This is a rolling agenda for the monthly OpenZFS Leadership Team Meetings.

If you would like to contribute to this document, please email
matt@mahrens.org or zfsleadership@klarasystems.com for access.

Logistics: Meetings are held once every 4 weeks on zoom, Tuesdays from 1:00-2:00pm
US Pacific time (3 of the meetings), or 10-11am PT (¥ of the meetings). The
meetings are open to the public, and recordings will be posted on YouTube. Please
help us stay on agenda and on time :-)

Zoom Link

Past video recordings

Open Action ltems

e Preferred meeting times
o Rob N: 12pm Pacific onwards (7am+ AEDT)

Reach out to @allanjude on slack (or zfsleadership@klarasystems.com) if you would like to be
added to the calendar invitation.

Upcoming Agenda ltems (for next meeting -
2025-11-04, 13:00 US Pacific)

e Meeting schedule for 2026: Instead of 10:00 and 13:00, what about 13:00 and
15:007

e hitps://github.com/openzfs/zfs/pull/17864 - zpool status -vv w/ ranges (superset of
#17502)

e https://github.com/openzfs/zfs/pull/17573 - large label: pending changes around
uberblock ring, possibly making the ‘vdev start’ a dynamic value stored in the label

e hitps://github.com/openzfs/zis/pull/17824 - gang write late_arrival bug

e hitps://qgithub.com/openzfs/zfs/pull/17094 - range_tree: Add zfs_recover_rt
parameter and extra debug info (related: https://github.com/openzfs/zfs/pull/17870)

e https://github.com/openzfs/zfs/pull/17890 - Add BRT support to zpool prefetch
command

e FEasy beginner task: https://qgithub.com/openzfs/zfs/pull/15959 - zfs destroy -t
<type>

mailto:matt@mahrens.org
mailto:zfsleadership@klarasystems.com
https://us02web.zoom.us/j/86163100254?pwd=BOatQ0Q9klbRLERXf4Ret5Wza9CqD3.1
https://www.youtube.com/playlist?list=PLaUVvul17xSeHoMLiE_cp68mPvowtYteN
mailto:zfsleadership@klarasystems.com
https://github.com/openzfs/zfs/pull/17864
https://github.com/openzfs/zfs/pull/17573
https://github.com/openzfs/zfs/pull/17824
https://github.com/openzfs/zfs/pull/17094
https://github.com/openzfs/zfs/pull/17870
https://github.com/openzfs/zfs/pull/17890
https://github.com/openzfs/zfs/pull/15959

nzfs/zf /17 - module param to enable
decompression of scrubed blocks

https://github.com/openzfs/zfs/pull/17418 - Be more careful with locking
db.db_mtx

https://github.com/openzfs/zfs/pull/16835 - zdb raidz file layout visualizer
https://aithub.com/openzfs/zfs/pull/16205 - Hierarchical bandwidth and operations

limits

Agenda ltems (2025-10-07, 10:00 US Pacific)

https://github.com/openzfs/zfs/pull/17573 - Implement new label format for large
disks

ithub.com nzfs/zf /17 - zvol: check 1O request type (merged)
https://github.com/openzfs/zfs/pull/17094 - range_tree: Add zfs_recover_rt
parameter and extra debug info
https://qithub.com/openzfs/zfs/pull/17750 - FreeBSD: Correct
_PC_MIN_HOLE_SIZE
https://aithub.com/openzfs/zfs/pull/17630 - added module param to enable
decompression of scrubed blocks
https://qithub.com/openzfs/zfs/pull/17502 - Add “zpool status -vv”

ithub.com nzfs/zf l/17477 - Add knob to disable slow io
notifications

https://qithub.com/openzfs/zfs/pull/17567 - AnyRAID Mirror
https://qithub.com/openzfs/zfs/pull/17759 - Scrub recent data

https://github.com/openzfs/zfs/pull/17768 - Dataset property to show jail that a
dataset is delegated to

https://github.com/openzfs/zfs/pull/17666 - panic in zfs arc_release during zfs send
of encrypted dataset

https://github.com/openzfs/zfs/pull/17159 - Fix inode eviction and sync writeback

deadlock on Linux

Agenda ltems (2025-09-09, 13:00 US Pacific)

https://qithub.com/openzfs/zfs/pull/17709 - ZTS: Fix fault_limits timeouts
Build on FreeBSD/i386

o https://github.com/openzfs/zfs/pull/17708 - Fix atomic-alignment warnings
in libspl on FreeBSD/i386

o https://github.com/openzfs/zfs/pull/17707 - Fix the build of crypto_test on
LP32 architectures

o https://github.com/openzfs/zfs/pull/17706 - Fix the build on 32-bit FreeBSD

with GCC
o https://github.com/openzfs/zfs/pull/17705 - Fix a printf format specifier on
FreeBSD/i386

o https://github.com/openzfs/zfs/pull/17704 - Fix warnings about
SHA_2_is_supported on FreeBSD/i386

