
the script reconstructs the data using standard mCBM reconstruction
macros merged into CBMROOT the day before. Upload reconstructed data
to data lake otherwise declare failure 2 to the log files. Only full completion
is considered a success.

2021-11-26 20:05 In order to get some success/failure statistics, this
demonstration was run one hundred with the script (demo6.sh) in a “for”
loop with a 60 second sleep between runs.

Statistics trial started at 21:04:50 and ended at 23:25:50. Of the 100 cases,
0 had ‘failure 1’, i.e. reading the raw mcbm data from the data lake using a
rucio-get command, 75 had ‘failure 2’, i.e writing the reconstructed mCBM
data the data lake using a rucio-upload command, and 25 were deemed
fully successful having no failures reported. The failure rates were high, as
one of the protocols failed on the clients side. The target RSE supported
both ‘root://’ and ‘davs://’ as protocols. When contacting the RSE via the
rucio upload command, the rucio client primarily chose ‘davs://’ as the
protocol.

The ‘davs://’ protocol was not supported in the client container due to a
minor error in the configured paths. gfal2, using its https plug-in, couldn't
resolve the libdavix dependencies correctly. It therefore reported that the
protocol is not supported.

The error message also contained "The requested service is not available
at the moment", which is misleading and lets a user believe that the service
is at fault.

22

R3B Data Analysis (Maisam M. Dadkan)
For the analysis on the R3B data, a PyRoot code in the notebook format was
developed. The following steps were made to perform the analysis tasks:

●​ We aimed to use DLaaS for the data analysis using the ROOT
environment.

●​ Get the required files of the R3B (TetraNeutron_InvMass_23dp_600MeV)
for different Geant physics lists from the data lake using
rucio.download.client. The test was successful using x509 but it did not
work on the DLaaS using OIDC. Therefore, we used x509 in DLaaS to
download the data.

[Fig. 6] A screenshot of the analysis code of the R3B-NeuLAND in the DLaaS ROOT environment.

23

●​ The spectrum of invariant mass difference was reconstructed for three

different analysis methods for 23 double planes and 600 MeV energy (see
Fig. 7).

[Fig. 7] The result of the invariant mass difference resulted from three different analysis methods. It is
clear that the DNN method gives better efficiency compared to the TDR method.

KM3NeT
Use Case KM3NET001:
This exercise was done daily in the period 22-26 Nov. Every night at 04:20 a script
was started via a cron job in one of the KM3NeT shore stations, that would ingest
raw data files (corresponding to a full day of data taking) into the data lake.
Initially the procedure was not successful in ingesting and replicating the datafiles.
We figured that this could be due to the fact that the same data files were used
during DAC21 as the ones that were used during the MockDAC period, and erased
after the end of MockDAC. Maybe a SCOPE:NAME can’t be re-used.
Also the replication to QOS=FAST was not successful (STATE=STUCK) because
of issues with LAPP-WEBDAV. After changing the replication rules to replicate to
QOS=OPPORTUNISTIC, and by using unique data files, the tests were
successful.
Each night the data ingestion involved only 3-4 GB, and the exercise took about 10
minutes.
We have not found a way to make this daily procedure fully automatic, as we have
to renew the x509 certificate proxy in the shore station manually every day.

24

Use Case KM3NET002:
This exercise was done twice, at the end of the DAC21 week. In this exercise we
wanted to download data from the datalake that were ingested from the shore
station the night before (Use Case KM3NET001), then process them, and ingest
the processed data into the datalake. However, since Use Case KM3NET001 was
only successful towards the end of the week, this Use Case was performed only
twice.
The findability of the data in the datalake and the download were ok, the merging
of the KM3NeT software with the rucio data handling methods was ok, and the
ingestion of the processed data into the datalake were ok.
We noticed that the file permissions of the files differ depending on the RSE,
although the file upload was done in the same way for all files: all files were
replicated to QOS=OPPORTUNISTIC. After download from
“rse”:QOS=OPPORTUNISTIC we saw that the files that were retrieved from
LAPP-DCACHE and EULAKE-1 had executable permissions for user, group and
others, while the file that was retrieved from GSI-ROOT had no executable
permissions at all.

Use Case KM3NET003:
The Use Case KM3NET003 went well during the DAC21 week. The main activity
was to retrieve 54 ORCA data files from the datalake and convert them into
"open-data-format" (as this doesn't formally exist, I was creating a simplified
version of the data files).
The files, grouped in a dataset, were made available with the jupyter-hub RUCIO
integration (DLaaS). The generated files were later uploaded to RUCIO from the
notebook itself, using the RUCIO python module.
The "Minimal environment" server config was used, the rest of the environment
was installed with pip from a notebook.
From the technical point of view, I never succeeded in using username/password
authentication in the RUCIO integration, and I finally used the x509 proxy.
Also, I didn't find how (but haven't thoroughly looked into) I could do more than just
querying the file with the RUCIO integration (i.e. using the created variable pointing
to the files to automatically retrieve meta-data etc ...). Apart from these 2 minor
points, I find the system fairly easy to use.

CTA

Use case 1 (Agustin B)

2021-11-23 - Test 1:
-​ 15:27: We had to delay the tests because we did not have the

dataset provided by CTAO. At 15:25, we started. For the moment,
we can observe the automatic discovery of files to be replicated, we

25

add them to the rucio database, also metadata,then it is replicated
to the PIC. We don't see any problems at the moment.

-​ 16:44: In other words, 300 GB of LST data (DL0) has been
transferred from La Palma to the PIC. Even so, we observed an
inability to delete the files at the source.

-​ Error: The requested service is not available at the moment.
Details: An unknown exception occurred. Details:
globus_xio: Unable to connect to
datatransfer.ctan.cta-observatory.org:2811 globus_xio:
System error in connect: Connection timed out globus_xio: A
system call failed: Connection timed out

-​ Reason: This is an error whose solution is due to the fact
that the k8s cluster where the PIC's Rucio server is located,
is not able to reach the IP of CTA's IT container. This
requires modifying the range of IPs that can access the CTA
IP.

-​ Finished successfully Test 1

26

2021-11-24 - Test 2:
-​ 00:11: Suddenly, it seems that the CTA IT container at La Palma does not

accept my certificates.
-​ Error: WARNING Tue, 23 Nov 2021 23:31:45 +0100; Timeout stopped
-​ ERR Tue, 23 Nov 2021 23:31:45 +0100; Non recoverable error: [13]

TRANSFER globus_ftp_client: the server responded with an error 530
530-Login incorrect. : globus_gss_assist: Gridmap lookup failure: Could not
map /DC=org/DC=terena/DC=tcs/C=ES/L=Cerdanyola del Valles/O=Institut
de Fisica d. Altes Energies/CN=pic01-rucio-server.pic.es 530- 530 End.