https://github.com/openzfs/zfs/pull/17630
https://github.com/openzfs/zfs/pull/17418
https://github.com/openzfs/zfs/pull/16835
https://github.com/openzfs/zfs/pull/16205
https://github.com/openzfs/zfs/pull/17573
https://github.com/openzfs/zfs/pull/17803
https://github.com/openzfs/zfs/pull/17094
https://github.com/openzfs/zfs/pull/17750
https://github.com/openzfs/zfs/pull/17630
https://github.com/openzfs/zfs/pull/17502
https://github.com/openzfs/zfs/pull/17477
https://github.com/openzfs/zfs/pull/17567
https://github.com/openzfs/zfs/pull/17759
https://github.com/openzfs/zfs/pull/17768
https://github.com/openzfs/zfs/pull/17666
https://github.com/openzfs/zfs/pull/17159
https://github.com/openzfs/zfs/pull/17709
https://github.com/openzfs/zfs/pull/17708
https://github.com/openzfs/zfs/pull/17707
https://github.com/openzfs/zfs/pull/17706
https://github.com/openzfs/zfs/pull/17705
https://github.com/openzfs/zfs/pull/17704

ithub.com nzfs/zf ll/17645 - zfs_vnops.c: Add support for the
_PC_CLONE_BLKSIZE name
https://github.com/openzfs/zfs/pull/17630 - added module param to enable
decompression of scrubed blocks
https://github.com/openzfs/zfs/pull/17576 - Add allocation profile export and zleak
utility for import
https://github.com/openzfs/zfs/pull/17573 - Implement new label format for large
disks

nzfs/zf ll/17543 - zfs allow send:encrypted

[Please review] https://qgithub.com/openzfs/zfs/pull/17227 - Detect a slow raidz
child during reads
[Please review] https://qithub.com/openzfs/zfs/pull/16526 - Multiple pool support
for ztest

Agenda ltems (2025-08-12, 10:00am US Pacific)

https://zfsonlinux.topicbox.com/groups/zfs-devel/T60f7 067 38bf1f2e4/openzfs-dev
loper-summit-2025-announcement-and-cf

2.4 Release Schedule

https://github.com/openzfs/zfs/pull/17567 - Add support for anyraid vdevs

https://qithub.com/openzfs/zfs/pull/17543 - zfs allow send:encrypted

https://qithub.com nzfs/zf Il/17613 - ZIL make allocations more flexible

Discuss integrating forced export changes into ztest

https://qithub.com/openzfs/zfs/pull/17576 - Add allocation profile export and zleak

utility for import

https://qithub.com/openzis/zfs/pull/17625 - zvol: cleanup & fixup zvol destruction

sequence and locking

https://github.com/openzis/zfs/pull/17573 - Implement new label format for large
disks

https://github.com/openzfs/zfs/pull/17583 - backport enforce arc_dnode_limit to
2.2

https://github.com/openzfs/zfs/pull/17586 - Add conflict/replacement with older
SONAME libzfs and libzpool packages
https://qithub.com/openzfs/zfs/pull/17588 - [WIP] Raidz Expansion: multiple
devices expanding

https://github.com/openzfs/zfs/pull/17602 - Fix Assert in dbuf_undirty, which
triggers during usage zap shrink

[Please review] https://qithub.com/openzfs/zfs/pull/17227 - Detect a slow raidz

child during reads

[Please review] https://github.com/openzfs/zfs/pull/16526 - Multiple pool support
for ztest

https://qithub.com/openzfs/zfs/pull/17418 - Be more careful with locking
db.db_mtx

https://github.com/openzfs/zfs/pull/16967 - Add native NFSv4 style ZFS ACL
support for Linux

https://github.com/openzfs/zfs/pull/17645
https://github.com/openzfs/zfs/pull/17630
https://github.com/openzfs/zfs/pull/17576
https://github.com/openzfs/zfs/pull/17573
https://github.com/openzfs/zfs/pull/17543
https://github.com/openzfs/zfs/pull/17227
https://github.com/openzfs/zfs/pull/16526
https://zfsonlinux.topicbox.com/groups/zfs-devel/T60f706738bf1f2e4/openzfs-developer-summit-2025-announcement-and-cfp
https://zfsonlinux.topicbox.com/groups/zfs-devel/T60f706738bf1f2e4/openzfs-developer-summit-2025-announcement-and-cfp
https://github.com/openzfs/zfs/pull/17567
https://github.com/openzfs/zfs/pull/17543
https://github.com/openzfs/zfs/pull/17613
https://github.com/openzfs/zfs/pull/17576
https://github.com/openzfs/zfs/pull/17625
https://github.com/openzfs/zfs/pull/17573
https://github.com/openzfs/zfs/pull/17583
https://github.com/openzfs/zfs/pull/17586
https://github.com/openzfs/zfs/pull/17588
https://github.com/openzfs/zfs/pull/17602
https://github.com/openzfs/zfs/pull/17227
https://github.com/openzfs/zfs/pull/16526
https://github.com/openzfs/zfs/pull/17418
https://github.com/openzfs/zfs/pull/16967

2025-07-15, 13:00 Pacific

Status update on the Anyraid project

https://aithub.com/openzfs/zfs/pull/17543 - zfs allow send:encrypted
https://qithub.com/openzfs/zfs/pull/17505 - Allow and prefer special vdevs as ZIL
https://qithub.com/openzfs/zfs/pull/17531 - Correct weight recalculation of
space-based metaslabs

https://github.com/openzfs/zfs/pull/17536 - Fix zdb pool/with -k
https://qithub.com/openzis/zfs/pull/17525 - Allow libzpool to set 64-bit values
https://qithub.com/openzfs/zfs/pull/17537 - Userspace Tunables

https://qithub.com/openzfs/zfs/pull/17388 - zio: add separate pipeline stages for
logical 10

https://github.com/openzfs/zfs/pull/17398 - ZIL: "crash" the ZIL if the pool
suspends during fallback

ithub.com nzfs/zf ll/17227- Detect a slow raidz child during reads
https://github.com/openzfs/zfs/pull/16835 - zdb raidz file layout

[Please review] https://github.com/openzfs/zfs/pull/16526 - Multiple pool support
for ztest

Previous meetings’ notes
2025-06-17, 10:00am Pacific

Video Recording

Better tracking of what has been backported (can we use git cherry-pick -x to
include annotations of the original hashes when merging stuff to stable branches).
Standardizing on “Fixes:”

https://github.com/openzfs/zfs/pull/17463 - Clarify and restrict dmu_tx_assign()
errors

https://github.com/openzfs/zfs/pull/17455 - Default to zfs_bclone_wait_dirty=1
Investigate if scrub can detect ‘there are TXG waiters’ and hurry up
https://github.com/openzfs/zfs/pull/17423 - FreeBSD: Wire up projects support
https://github.com/openzfs/zfs/pull/17418 - Be more careful with locking
db.db_mtx

https://qithub.com/openzfs/zfs/pull/17388 - zio: add separate pipeline stages for
logical 10

https://qithub.com/openzfs/zfs/pull/17398 - ZIL: "crash" the ZIL if the pool
suspends during fallback

https://github.com/openzfs/zfs/pull/17543
https://github.com/openzfs/zfs/pull/17505
https://github.com/openzfs/zfs/pull/17531
https://github.com/openzfs/zfs/pull/17536
https://github.com/openzfs/zfs/pull/17525
https://github.com/openzfs/zfs/pull/17537
https://github.com/openzfs/zfs/pull/17388
https://github.com/openzfs/zfs/pull/17398
https://github.com/openzfs/zfs/pull/17227
https://github.com/openzfs/zfs/pull/16835
https://github.com/openzfs/zfs/pull/16526
https://www.youtube.com/watch?v=Kr_3FtJUvVU
https://github.com/openzfs/zfs/pull/17463
https://github.com/openzfs/zfs/pull/17455
https://github.com/openzfs/zfs/pull/17423
https://github.com/openzfs/zfs/pull/17418
https://github.com/openzfs/zfs/pull/17388
https://github.com/openzfs/zfs/pull/17398

[Please review]| https://github.com/openzfs/zfs/pull/16853 - Add TXG timestamp

database

[Please review] https://github.com/openzfs/zfs/pull/17004 - Implement dynamic
gang header sizes

[Agree to close?] https://aithub.com/openzfs/zfs/pull/16579 - libzutil: allow to
display powers of 1000 bytes

Add support for displaying non-byte numbers as units of 1000 not 1024

[What to do?] https://github.com/openzfs/zfs/pull/17075 - fix ZFS command output
uses wrong comma separator

[Followup and finish] https://github.com/openzfs/zfs/pull/17045 - ZTS: include
microsecond timestamps on all output

https://qithub.com/openzfs/zfs/pull/16526 - Multiple pool support for ztest

[Easy for beginner] https://qithub.com nzfs/zf l/1 - zvol_disk_open()
may spin on CPU

2025-05-20, 1:00pm Pacific

Video Recording

Introducing Anyraid (Klara, Eshtek)

o New vdev type to improve experience of mismatched device sizes

o Support for mirroring in v1, raidz later

o Other possibly useful features (e.g. rebalancing, expansion, contraction)
https://qithub.com/openzfs/zfs/discussions/17225 ZFS Label Redesign (Klara)
Improve the label to handle larger sector sizes, new features
o Introduced as last years Dev Summit

o Keep more uberblocks for rewind, possibly grandfathering scheme

o Interactions with zpool checkpoint, MMP, other things that borrow

uberblock slots

https://github.com/openzfs/zfs/pull/17335 Add synchronous zedlets
https://aithub.com/openzfs/zfs/pull/17341 Add hierarchical project quota support
(Nutanix)
https://qithub.com/openzfs/zfs/discussions/17118 What's the proper way to
protect dmu_buf_impl.db.db_data
https://github.com/openzfs/zfs/pull/17159 Fix inode eviction and sync writeback
deadlock on Linux (Nutanix)
https://github.com/openzfs/zfs/pull/17076 Add a diagnostic kstat for obtaining pool
status
OpenZFS 2.4 release schedule: https://github.com/openzfs/zfs/discussions/17310