-​ Link
-​ 9:12: The problem was that there was a deployment of an endpoint that

conflicted with the port of our gsiftp endpoint. The problem has been
resolved

- Test 2 2021-12-03
-​ Solved all problems with the xrootd and https protocol at CTA’s IT

container:
[bruzzese@mic01 ~]$ gfal-ls
root://datatransfer.ctan.cta-observatory.org:1094//fefs/test/data_tran
sfer/rucio_tmp/DL0/2021-11-25/obs115862643/moon/gamma_20de
g_180deg_run140___cta-prod5b-lapalma_desert-2158m-LaPalma-
moon.simtel.zst
root://datatransfer.ctan.cta-observatory.org:1094//fefs/test/data_tran
sfer/rucio_tmp/DL0/2021-11-25/obs115862643/moon/gamma_20de
g_180deg_run140___cta-prod5b-lapalma_desert-2158m-LaPalma-
moon.simtel.zst

[bruzzese@mic01 ~]$ gfal-ls
https://datatransfer.ctan.cta-observatory.org:8000//fefs/test/data_tra
nsfer/rucio_tmp/DL0/2021-11-25/obs115862643/moon/gamma_20d
eg_180deg_run140___cta-prod5b-lapalma_desert-2158m-LaPalma
-moon.simtel.zst
https://datatransfer.ctan.cta-observatory.org:8000//fefs/test/data_tra
nsfer/rucio_tmp/DL0/2021-11-25/obs115862643/moon/gamma_20d
eg_180deg_run140___cta-prod5b-lapalma_desert-2158m-LaPalma
-moon.simtel.zst

-​ We add the xrootd protocol of the CTAN IT controller to the CTA rucio
instance

[bruzzese@rucio03 ~]$ rucio-admin rse info CTAN-NON-DET-ROOT
Settings:
=========
 availability_delete: True
 availability_read: True
 availability_write: True
 credentials: None
 delete_protocol: 1

27

https://fts01.pic.es:8449/fts3/ftsmon/#/job/dd85a7f2-4ca9-11ec-9293-001a4aac0013
https://datatransfer.ctan.cta-observatory.org:8000//fefs/test/data_transfer/rucio_tmp/DL0/2021-11-25/obs115862643/moon/gamma_20deg_180deg_run140___cta-prod5b-lapalma_desert-2158m-LaPalma-moon.simtel.zst
https://datatransfer.ctan.cta-observatory.org:8000//fefs/test/data_transfer/rucio_tmp/DL0/2021-11-25/obs115862643/moon/gamma_20deg_180deg_run140___cta-prod5b-lapalma_desert-2158m-LaPalma-moon.simtel.zst
https://datatransfer.ctan.cta-observatory.org:8000//fefs/test/data_transfer/rucio_tmp/DL0/2021-11-25/obs115862643/moon/gamma_20deg_180deg_run140___cta-prod5b-lapalma_desert-2158m-LaPalma-moon.simtel.zst
https://datatransfer.ctan.cta-observatory.org:8000//fefs/test/data_transfer/rucio_tmp/DL0/2021-11-25/obs115862643/moon/gamma_20deg_180deg_run140___cta-prod5b-lapalma_desert-2158m-LaPalma-moon.simtel.zst

 deterministic: False
 domain: ['lan', 'wan']
 id: b8633c7649694803b78c26d41dd1799c
 lfn2pfn_algorithm: identity
 qos_class: None
 read_protocol: 1
 rse: CTAN-NON-DET-ROOT
 rse_type: DISK
 sign_url: None
 staging_area: False
 third_party_copy_protocol: 1
 verify_checksum: True
 volatile: False
 write_protocol: 1
Attributes:
===========
 CTAN-NON-DET-ROOT: True
 fts: https://fts01.pic.es:8446
Protocols:
==========
 root
​ domains: '{"lan": {"read": 1, "write": 1, "delete": 1}, "wan": {"read": 1, "write":
1, "delete": 1, "third_party_copy": 1}}'
​ extended_attributes: None
​ hostname: datatransfer.ctan.cta-observatory.org
​ impl: rucio.rse.protocols.gfal.Default
​ port: 1094
​ prefix: //fefs/test/data_transfer/rucio_tmp
​ scheme: root
Usage:
======
 rucio
​ files: 318
​ free: None
​ rse: CTAN-NON-DET-ROOT
​ rse_id: b8633c7649694803b78c26d41dd1799c
​ source: rucio
​ total: 1070697936007
​ updated_at: 2021-12-03 08:03:23
​ used: 1070697936007

-​ Then we begin the 300 GB transfer from CTAN IT container to PIC

28

-​ Finished successfully Test 2

- Extended Test 2 2021-12-05
-​ We have transferred 10 TB with the xrootd protocol from the IT container to

PIC in 24h

2021-11-24 - Test 3:
-​ Finished successfully Test 3

2021-11-25 - Problem with the IT at CTA when running Test 4:
​ Dear all,

we have a total outage of the cooling in the IT container.
Therefore, we are switching off all the machines now.

We will inform you once the IT center is up and running again.
It may take a while since Europe is sleeping now.

Sorry for the inconvenience!

Best regards,

29

 Daniela for the IT team
This message was circulated at 2am in the morning. The system was
restored in the next hours, but the Singularity GFTP image hosting the RSE
at the CTA site, was not running. We restarted the image in the morning at
9:30am. Then we resumed the transfers

2021-11-25 - Test 5
-​ Finished successfully Test 5

2021-11-26 - Tests 2 and 6
Test 2 worked in the test environment (internal images and RSE at PIC) so
functionally speaking all RUCIO configurations are correct, and failed due to the
network configuration of the XROOTD at the CTA IT site. Still not sure what is the
reason, but looks like some network rule in the firewall is preventing the

30

connection. We will check again after DAC21.​

Anyhow, this test was an optional one, since the same test using GridFTP (Test 1)
worked well.​
​
Test 6 worked in the test environment (internal images and RSE at PIC) when
defining the replication policies of the datasets, so functionally speaking all RUCIO
configurations are correct. We couldn’t run the test on production environment
since we are experiencing problems to connect from PIC to CNAF due to an
update of Grid certificates in both sides, changes in the CA. CNAF support and
Adrea Cecantti updated the DN and certificate for the user in charge of connecting
to CNAF but didn’t work. Need to debug in more detail to understand the situation,
but looks like something related to Vomses configuration and IAM.

2021-11-26 - Test 4
Test 4 is running from 2021-11-25. It was interrupted due to the issue reported from
the CTAN IT Admins, then resumed the 26th in the morning. Since it is a quite big
dataset of 40TB, we don’t expect to finish in the time window of 1 day. We didn’t
expect that despite the issue reported in the morning. We expect that it will finish
on 27th?

The execution is running with a parallel execution of multiple data streams by FTS,
and we can observe 324MB/s over a connection of 1Gbps. With an expected and
dedicated connection of 10Gbps the scenario would change significantly.

Use Case 4 (Gareth)

Data:

4x 500kb DL3 level files. Which represents the output of CTA Use Case 2.
Data initially uploaded to CTA_LAPP_FERDERIC scope using Rucio docker
container.
> rucio upload --lifetime 1210000 --rse LAPP-DCACHE --scope
CTA_LAPP_FREDERIC <FILENAME>

Software:

gammapy (version 0.19)

gammapy is not yet fully onboarded into the OSSR. This was due to the fact that
the main gammapy dev in ESCAPE moved on. The gammapy group (external to
CTA and CTAO) then decided to wait for the next software release before finishing

31

the onboarding processes. Therefore the metadata or codemeta.json file does not
exist and cannot therefore be found by ESAPs interactive menu.

Therefore an example notebook was uploaded to the Astron gitlab which could
then be hardcoded into the ESAP, this simulated full onboarding:
https://git.astron.nl/astron-sdc/escape-wp5/workflows/cta-example/

When pointed to a mybinder the Docker file in this repository builds the jupyterlab
environment that includes gammapy

An example notebook was created:
https://git.astron.nl/astron-sdc/escape-wp5/workflows/cta-example/-/blob/master/sp
ectral_analysis-Copy1.ipynb

Execution:

mybinder:
The environment could be generated on mybinder, the JIVE mybinder but not on
the SKA mybinder instance. In the last instance the image was created but got
stuck at “pushing image”.

DLaaS:
It was not possible to install on-the-fly (pip install) as the gammapy software on a
DLaaS instance as gcc is required.

Accessing the Data:

From mybinder I was able to access the shopping basket and obtain the json block
stating where the data is stored. However it is not possible at this time to download
the file. One solution might be some form of download function to the REST API.
Or the CTA data should be made available in a way that can be parsed using the
pandas framework setup in the shopping basket.
For the mybinder example I proceeded by downloading the data from an
alternative source using functions in gammapy.

From DLaaS I was able to make the data available.

Results:

Higher level data products: Spectral Energy Distribution of the Crab Nebula in the
TeV regime.

32

https://git.astron.nl/astron-sdc/escape-wp5/workflows/cta-example/
https://git.astron.nl/astron-sdc/escape-wp5/workflows/cta-example/-/blob/master/spectral_analysis-Copy1.ipynb
https://git.astron.nl/astron-sdc/escape-wp5/workflows/cta-example/-/blob/master/spectral_analysis-Copy1.ipynb

Conclusion:
The main aim of the Use Case
“Higher-level analysis products
produced” was achieved.
However, data could not be
accessed from the ESAP
launched binderhubs. Two
possible solutions are: a Rucio
REST API download
method/function or CTA data
made available on a service

separate from the DL - update. If a gammapy container was available on DLaaS
this would not be an issue, however we would lose the ability to dynamically
change the analysis - update.

Update 1.12.2021:

Agustin and Alba added an image to DLaaS that enables the installation of
gammapy. After logging into DLaaS you now how the option of an image with gcc.
Once launched, open a terminal.

Open a terminal:
> conda install -c conda-forge gammapy
> conda install -c conda-forge iminuit

Exercise complete using DLaaS. See image below.

Update 3.12.2021:

Rizart asked about this on the Rucio Slack:​

“Hello, as far as I understand, neither the download or the upload functionality is
possible via using the REST interface, but one has to use directly the clients. Is
this intentional? Probably this was avoided as not to burden the server with many
download/upload streams? Thanks!

Martin Barisits:
Mostly correct. You do not strictly need to use the rucio clients to download, you
can use something else (E.g. get a metalink with the replicas via rucio server rest,
and then download the replicas yourself) - there is also the option of a redirector,
which http redirects you to the replicas.
but there is no way to stream things, via rest, from the rucio server directly”

33

This is an interesting thing to pursue.

CTA Summary

Use Case 1 Long-haul Transfer:

●​ Six tests defined 4-5 completed successfully (see table below).
●​ Amount of data transferred in <1day is comparable to the volume required

by CTA.
●​ The inclusion of Tape storage meets an important goal in the CTA bulk data

management plan.
●​ Technical difficulties in deletion at the source and replication in CNAF.
●​ More tests planned next year, including some new tests regarding file size

and priority data.

34

Use Case 2 Reprocessing:
●​ Delayed due to initial tech difficulties and scheduling.
●​ The number of methods available in DIRAC to manage the catalogue is

much larger than that of Rucio. It may be necessary to implement new
missing methods.

●​ Understanding the cache in dCache will also be important wrt to accessing
the data on Tape.

●​ Upgrade of Rucio from v1.23 to v.1.26 may solve some issues.
●​ Work planned to continue in January.

Use Case 4 Analysis:

●​ Analysis completed on both ESAP (via “OSSR” & Jupyterlab/mybinder) and
DLaaS

●​ ESAP shopping basket would need to be adapted to accommodate files of
this type, replicate to http download service or the workflow should change
towards IVAO TAP like services.

●​ DLaaS requires a preloaded container or container that can install software
on the fly.

Final thought:

●​ The results of UC1 are already very interesting from a CTAO construction
perspective.

●​ Several important requirements have been met. Several more are within
reach.

●​ We will continue next year with further tests, which will aid in the
construction project.

●​ Within striking reach of a telescope-to-user chain, using ESCAPE tech.

SKAO

Log book
22-11-21

35

-​ 11:00 Cron job kicked off subscription creation test and new data being
uploaded every hour. Subscription and relevant rule created as expected.

-​ 11:00 conveyor-submitter daemon had fallen over over the weekend.
Screenshot shows the dashboard that monitors daemon liveness in sec
(time from last log timestamp). Note large number for conveyor-submitter.

​
Deleted the pod to force recreation. Fts delegated credentials had expired,
ran manual job from the cronjob. It is catching up on old transfers from the
weekend now.

-​ 12:45 Still working on old transfers. Subscription transfers not done yet.
-​ 14:00 Still working on old transfers. Subscription transfers not done yet.
-​ Following the issue above, a lot of files were waiting to be submitted to FTS

by conveyor-submitter. Upped both the number of threads (1->4) and pods
(1->2) to help process the backlog.

-​
-​ Data being uploaded and registered as part of the dataset being subscribed

(transferred) from early in the day. Conveyor-submitter issues were
resolved, and submitter worked through its backlog to do these transfers by
around 1600. After this, the pending deletions were done in bulk (red). The
rest of the day the hourly transfers and deletions progressed as expected.

23-11-21
-​ Data lifecycle test on SKAO Rucio conducted from IDIA (South Africa) to

QOS=FAST (MANCHESTER).
-​ Issue with using gfal-ls. As part of upload/register tests, gfal-ls used to find

filelists created in upload section of test. Logic in test hadn’t accounted for
current directory (.) and parent directory (..) listing and was crashing out.
Fixed by skipping these.