o

2025-04-22, 1:00pm Pacific

Video Recording

https://github.com/openzfs/zfs/pull/17218 Wire O_DIRECT also to Uncached I/O
https://github.com/openzfs/zfs/pull/17246 Introduce zfs rewrite subcommand
https://github.com/openzfs/zfs/pull/17231 Fix double spares for failed vdev

https://github.com/openzfs/zfs/pull/17193 Add zpool status --lockless|--trylock

https://github.com/openzfs/zfs/pull/16853
https://github.com/openzfs/zfs/pull/17004
https://github.com/openzfs/zfs/pull/16579
https://github.com/openzfs/zfs/pull/17075
https://github.com/openzfs/zfs/pull/17045
https://github.com/openzfs/zfs/pull/16526
https://github.com/openzfs/zfs/pull/15658
https://www.youtube.com/watch?v=MifloJFCpLU
https://github.com/openzfs/zfs/discussions/17225
https://github.com/openzfs/zfs/pull/17335
https://github.com/openzfs/zfs/pull/17341
https://github.com/openzfs/zfs/discussions/17118
https://github.com/openzfs/zfs/pull/17159
https://github.com/openzfs/zfs/pull/17076
https://github.com/openzfs/zfs/discussions/17310
https://www.youtube.com/watch?v=7g5yfugIKnA
https://github.com/openzfs/zfs/pull/17218
https://github.com/openzfs/zfs/pull/17246
https://github.com/openzfs/zfs/pull/17231
https://github.com/openzfs/zfs/pull/17193

e htips:/qgithub.com nzfs/zf l/17209 More aggressively assert that db_mtx
protects db.db_data

https://github.com/openzfs/zfs/pull/17214 zfs-2.3.2 patchset
e hitps://github.com/openzfs/zfs/pull/17227 Detect a slow raidz child during reads

https://github.com/openzfs/zfs/pull/17159 Fix inode eviction and sync writeback

deadlock on Linux

Previous meetings’ notes
2025-03-25, 1:00pm Pacific

Video Recording

e hitps://github.com/openzfs/zfs/pull/17094 Range_tree: Add zfs_recover_rt
parameter and extra debug info

e hittps://qgithub.com/openzfs/zfs/pull/17142 kstat: allow multi-level module names
(support for vdev stats queue)

e hitps://github.com/openzfs/zfs/pull/16205 Hierarchical bandwidth and operations
limits (rebased in December)

e hitps://qgithub.com/openzfs/zfs/pull/16486 Implement parallel ARC eviction and
https://github.com/openzfs/zfs/pull/16487 Implement parallel douf eviction

e Raidz slow IO

e https://github.com/openzfs/zfs/pull/16967 Add native NFSv4 style ZFS ACL
support for Linux

e hitps://github.com/openzfs/zfs/pull/17004 Implement dynamic gang header sizes

e hitps://github.com/openzfs/zfs/pull/17073 Make ganging redundancy respect
redundant_metadata property

e hitps://qgithub.com/openzfs/zfs/pull/17111 Implement allocation size ranges and
use for gang leaves

e hitps://github.com/openzfs/zfs/pull/17123 Handle interaction between gang blocks,
copies and FDT

e hittps://qgithub.com/openzfs/zfs/pull/17020 Unified allocation throttling
e https://github.com/openzfs/zfs/pull/17119 Delete dead code: dbuf loan_arcbuf

e https://qgithub.com/openzfs/zfs/pull/17130 Implement default user/group/project
quotas including object default quotas

e hitps://qgithub.com/openzfs/zfs/pull/17136 Always perform bounds-checking in
metaslab-free-concrete

e hitps://github.com/openzfs/zfs/pull/17143 dmu_tx:rename dmu_tx_assign() flags
from TXG_* to DMU_TX_* (Ground work for ZIL fail)

e hittps://qgithub.com/openzfs/zfs/issues/16626 data corruption due to inconsistent
locking of db.db_data

e hitps://github.com/openzfs/zfs/pull/17164 Fix lock reversal on device removal
cancel

e Add your agenda item ideas here and we’ll discuss them at the next meeting

https://github.com/openzfs/zfs/pull/17209
https://github.com/openzfs/zfs/pull/17214
https://github.com/openzfs/zfs/pull/17227
https://github.com/openzfs/zfs/pull/17159
https://www.youtube.com/watch?v=EXyIqCP7bDI
https://github.com/openzfs/zfs/pull/17094
https://github.com/openzfs/zfs/pull/17142
https://github.com/openzfs/zfs/pull/16205
https://github.com/openzfs/zfs/pull/16486
https://github.com/openzfs/zfs/pull/16487
https://github.com/openzfs/zfs/pull/16967
https://github.com/openzfs/zfs/pull/17004
https://github.com/openzfs/zfs/pull/17073
https://github.com/openzfs/zfs/pull/17111
https://github.com/openzfs/zfs/pull/17123
https://github.com/openzfs/zfs/pull/17020
https://github.com/openzfs/zfs/pull/17119
https://github.com/openzfs/zfs/pull/17130
https://github.com/openzfs/zfs/pull/17136
https://github.com/openzfs/zfs/pull/17143
https://github.com/openzfs/zfs/issues/16626
https://github.com/openzfs/zfs/pull/17164