36

-​ Some issues with the yaml, resolved by around 16:00
-​ Dashboard view of the day:​

24-11-21

-​ Data lifecycle test on SKAO Rucio conducted from AARNET (Australia) to
QOS=FAST (MANCHESTER).

-​ Issues with the extra slash needed for the root protocol. Fixed by
introducing scheme dependent logic to PFNs, i.e. if scheme == root, add
extra ‘/’.

-​ Existing filelists had to be manually
downloaded/searched/replaced/reuploaded to fix, done by 10:30.

-​ Dashboard view of the day:​

25-11-21
Long haul transfer tests ran successfully on the whole. Need to investigate the
cause of failed transfers which seem to be dominated by the 50 MB file size tests.

37

Test summaries

SKAO_DLaaS (22-11-21)
Demo can be viewed here.

We wished to evaluate the functionality enabled by the ESCAPE
data-lake-as-a-service (DLaaS) platform, which facilitates the staging of data in a
Jupyter notebook environment. We have developed an example SKAO workflow to
test interactive data analysis platforms by running a source finding and
classification routine on some synthetic SKAO images. This was the challenge set
to participants in the SKAO Science Data Challenge 1 (SDC1), and our solution
workflow has previously been containerised, and built on top of the
jupyter-singleuser notebook environment, allowing us to demonstrate this use case
on both JupyterHub and BinderHub previously.

However, data staging remains a challenge, and has previously involved
downloading the data into the interactive environment prior to processing. This is
where the DLaaS adds significant value, by delegating the data staging to the
ESCAPE Rucio instance. We thus modified our existing SDC1 solution workflow
environment to extend the datalake-singleuser image, allowing it to be deployed on
DLaaS.

From this point, we were able to launch our notebook servers with access to files
in the data lake and the software needed to generate insight from that data. The
RAM available to each notebook’s user pod was not sufficient to analyse the full
4GB images set for SDC1 (~100 GB RAM required), but for a proof of concept we
were able to use sample images, and demonstrate staging these in the notebook
environment using the Rucio tab in the JupyterLab user interface.

Once the environment was available for use our SKAO end-to-end test was as
follows:

1)​ Use the Rucio JupyterLab element to search for the
SKA_SKAO_TEAM:SDC1 data and select ‘make available’ to replicate this
to EULAKE-1 (previously stored at DESY-DCACHE).

38

https://drive.google.com/file/d/1nDDtbXipQeZBiDtN7GVp71NlfVqxYhga/view?usp=sharing
https://gitlab.cern.ch/escape-wp2/docker-images/-/tree/master/datalake-singleuser

2)​ Assign variables to the DIDs representing the sample images, the primary
beam images and the input (‘truth’) catalogues:​

3)​ Develop and run a notebook to perform image preprocessing (primary

beam correction and training area cut-out). This also creates symlinks to
the data files in the notebook home space, since the preprocessing stages
by default output the generated data products in the same directory as the
input images, which in the case of the attached RSE storage, is read-only.

4)​ Run a script which deploys the source finding software PyBDSF to identify
sources in the images, outputting these catalogues to disk.

5)​ Upload the source catalogues back into the SKA_SKAO_TEAM:SDC1
dataset (this in practice would mean further development could continue
from this point, without needing to run the expensive source finding step.
This had to be done using the Rucio CLI in a terminal, as the Rucio
JupyterLab interface did not work at this stage.

6)​ Train a random forest classifier on the training area sources and truth
catalogue, before using it to make predictions about the unseen sources in
the full sample image.

7)​ Upload notebooks and scripts into the SKA_SKAO_TEAM:SDC1 dataset to
facilitate reproduction.

The main functionality under test here - the Rucio-JupyterHub integration - worked
well in general. We have noted above that the user interface to upload from the
notebook was not working during the DAC21 week, but uploading via command
line (to CNAF-STORM) functioned correctly.

We positively noted the benefit of defining variables for the SingleItemDID objects
in notebooks; once the notebooks are shared between users in the DLaaS these
variables persist, which favours reproducibility.

We also note that there is currently no way to configure the length of time for which
a DID is replicated at EULAKE-1 from the DLaaS Rucio interface; by default this is
seven days, but in future it may be worth enabling the DLaaS user to configure
this, in the event that they need the data staged for longer than this.

39

Subscription test (22-11-21)
We wanted to test Rucio’s basic subscription functionality to show metadata-based
data movement. This highly parameterised method of data movement has several
use cases, including moving Observatory-level data products to the SRCs.
The rucio-analysis test creates a subscription by passing parameters including
name, lifetime, scope, and a set of metadata. It attaches this metadata to a dataset
and uploads files to the dataset which triggers data movement. As more data
products are uploaded into the ‘subscribed’ dataset, this new data is also
replicated for the duration of the subscription lifetime. Hourly cron jobs were used
to automatically upload and register data into the dataset at Lancaster from 12 am
and the one-time subscription creation ran at 9 am to replicate to Manchester. A
summary of the test can be seen below. [TODO replace dashboard screengrab,
check all times]

New data products were uploaded hourly and the subscription created
successfully. Shortly after, we discovered that the conveyor-submitter Rucio
daemon had crashed over the weekend. We restarted it at around 10:00, and it
began to work through the accumulated backlog of events. This daemon is
responsible for submitting transfers to FTS. To help it with the extra payload, we
bumped up the number of threads in the k8s pod running the daemon and also
deployed an additional conveyor-submitter pod. Having worked through the
backlog, the first batch of transfers corresponding to this test happened around
16:00. Once replications were complete, the pending deletions were done in bulk
(seen as a spike in red). For the rest of the day the hourly transfers and deletions
progressed as expected.
Thus, despite some minor hiccups the test ran largely successfully, and rucio
demonstrated the ability to recover from the daemon failure.

End to end data lifecycle test - IDIA (23-11-21)
An extension of the subscription test above, this test uploads data to an RSE in
South Africa (IDIA_ND) and replicates it via a QoS-based subscription to
Manchester. Again, the main use case is to emulate moving Observatory-level
data products to the SRCs. Data has a short lifetime at source to signify a valuable

40

storage space on the Observatory side where data will be staged to be moved off
into the network of SRCs as quickly as possible. The subscription was created via
a one-off cron job at 0900, and new data was being uploaded every four hours.
Although the data was being uploaded successfully, the rucio-analysis test hadn’t
accounted for current directory (.) and parent directory (..) listing and was crashing
on the last step of registering data as part of the ‘subscribed’ dataset. The way in
which files and directories are listed varies from site to site and depends on how
the storage admins have configured their storage. We identified and fixed this
issue as well as a small typo with the yaml file used to deploy the test. This
combined with the fact that new data was uploaded every 4 hours, the test
generated events at/after 16:00 to catch up with the accumulated data of the day.
The 20:00 run to upload and register data as well as the corresponding deletion
events to delete the short lived data at source occurred smoothly.

End to end data lifecycle test - AARNET (24-11-21)
Similar to the lifecycle test above, this test uploads data to an RSE in Australia
(AARNET_PER_ND) and replicates it via a QoS-based subscription to
Manchester. Again, the main use case is to emulate moving Observatory-level
data products to the SRCs. Data has a short lifetime at source to signify a valuable
storage space on the Observatory side where data will be staged to be moved off
into the network of SRCs as quickly as possible. The subscription was created via
a one-off cron job at 0900, and new data was being uploaded every four hours.
The AARNET_PER_ND RSE currently has only the root protocol configured.
During this test we ran into an unforeseen manifestation of a known issue which is
that the root protocol requires an extra slash when using it to define storage URLs
and/or physical file names (PFNs). The issue was identified and fixed in the
morning and the test ran smoothly for the rest of the day.

41

Nice to have: It would be useful to be able to set replication rule lifetimes based on
a timestamp instead of a lifetime in seconds. This would allow them to be absolute
lifetimes and not relative to the time of rule creation.

Long haul transfer tests (25-11-21 to 26-11-21)
Establishing reliable long haul connectivity from the telescope host countries to the
SRC network is going to be a crucial aspect of SRC functionality for SKAO. With
this set of tests, we aim to exercise the existing network links available to us by
pushing large amounts of data across these links continuously. By cycling through
3 file sizes (50 MB, 500 MB and 5 GB), we can get an idea of which file size is
more performant across these long haul links. This test bulk uploads data to long
haul RSEs (AARNET_PER and IDIA) and replicates them to Manchester, and
Lancaster. (TODO: add DESY if we can also add an explanation for why desy has
more failed transfers than the UK sites).
Hourly cron jobs run this bulk upload test and they cycle through the three file
sizes mentioned. In other words, the 50 MB version of the test runs every 3 hours
as does the 500 MB and 5 GB one, both with a unique offset. The number of files
is inversely proportional to the file size such that the total volume uploaded every
hour is 50 GB irrespective of individual file size.
TODO: Add overview dashboard​
TODO: Add filesize-throughput impact dash

On the whole, the test ran largely successfully.

Follow-up needed?

MAGIC
22/11/21 - Test1:

42

25/11/21 - Test2:

-​ Finished successfully Test 2

26/11/21 - Usecase 2:
For the magic usecase2, we could not get the files earlier, because the simulation
of these has to be done with specific values. So we received them today. We have
uploaded dl3 simulated files to datalake (on 26/11/21).

Specifically, the destination RSE has been PIC-DCACHE. The upload of the files
has been successful.

Once inside the jupyter (DlaaS), we were able to source the dataset containing the
dl3 files as expected.

43

The drawback that prevented us from completing this test is due to the lack of gcc
and was not possible to install with pip or by python setup install of the tar.gz. The
gammapy software on a DLaaS instance required gcc.

(magic) jovyan@jupyter-bruzzese:~/magic$ gcc --version
bash: gcc: command not found

30/11/21 - Alba V. solved the problem, now installing gammapy is possible.

44

https://files.pythonhosted.org/packages/40/e2/96f6c1ca0c92a39c4fd9f9fe7e5ca7e1bb8488d0b6b81e5b66f763fd3c6f/gammapy-0.19.tar.gz

1/12/21 -
During these past days, we wanted implement a use case associated with

GammaHub, an initiative that IFAE-PIC is developing in the context of WP5 and

that aims to offer interactive analysis tools using the Gammapy package and the

emerging standard in Gamma-ray astronomy, the DL3 format files.

These files were simulated following strict guidelines, otherwise the notebook

would not work.

As explained above, the method by which they were uploaded to the datalake was

by a simple upload of local files to a deterministic rse of the ESCAPE datalake.

Once done, they were logged into the https://escape-notebook.cern.ch application

via openid and the files were made accessible in EULAKE1.

45

-​ Finished successfully MAGIC usecase 2

46

LOFAR

Use Case 1: Ingestion and replication
 The goal of this use case is to simulate a realistic ingest work flow
comparable to what we now do in LOFAR for a single Long Term Archive. The goal
was to upload the data to a non-deterministic RSE, register it in Rucio and apply
relevant life cycle rules. The first rule is to move the data to a quickly-accessible
QOS level (in the current LOFAR design this would be dis​ k) and keep it there for
a set amount of time (e.g. a week) so that users could download the data that was
recently observed for them. The second rule is to also copy the data on a SAFE
QOS-level tier (in the current LOFAR design this would be tape). In a realistic
scenario the data will remain there indefinitely, but for DAC21 we applied a lifetime
that is longer than the disk life time (e.g. more than a week). In the ideal case this
use case should be fully executed using OIDC authentication, but we would accept
the access to the storage by X509 if this would have been the only blocker.
​

We started by using PIC-INJECT (several MB/s max; leading to transfers of
60GB-sized files of several hours) as the non-deterministic RSE in our workflow. It
was however quickly clear that the network connectivity was not adequate to
support the data sizes we were transferring.

The network connectivity to DESY was good, so in order to solve the
problem, a non-deterministic RSE at DESY (DESY-DCACHE-NDR) was set up
(Thanks to Paul). The use case was attempted there. We uploaded our files there.
The bandwidth to DESY was much higher making the files transferred in ~10
minutes. After fixing some minor AAI issues that made OIDC access impossible
we were able to execute the full use case successfully.
(datarate achieved ?, amount of data transferred? were the lifecylce rules placed?)
The code that we have generated to automate this use case can be found here:​
https://git.astron.nl/astron-sdc/escape-wp2/dac21-ingest

Conclusion
We have not been able to simulate the upload of a large data set but the proof of
concept that the use case is doable is definitely successful (shall we attempted in
near future). Also we have been able to execute this use case using only
OIDC-based AAI which was another aim.

47

Ideally a workflow would be adopted where the data is streamed through a tool
that computes the checksum, into the storage. We have experimented with the
tooling we use in LOFAR, combined with rclone. However we found some
behaviour of the AAI that sometimes just made the token invalid that made it very
hard to upload too many files. Also the rclone streaming seems to be buffering
significant data on disk, which on one hand seems to defy the purpose of
streaming at all, and on the other hand leads to issues on the node we used for
upload (due to lack of disk space). This disk-space problem will be partly mitigated
as we have now another node as a resource. Thus parallel transfers from two
nodes with additional diskspace can also be attempted. Although buffering of data
on the disk is not a preferred scenario in a streaming case.

However all in all, the main goals of this use case have been achieved. It would
still be nice to actually do a full-scale experiment to see if some of the issues we
found could be mitigated, but we consider that a post-DAC21 exercise.