Previous meetings’ notes
2025-02-25, 10am Pacific

Vi Recordin

zpool fsck (design discussion)

https://github.com/openzfs/zfs/pull/15215 - slack compression
https://qithub.com/openzfs/zfs/pull/17020 - Unified allocation throttling
https://qgithub.com/openzfs/zfs/pull/16283 - Implement
defaultuserquota/defaultgroupquota (UID/GID/ProjlD of -1 as default quota key, as
alternative to)

https://github.com/openzfs/zfs/pull/16026 - Add diagnostics kstat for obtaining
pool status

https://github.com/openzfs/zfs/pull/17094 - Revise and extend zfs_recover support

for add/remove

https://github.com/openzfs/zfs/pull/17081 - Better fill empty metaslabs
https://github.com/openzfs/zfs/pull/17073 - Make ganging redundancy respect
redundant_metadata property

https://github.com/openzfs/zfs/pull/17049 - Add more DDT tests

https://github.com/openzfs/zfs/pull/17038 - Rework FDT dedup log sync

Add your agenda item ideas here and we’ll discuss them at the next meeting

Previous meetings’ notes
2025-01-28, 1pm Pacific

Vi Recordin

Fast Dedup pacing changes

ZFS wide background work pacing
https://qithub.com/openzfs/zfs/pull/16986 - Expand fragmentation table
https://qithub.com/openzfs/zfs/pull/16967 - Add native

NFSv4 style ZFS ACL support for Linux

https://qithub.com/openzfs/zfs/pull/16929 - optimize recv_fix_encryption_hierarchy
https://github.com/openzfs/zfs/issues/16913 - Allow zpool status -c to also specify
vdev properities

https://qithub.com/openzfs/zfs/pull/16991 - Force receive permissions and not
only.

2025-01-07, 1pm Pacific

Video Recording

2.3.0 release expected next week
Ztest throwing a lot of errors
Feature proposal: ZFS allow ‘send raw only’

https://qithub.com/openzfs/zfs/pull/16929 - optimize recv_fix_encryption_hierarchy

https://www.youtube.com/watch?v=UVFE209Z1mE
https://github.com/openzfs/zfs/pull/15215
https://github.com/openzfs/zfs/pull/17020
https://github.com/openzfs/zfs/pull/16283
https://github.com/openzfs/zfs/pull/16026
https://github.com/openzfs/zfs/pull/17094
https://github.com/openzfs/zfs/pull/17081
https://github.com/openzfs/zfs/pull/17073
https://github.com/openzfs/zfs/pull/17049
https://github.com/openzfs/zfs/pull/17038
https://www.youtube.com/watch?v=zcwyVgHqqH8
https://github.com/openzfs/zfs/pull/16986
https://github.com/openzfs/zfs/pull/16967
https://github.com/openzfs/zfs/pull/16929
https://github.com/openzfs/zfs/issues/16913
https://github.com/openzfs/zfs/pull/16991
https://youtu.be/4CG76qFS3XA
https://github.com/openzfs/zfs/pull/16929

ithub.com nzfs/zf lI/1 - Detect a slow raidz child during reads
https://github.com/openzfs/zfs/pull/16835 - zdb raidz file layout
https://github.com/openzfs/zfs/pull/16817 - Linux: sync mapped data on umount
https://github.com/openzfs/zfs/pull/16818 - Linux: syncfs(2) should sync all cached
files
https://qithub.com/openzfs/zfs/pull/16747 - On-demand log-spacemap flush; zpool
condense command
https://github.com/openzfs/zfs/issues/16913 - Allow zpool status -c to also specify
vdev properities
141 open PRs

2024-12-03, 1pm Pacific

Video Recording

DirectlO for FreeBSD:

o Remove an incorrect assertion in zfs_getpages():

https://github.com/openzfs/zfs/pull/16834

o Enabled by default: https://github.com nzfs/zf Il/16761
Block cloning prefetcher: https://qithub.com/openzfs/zfs/pull/16814
Flush ARC async when exporting: https://github.com/openzfs/zfs/pull/16215
“Special” allocation class failsafe feature: https://github.com/openzfs/zfs/pull/16185
Scrub all changes since previous scrub: https://qithub.com nzfs/zf II/1
RAID-Z file layout: https://aithub.com/openzfs/zfs/pull/16835
FreeBSD: support for UF_NOUNLINK https://github.com/openzfs/zfs/pull/16820
Optimize RAIDZ expansion: https://github.com/openzfs/zfs/pull/16819
Slack Compression: https://github.com nzfs/zf l/1521
Types of special blocks

2024-11-05, 1pm Pacific

Video Recording

Investigating: zfs ddtprune -p 100 seems to cause corruption:

https://qithub.com/openzfs/zfs/issues/16713

Use deferred free mechanism for large deletes, to avoid OOM from too-many-ZIOs:

https://qithub.com/openzfs/zfs/pull/16722

Ztest on multiple pools: https://github.com/openzfs/zfs/pull/16526

Hold rangelock in zfs_getpages() on FreeBSD for DirectlO:

https://github.com nzfs/zf ll/1664

ZFS send use prefetched spill blocks: https://github.com/openzfs/zfs/pull/16701

Scrub all changes since previous scrub: https://github.com/openzfs/zfs/pull/16301

Implement default user/group quotas: https://qgithub.com/openzfs/zfs/pull/16283

Flush ARC async when exporting: https://aithub.com nzfs/zf /1621

“Special” allocation class failsafe feature: https://github.com/openzfs/zfs/pull/16185
o Why can’t this be turned on/off at runtime?