●​ LTA figure?
●​ We have been monitoring system statistics all week so we should be able

to plot any performance number we mention here…

Use Case 2: Data upload, (lifecycle rules), Data retrieval, Processing, Archiving
the results. This includes demonstrating ability to group scientifically related
observations using datasets and containers (hierarchical if necessary) and utilize
them in pracitce.. For Astronomy use case this is quite an useful aspect. Apart from
its usefulness in practical day to day processing, this concept may have the potential to address
making required changes to a single observation only in the files where needed. (This aspect needs
to be thought and deliberated further in future).
This usecase also combines some aspects of ESCAPE work packages 2, 4 and 5.
(Step 9 onwards). This is by using ESAP, VO, DLaas notebook (including installing
relevant softwares).

In this we had a total of 32 Subbands (SB along frequency) of an Observed
Data. Total size is about 125GB (~3,9 GB per SB).

We did not create several replicas because all those capabilities had been
demonstrated in the previous exercise of Data lake in 2020 in our use case.

The Observations are present at an external location.

Step 1: Group the observations in three groups of 12, 12 and 8 SBs. The idea is to
treat the observations within the groups as a single entity when needed. This
concept is useful as then the user can simply use a group to download all relevant
data (or address in for other uses) rather than having to treat each file. It has also
further subsequent usages later when we are dealing with calibrator observations
(source which is needed for calibrating the target data) and target observations
(source to be imaged). In principle there could be several calibrators observed at
different times in different orders. Using the concepts of groups (dataset in rucio
terms) and later containers one can logically use the relations so as handling and

48

processing of the data does become much more simpler, practical and logical to
address in a real life case.

We call these three groups as:
LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB000_SB011_Set1
LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB012_SB024_Set2
LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB025_SB031_Set3

The nomenclature can be further improved but for this exercise this is sufficient.

Step2: The observations were uploaded as groups. So three groups.
--register-after-upload was useful in case things do go wrong during the upload
process.
The upload was carried out for the three datasets (groups) separately. The upload
did take a total of about 9mins.

After the successful upload we checked the contents:
rucio list-content LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB000_SB011_Set1
+--+--------------+
| SCOPE:NAME | [DID TYPE] |
|--+--------------|
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB000_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB001_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB002_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB003_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB004_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB005_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB006_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB007_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB008_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB009_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB010_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB011_uv.MS.15ch2s.dppp.tar	FILE
+--+--------------+

rucio list-content LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB012_SB023_Set2
+--+--------------+
| SCOPE:NAME | [DID TYPE] |
|--+--------------|
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB012_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB013_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB014_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB015_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB016_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB017_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB018_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB019_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB020_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB021_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB022_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB023_uv.MS.15ch2s.dppp.tar	FILE
+--+--------------+

rucio list-content LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB024_SB031_Set3
+--+--------------+

49

| SCOPE:NAME | [DID TYPE] |
|--+--------------|
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB024_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB025_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB026_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB027_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB028_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB029_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB030_uv.MS.15ch2s.dppp.tar	FILE
LOFAR_ASTRON_PANDEY:L432696_SAP000_SB031_uv.MS.15ch2s.dppp.tar	FILE
+--+--------------+

Step 3: The rule to limit the lifetime of about 10 days was added, and activity flag
DAC21 was added as well.

Step 4: The three datasets were grouped together as a container and later we
checked the contents.

rucio list-dids LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB000_SB031_Set1-2-3
--recursive
+--+--------------+
| SCOPE:NAME | [DID TYPE] |
|--+--------------|
| LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB000_SB011_Set1 | DATASET
|
| LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB012_SB023_Set2 | DATASET
|
| LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB024_SB031_Set3 | DATASET
|
| LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_SB000_SB031_Set1-2-3 |
CONTAINER |
+--+--------------+

Lifetime and activity flags were appropriately added.

Step 5: (External location and independent user needs to process this data). First
step is to download/retrieve it from data lake.

Now from an external location a user wants to process data. He has all the
required data in the container. He is given the name of the container which as all
the data related to this observations. He can simply download the container with all
its associated data without being aware of all the details of the observations. In this
example while we have a quite simple grouping, in principle we could have a
complicated relationship but all that can be consumed by careful grouping of the
datasets including using the hierarchy of relations.

rucio -vvv download LOFAR_ASTRON_PANDEY:UseCase2_Dataset_3C196IBL_
SB000_SB031_Set1-2-3

The download step took about 9min20seconds.

50

Step 6:

The next step was to process this data by the user at an external location. This
was done using the Docker based software image.

Processing on an external location : 2hrs 10min. The high resolution 3C196 image
shown above is using the observations which were carried out including the
international baselines of LOFAR (maximum baseline ~2000km). The beam size is
shown as a green ellipse at the center which clearly shows that 3C196 (which is
about 5 arc seconds, is so well resolved.

3C196 is a quasar, the central core (which is usually in the between the radio
components) is not visible in radio observations but in optical or higher frequency
images. One of the reasons could be that the central engine emitting mostly at
shorter wavelengths due to high energies where as the old electrons (in the outer
lobes) emitting mostly synchrptron radiation in higher wavelengths.

Step 7: The resulting image(s) was archived back to the datalake as a dataset.

 LOFAR_ASTRON_PANDEY:UseCase2_Imageset_3C196IBL_SB000_SB031_Set1-2-3

Step 8: The image was also attached to the container of the original data set.

Step 9: For this step we wanted to demonstrate combining the results (data) in the
data lake with public data from elsewhere.

51

 For this we first used ESAP to locate the data in the data lake and added it to
the shopping basket. Then, we used external tooling to find optical data (from the
Hubble Space Telescope) in the Virtual Observatory and sent the table to ESAP,
which places it in the shopping basket too. In essence, this use case combines
ESCAPE work packages 2, 4 and 5. This is an useful aspect of this exercise.

The next step was to open the DLaaS notebook and install both the
shopping basket client and the astropy packages that can be used to process FITS
images.

We then read out the data from the shopping basket and staged the data
from the Datalake to the right location so that it would be accessible from within the
notebook.

The notebook can be found on this repostory:
https://git.astron.nl/astron-sdc/escape-wp2/dac21-imagecomb

The first cell of the notebook installs the relevant software after which the
function is defined that can be used to download the data into the right RSE for
processing. Then several steps are taken to read the two data sets from the
shopping basket, bring the Rucio data online and download the data from the
Virtual Observatory. We then use the astropy tooling to stack the optical images (to
increase the signal to noise ratio), genrate contours and apply the contours to the
image downloaded from the data lake.

The last step is taking the png image and uploading it back into the datalake.
The figure shows the optical image on the left, and the combined image (LOFAR
with optical contours) on the right.

Conclusion:
This use case was very successful. The Data upload along with adding relevant
lifecycle rules, Data retrieval, Processing, Archiving the results was successfully
carried out. This also included demonstrating ability to group scientifically related
observations using datasets and containers (hierarchical if necessary) and utilize
them in a practical manner. Thus another potential interested user can simply
access the entire relevant information from all connected raw observations, upto
the end resulting images in a straight forward manner (a single command so to
speak). The integration between ESAP en DLaaS demonstrated possible although

52

https://git.astron.nl/astron-sdc/escape-wp2/dac21-imagecomb

more thought is needed to explore what would be an ideal integration. Being able
to stage data for usage in the DLaas notebook directly from the shopping basket,
basically having the code written for that either in the DLaaS environment or in the
shopping basket handler. Also, the query functionality of ESAP could be based
more on the metadata of the underlying data for specific scopes. This could for
instance make the datalake a backend for a multi-archive query in ESAP for
positions on the sky in case of astronomical instrumentation.
In future, It may also be nice/useful to demonstrate that the DLaaS can be
deployed at multiple sites (with different storage backends) and that multiple ESAP
installations could communicate with multiple DLaaS deployments.

●​ Could add screen shots of the notebook

Use Case 3: Legacy archive, public data access RSE
TBD: This depends a bit on the actual feasability of connecting an RSE from
external VO in read-ony mode,
We have not been able to execute this (optional) use case within DAC21. It needs
more time and and will be a post-DAC21 activity.

LSST

Infrastructure “bootnotes”

Robustness
On 2021-11-22 (Monday) several problems were found with the dCache instance
at CC-IN2P3. These came predominantly from the relatively small size of the
LSST files (many are approx 10 MiB). Almost all transfers failed. There were two
main failure modes. The first failure mode allowed FTS to recover (using
HTTP-TPC PUSH from EULAKE-1), the second failure mode meant FTS could not
recover. This gave a somewhat distorted picture: the data was being transferred,
but not without problems.

With the help from the IN2P3-CC admins (Adrien) and dCache developers (Paul)
several hot fixes were developed to address these problems and deployed at
CC-IN2P3 on Monday.

The problems fixed were:

●​ Removed bottleneck caused by mutex/monitor that resulted in the door
only processing one incoming request or transfer finalisation at a time.
Now, any number of new transfers (up to configured limits) and any number
of transfer finalisation (up to configured limits) may be processed.

●​ Move transfer finalisation process off of the dCache-internal message
thread. This is to avoid blocking the message-processing thread, allowing
greater throughput.

●​ Fix bug that allowed the transfer status to change from failed to success, if
dCache-internal message timeout coincided with the transfer completing

53

successfully. This is normally an extremely rare problem, but was triggered
by the large build-up of dCache-internal messages.

●​ Fix race condition between WebDAV door and transfer manager. This is
normally an extremely rare problem, but was triggered by a build-up of
dCache-internal messages.

During 2021-11-23 (Tuesday), the majority of transfers succeeded; however, a
non-trivial fraction of the transfers were still failing. These failures followed the first
failure mode, from which FTS could recover (issuing HTTP-TPC PUSH request to
EULAKE-1). Therefore, the Rucio monitoring dashboard showed ~100% success
rate, despite the failure. During Tuesday, two new patches were developed to
improve the throughput and fix the final set of errors.

With these further patches deployed, dCache provided (near) 100% successful
transfer rate. Of some 588K transfers, only 99 (that's 0.02%) failed with an error.
dCache reported these errors as a problem requesting data from the source server
(EULAKE-1), claiming the server returned 500 Internal Server Error in
response to dCache’s GET request.

By Wednesday, transfers were 100% successful at IN2P3 and FTS was no longer
using HTTP-PUSH requests to EULAKE-1 as a recovery procedure.

The final transfer campaign, on Friday (2021-11-26) from CERN (EULAKE-1) to CC-IN2P3
(IN2P3-CC-LSST-DEST).

Performance
One of the hot patches (developed and deployed on Tuesday) was to address the
low performance issue. This yielded a noticeable performance improvement
(values?).

54

dCache was configured to support 300 concurrent HTTP-TPC transfers. However,
manual inspection suggests this number was never realised in practice.

The small files result in short transfer time. This means that internal latencies
within dCache may have dominated the overall performance; however, this point is
conjecture and further investigation is needed. However, it seems likely that at
least twice the supported transfer are needed in order to keep the pools “busy”:
one transfer is “active” while the other is “queued up”, ready to replace the
currently active transfer once it completes. Moreover, due to the latencies, the
optimal number of concurrent transfers may be more than this.

The FTS queue limited the number of concurrent transfers to 100. Given the
latencies involved and the short transfer times for these files, this value was too
low. Unfortunately, this was discovered too late to allow the FTS configuration to
be updated.

Currently, it’s not clear what may be done within dCache to reduce latency: this is
the subject of future investigations. A first step in this direction would be to enable
better measurement of the various latencies and introspection from where they are
coming.

In a related note the combination of Rucio and FTS appeared to be unable to
maintain the configured 100 concurrent transfers within dCache, despite having a
considerable back-log of activity. Manual checking the number of active transfers
(some 28 times) showed an average of 52 concurrent transfers, but with
considerable variance. At several times there were zero active transfers. At one
time there were 211 concurrent transfers.

Concluding remarks
Leading out of DAC21, all but one of the dCache “hot fixes” have passed through
code-review and will be included in the next bug-fix dCache release cycle,
scheduled for 2021-11-30.

Additional patches to improve monitoring are also being developed.

ATLAS

●​ 22/11/21
○​ Testing more uploads and transfer of datasets in the DataLake
○​ Issues in the LAPP-WEBDAV site will need more replications than

those planned
■​ Solution: move samples to other sites
■​ Experts in QoS meetings helped me to make correct

decisions and know how to move between RSEs
○​ Re-installing updated personal certificate. Following the docs. All

good as a new-normal user.

55

■​ But we need to add more details in the docs when you want
to renew a certificate.

●​ 23/11/21
○​ <information to be inserted between the 29/30 Nov 2021>
○​ <activity>
○​ <RSE used>
○​ <issues>

●​ 24/11/21
○​ 934 8799 4617<information to be inserted between the 29/30 Nov

2021>
●​ 25/11/21

○​ <information to be inserted between the 29/30 Nov 2021>
●​ 24/11/21

○​ <information to be inserted between the 29/30 Nov 2021>

CMS

22-11-21:
Opendata loaded in the datalake already as preparation step - SUCCESS no
problem to report

Accessed opendata from the lake with CMS analysis workflow

○​ Jupyterlab notebook
■​ Authentication to rucio via TOKEN - SUCCESS no problem

to report

■​ Reading and upload results via TOKEN - SUCCESS no
problem to report

56

57

23-11-21:
HTCondor test and scaleout:

○​ Reading via cache setup at cloud @CNAF - SUCCESS no
problem to report

■​ The cache communicate with the lake via x509
■​ Client side trusts all connections coming from a HTCondor

WN

○​ HTCondor job - SUCCESS no problem to report
■​ Still work on getting a significant screenshot for this part

○​ Jupyterlab DASK interactively over HTCondor (10 nodes) - only a

subset of the inputs - SUCCESS no problem to report

58

59

○​ RUCIO upload results via TOKEN - SUCCESS no problem to
report

<To be added>: a screenshot of jlab cell with the upload of the output file.