How does this slightly-less-early time work for everyone? How often should

https://github.com/openzfs/zfs/pull/16900
https://github.com/openzfs/zfs/pull/16835
https://github.com/openzfs/zfs/pull/16817
https://github.com/openzfs/zfs/pull/16818
https://github.com/openzfs/zfs/pull/16747
https://github.com/openzfs/zfs/issues/16913
https://www.youtube.com/watch?v=qQcSXScRo6s
https://github.com/openzfs/zfs/pull/16834
https://github.com/openzfs/zfs/pull/16761
https://github.com/openzfs/zfs/pull/16814
https://github.com/openzfs/zfs/pull/16215
https://github.com/openzfs/zfs/pull/16185
https://github.com/openzfs/zfs/pull/16301
https://github.com/openzfs/zfs/pull/16835
https://github.com/openzfs/zfs/pull/16820
https://github.com/openzfs/zfs/pull/16819
https://github.com/openzfs/zfs/pull/15215
https://www.youtube.com/watch?v=MmuEKvXwLfw
https://github.com/openzfs/zfs/issues/16713
https://github.com/openzfs/zfs/pull/16722
https://github.com/openzfs/zfs/pull/16526
https://github.com/openzfs/zfs/pull/16643
https://github.com/openzfs/zfs/pull/16701
https://github.com/openzfs/zfs/pull/16301
https://github.com/openzfs/zfs/pull/16283
https://github.com/openzfs/zfs/pull/16215
https://github.com/openzfs/zfs/pull/16185

10/8/2024, 1pm Pacific
Video Recording

OpenZFS Developer Summit
Discussed suspend when no redundancy
Snapshot of critical data (just preserve meta data)

9/10/2024, 1pm pacific

Video Recording

OpenZFS Developer Summit: submit your talk ideas to Matt by this Friday

2.3 release status (Brian)

ARC async teardown https://github.com nzfs/zf l/16215 [Klara]

Parallel ARC eviction https://aithub.com/openzfs/zfs/pull/16486 [Klara]

Parallel DBUF eviction (and search improvements)
https://qithub.com/openzfs/zfs/pull/16487 [Klara]

ZED fault diagnosis [Klara]

ztest with multiple pools https://github.com/openzfs/zfs/pull/16526 [Klara]

Fast Dedup is merged [Klara]

spa_namespace lock improvements https://github.com/openzfs/zfs/pull/16507
zio_flush: propagate ZIL errors https://github.com/openzfs/zfs/pull/16314 [Klara]
Ratelimits https://github.com/openzfs/zts/pull/16205

Adding userland as a new OS https://github.com/openzfs/zfs/pull/16492 [Klara,

pjd]

8/13/2024, 1pm Pacific
Video Recording

2.3 release status (Brian)

Removing legacy support (older FreeBSD and Linux kernels) [Klara]

Metaslab selection and weighting, especially with large records (16MB) [Klarg]
Metaslab sizing (16GB is not a good maximum with modern pool sizes) [Klarg]
Tunable to disable zfs_readdir prefetch https://github.com/openzfs/zfs/pull/16318
Fast Dedup status update https://qgithub.com/openzfs/zfs/discussions/15896
[Klara]

ARC statistics reset (Do we want an interface to reset all stats?)
https://github.com/openzfs/zfs/pull/16441

L2ARC: optionally cache MFU data only (but still MRU/MFU metadata)
https://github.com/openzfs/zfs/pull/16402

Scrub from last completed scrub: https://github.com/openzfs/zfs/pull/16301 [Klara]
Zpool reguid to a specific GUID: https://aithub.com/openzfs/zfs/pull/16239 [Klara]

Export: flush ARC in background: https://qithub.com/openzfs/zfs/pull/16215 [Klara]

https://www.youtube.com/watch?v=mN-UPaWmERs
https://www.youtube.com/watch?v=pAI_Tb5ik3c
https://github.com/openzfs/zfs/pull/16215
https://github.com/openzfs/zfs/pull/16486
https://github.com/openzfs/zfs/pull/16487
https://github.com/openzfs/zfs/pull/16526
https://github.com/openzfs/zfs/pull/16507
https://github.com/openzfs/zfs/pull/16314
https://github.com/openzfs/zfs/pull/16205
https://github.com/openzfs/zfs/pull/16492
https://www.youtube.com/watch?v=ChqQ_YYAHpk
https://github.com/openzfs/zfs/pull/16318
https://github.com/openzfs/zfs/discussions/15896
https://github.com/openzfs/zfs/pull/16441
https://github.com/openzfs/zfs/pull/16402
https://github.com/openzfs/zfs/pull/16301
https://github.com/openzfs/zfs/pull/16239
https://github.com/openzfs/zfs/pull/16215

OpenZFS Developer Summit CFP (Matt)

7/16/2024, 9am Pacific

Video recording

When should BRT be re-enabled by default?

o https://github.com/openzfs/zfs/pull/16337 needs review and merge

o Do we have a specific testing plan for this? | thought that at one point Pawel
said he had a large external set of tests for this...