24-11-21:
Embargoed data

-​ Rucio upload of embargoed data to CNAF-STORM:
-​ Using a dedicated scope CMS_EMBARGOED_DATA
-​ Only IAM CMS group members can read and write in there
-​ Via x509 - SUCCESS no problem to report
-​ Via token - SUCCESS no problem to report

rucio upload --scope CMS_EMBARGOED_DATA --rse CNAF-STORM --lifetime
90000 --summary --name ZZTo4mu.root ZZTo4mu.root

Not completed during Dac week:

test on HPC Cineca. We are working on setting things up to be ready for a
very quick functionality test.

60

EGO/VIRGO
22-11-21:

●​ Managed to configure X.509 certificate to get access to the datalake
●​ Set out plan to have data streaming from rucio to a Kafka producer to

distribute the data to the Consumers

23-11-21

●​ Setup container to download data from Rucio
●​ Created another container to get the data from the above container and

have them streamed out via Kafka Producer
24-11-21

●​ Attempted to resolve authentication issues in uploading data to the
datalake which turned out to be missing certificates (see below)

●​ There were further issues in the authentication since it would not accept the
grid certificate which was resolved by the creation of a proxy certificate

●​ Did a rucio upload of the required data
25-11-21

●​ Did run tests of the container that:
○​ Downloads gravitational wave data from Rucio
○​ Resizes the data so it can be streamed in 1 second intervals
○​ Writes the data into a shared volume

●​ Another container was also setup to read the data from the above container
and publish it via kafka to the consumers.

26-11-21
●​ Used a ROBOT certificate to enable the downloading of data from the

datalake to a kubernetes cluster
●​ Setup the full wavefier pipeline from downloading data from the datalake to

processing triggers running on the Kubernetes cluster at CNAF

CENTRAL SERVICES

●​ 22-11-21@10:20: IAM central services experiencing issues. Test robots
having some failures since Saturday, points to some changes introduced by
CI/Jenkins changes. Andrea and his team are chasing this up.

●​ 22-11-21@10:22: IAM is back up running, token-based testsuite still down,
under investigation.

●​ 22-11-21@10:47: IAM testsuite problem understood (expired certificate
used for the datalake X.509 testing). New certificate requested, testsuite
should be back up as soon as the new cert is used.

61

●​ 22-11-21@16:25: Token-based authz testsuite is running again.

●​ 24-11-21: Missing certificates in EULAKE-1 grimap file, issue identified and
solved manually

●​ 24-11-21: DLaaS local shared space for users was filled, we extended the
space to 800GiB (from 500GiB) and the users cleaned their large files. A
reminder to store any big files to the scratch space was given.

●​ 25-11-21: The addition of a new RSE exposed a bug in the CRIC-Rucio
mapping, this was fixed relatively fast and the RSE was integrated

●​ General: Rules stuck in replicating state and in a deadlock state where they
would never be accomplished, could be connected with FTS-pilot instance
degradation, still inspecting. Fixed temporarily by changing the rule state to
“STUCK” so that Rucio will try to repair them again.

PIC/IFAE

LAPP​

22-11-21@10:10: Failures for X509 based transfers on LAPP webdav endpoint,
token based transfers ongoing.

IN2P3-CC
22-11-21@10:45: IN2P3_CC_LSST: some failures on writing with “TRANSFER [2]
DESTINATION CHECKSUM HTTP 404 : File not found”. Reminder to everyone
not to use these RSE.
22-11-21@14:21: QOS of IN2P3_CC_LSST_* RSEs set to null so should not be
used by anyone

GSI

CERN

22-11-21@10:15: Local RSE for notebook purposes showing up on the Data Lake
transfers matrix. This RSE meant to local usage but popping up on the global
matrix when an upload rule is created (maybe need to be filtered out for global DL
data movement/replication purposes)

23-11-21@11:00: Repeated failures to upload files from LOFAR tests, eros shown
in the singularity container running the workflow hinting to a failed x509 cert
mapping. Root cause found: New robot certificate used by ASTRON not

62

https://ci.cloud.cnaf.infn.it/view/escape/job/escape-auth-tests/job/main/lastSuccessfulBuild/artifact/reports/reports/latest/joint-report.html
https://github.com/ESCAPE-WP2/Utilities-and-Operations-Scripts/commit/df59714c53d880b3f799122c30bd582630cd5047

propagated to EOS storage head node (xrootd) and the http and griftp doors.
Solution: grid mapfile sync scripts ran manually to force new certificate to be added
into the /etc/grid-security/gridmapfile file.
.

DESY
2021-11-24 15:00:03+01 Installed an updated dCache RPM on one of the head

nodes. This allowed the DESY-DCACHE RSE to fully support
token-based authentication, as per the current test suite. There was a
short interruption of a few minutes at this time.

SURF/SARA

RUG

The report of contribution of University of Groningen to DAC21 is discussed
under the FAIR section since our use case, R3B, is part of the FAIR-GSI
facility.

 INFN

ASTRON

63

64

	
	DAC21 high-level goals:
	Experiments plan/goals/metrics
	

	DAC21 Activities Logbook
	FAIR
	mCBM Ingestion (Marek on “ingestion” and Pierre/Eoin on “replay”)
	R3B Ingestion (Maisam M. Dadkan)
	CBM Simulation (Eoin + Paul)
	PANDA Reconstruction (Ralf)
	mCBM Reconstruction (Eoin)
	R3B Data Analysis (Maisam M. Dadkan)

	KM3NeT
	CTA
	Use case 1 (Agustin B)
	2021-11-23 - Test 1:
	2021-11-24 - Test 2:
	2021-11-24 - Test 3:
	2021-11-25 - Test 5
	2021-11-26 - Tests 2 and 6
	2021-11-26 - Test 4

	Use Case 4 (Gareth)
	Update 1.12.2021:
	Update 3.12.2021:

	CTA Summary

	SKAO
	Log book
	Test summaries
	SKAO_DLaaS (22-11-21)
	Subscription test (22-11-21)
	End to end data lifecycle test - IDIA (23-11-21)
	End to end data lifecycle test - AARNET (24-11-21)
	Long haul transfer tests (25-11-21 to 26-11-21)

	MAGIC

	LOFAR
	LSST
	Infrastructure “bootnotes”
	Robustness

	
	Performance
	Concluding remarks

	ATLAS
	●​22/11/21
	●​23/11/21
	●​24/11/21
	●​25/11/21
	●​24/11/21

	CMS
	EGO/VIRGO
	
	
	CENTRAL SERVICES
	PIC/IFAE
	LAPP​
	IN2P3-CC
	GSI
	CERN
	DESY
	SURF/SARA
	
	RUG
	The report of contribution of University of Groningen to DAC21 is discussed under the FAIR section since our use case, R3B, is part of the FAIR-GSI facility.
	 INFN
	
	ASTRON