Should we continue the earlier time meetings?

2.3 release schedule

Status of planning for dev+user summit

RFC: ZTS: Use QEMU for tests on Linux and FreeBSD

(https://aithub.com/openzfs/zfs/pull/15838) (Tino) - Sample run:
https://github.com/openzfs/zfs/actions/runs/995616441 1

OpenZFS Wiki - a lot users there - /s this needed7

(https: .

maybe remove those who d/dn t write anyth/ng to the wiki? (Tino)

State of TRIM support in FreeBSD, currently it’s not tested within ZTS (explicit

exclude via cli_root/zpool_trim/setup.ksh) (Tino)

I really wish that this recurring problem of cannot import pool after a reboot or

power failure could be solved in a more user-friendly way than the tip destroy pool

and recreate from backup source. If everything is OK, import pool. If not, the owner

should eg. starts zpool import -i in interactive mode and zfs then says what it

cannot restore and asks whether it should continue without it or whether it should

provide read-only data. The previous solutions with -c, -f, -F and -X and then

maybe nothing works also are really ugly, although up until the reboot everything

was, at least apparently, OK. (PS: | prefere zpool scrub every weekend because it

doesn’t do any harm.)

https.//qithub.com/openzis/zts/pull/16215 (ARC async teardown) (Don Brady)

Linux memory pressure update (Linux workaround, ZFS PR)

Is there a reason channel programs do not support creating clones? Should they?

o Do people have many success stories about Channel Programs in the wild?
I’'ve not heard many, and it seems like significant complexity for a feature
I've yet to hear of anyone using deliberately... - Rich E

o | know Jan B is using them for making bhyve VMs, and someone (I'm
drawing a blank on the name) is using it in their snapshot transfer solution
(A. Hettinger)

o | suppose | specifically ask because | know the Lua interpreter causes
KASAN to scream every time it’s run, and | don’t know if anyone wants to
do the work to fix that, as | think the patch is nontrivial. ..

https.//qithub.com/openzfs/zfs/pull/16301 - scrub txg

6/18/2024, 1pm Pacific

Video recording

https://www.youtube.com/watch?v=1BoXxarifw8
https://github.com/openzfs/zfs/pull/16337
https://github.com/openzfs/zfs/pull/15838
https://github.com/openzfs/zfs/actions/runs/9956164411
https://openzfs.org/w/index.php?title=Special:ListUsers&offset=&limit=500
https://github.com/openzfs/zfs/pull/16215
https://lore.kernel.org/all/20240711191957.939105-1-yuzhao@google.com/T/#u
https://github.com/openzfs/zfs/pull/16197
https://github.com/openzfs/zfs/pull/16301
https://www.youtube.com/watch?v=WXmcAFnjfWc

Send —no-encryption for -p/-R/etc without preserving encryption
https://github.com/openzfs/zfs/pull/15310 (Rich E)
EL7 goes EOL on June 30 (Tony H.)
Hierarchical bandwidth limits: https://github.com/openzfs/zfs/pull/16205 (pjd)
Libzpool - userland ZFS daemon for send/recv (pjd)

o Deduplicate OS specific code

o Treat userspace as another supported OS
Async ARC flush on export: https://qithub.com/openzfs/zfs/pull/16215 (Klara)

Dedup Quota: https://github.com/openzfs/zfs/pull/15889 (Klara)
DDT Preload: https://github.com/openzfs/zfs/pull/15890 (Klara)

Fast Dedup: https://github.com/openzfs/zfs/pull/15892 (Klara)
“flat” DDT entry format: https://qithub.com/openzfs/zfs/pull/15893 (Klara)

FDT Storage Class: https://aithub.com/openzfs/zfs/pull/15894 (Klara)
Dedup log https://github.com/openzfs/zfs/pull/15895 (Klara)

Dedup prune: https://github.com/openzfs/zfs/pull/16277 (Klara)

5/21/2024, 1pm Pacific

Video recording

Situation with memory pressure on Linux, especially with Multi-Gen LRU enabled
lately (Alexander Motin): see CONFIG_LRU_GEN_ENABLED and set_initial_priority()
function in 6.6 LTS kernel and up.

Hierarchical ratelimits functionality is ready for review (Pawel Dawidek):
https://qithub.com/openzfs/zfs/pull/16205

ARC Reference counting bug: https://aithub.com nzfs/zfs/i 15802 (Klara)
Dedup Quota: https://github.com/openzfs/zfs/pull/15889 (Klara)

DDT Preload: https://github.com/openzfs/zfs/pull/15890 (Klara)
Fast Dedup: https://github.com/openzfs/zfs/pull/15892 (Klara)

Taskq stats hitps://github.com/openzis/zfs/pull/16171 (Klara)
Vdeyv stats https://github.com/openzfs/zfs/pull/16200 (Klara)

Getting 2.3 in shape for release this fall

4/23/2024, 9am Pacific

Video recording

ZIO pipeline synchronicity problem (Alexander Motin)

NULL zios

OpenZFS Conference

Fast Dedup Reviews: https://qithub.com/openzfs/zfs/discussions/15896
o ZAP shrinking has been accepted
o Dedup quota needs a 2nd reviewer

Direct IO PR https://qgithub.com/openzfs/zfs/pull/10018

3/26/2024, 1pm Pacific

https://github.com/openzfs/zfs/pull/15310
https://github.com/openzfs/zfs/pull/16205
https://github.com/openzfs/zfs/pull/16215
https://github.com/openzfs/zfs/pull/15889
https://github.com/openzfs/zfs/pull/15890
https://github.com/openzfs/zfs/pull/15892
https://github.com/openzfs/zfs/pull/15893
https://github.com/openzfs/zfs/pull/15894
https://github.com/openzfs/zfs/pull/15895
https://github.com/openzfs/zfs/pull/16277
https://www.youtube.com/watch?v=8QtWEdRtBDY
https://github.com/openzfs/zfs/pull/16205
https://github.com/openzfs/zfs/issues/15802
https://github.com/openzfs/zfs/pull/15889
https://github.com/openzfs/zfs/pull/15890
https://github.com/openzfs/zfs/pull/15892
https://github.com/openzfs/zfs/pull/16171
https://github.com/openzfs/zfs/pull/16200
https://www.youtube.com/watch?v=habANXNHPWQ
https://github.com/openzfs/zfs/discussions/15896
https://github.com/openzfs/zfs/pull/10018

Vi recordin
As the zfs encryption layer developer isn’t there anymore is zfs native encryption in
actual state useful for production systems related to version 2.1.15 and 2.2.3 or if
not probably when?
Fast Dedup Reviews: https://qithub.com/openzfs/zfs/discussions/15896
o ZAP shrinking has been extensively reviewed by Alexander Motin, need a
2nd reviewer to sign off

Improvements to zinject: https://github.com/openzfs/zfs/pull/15953
Single file scrubbing: https://github.com/openzfs/zfs/pull/16018

JSON kstat for zpool status: https://github.com/openzfs/zfs/pull/16026

Speculative prefetch for reordered requests:
https://github.com/openzis/zfs/pull/16022

OpenZFS DevSummit survey for planning the upcoming 2024 conference

When a program want to start and needs memory the kernel free up memory from
used filesystem cache in linux but when you try that with zfs arc will not free
memory and the application cannot get its requests, so you have to deal with the
arc max kernel parameter before start the app. Will that change anytime in the
future ?

2/27/2024, 1pm Pacific
Video recording

Update ZFSd to match recent new features added to ZED (vdev properties for
io/checksum/slow counts that cause device replacement):
https://reviews.freebsd.org/D44043

Fast Dedup is up for review: https://github.com/openzfs/zfs/discussions/15896
Don’t stall MMP thread on slow I/O: https://github.com/openzfs/zfs/pull/15839
Support snapdir=disabled: https://github.com/openzfs/zfs/pull/15891

Klara has started work on improving arc_evict() for large memory systems

FYI, (O) days since last block cloning bug
(https://aithub.com/openzfs/zfs/issues/15933

1/30/2024, 9am Pacific

Video recording

OpenZFS 2.2.3 release: https://github.com/openzfs/zfs/pull/15836

Status of force pool export work: https://github.com/openzfs/zfs/pull/11082
Status of additional testings via QEMU: https://qgithub.com/openzfs/zfs/pull/15838

(sample: https://github.com/memilk/zfs/actions/runs/7709789531) (Tino Reichardt)
MMP pool suspend from slow disk (Don Brady)

Do we really still want part9? (Rich Ercolani)

1/2/2024, 1pm Pacific

Video recording

Block cloning bug recap

Ubuntu packages for releases (and main branch?)
Parallel import

Asynchronous ARC draining

https://www.youtube.com/watch?v=z7ond6CCLH0
https://github.com/openzfs/zfs/discussions/15896
https://github.com/openzfs/zfs/pull/15953
https://github.com/openzfs/zfs/pull/16018
https://github.com/openzfs/zfs/pull/16026
https://github.com/openzfs/zfs/pull/16022
https://docs.google.com/forms/d/e/1FAIpQLSdANHOwTC58ykmqutduaSGYCSEk9-NvoZ76-fVCB-Y3bjcp4g/viewform
https://www.youtube.com/watch?v=GhSNdTg8RiE
https://reviews.freebsd.org/D44043
https://github.com/openzfs/zfs/discussions/15896
https://github.com/openzfs/zfs/pull/15839
https://github.com/openzfs/zfs/pull/15891
https://github.com/openzfs/zfs/issues/15933
https://www.youtube.com/watch?v=fbvkgSFy5Oc
https://github.com/openzfs/zfs/pull/15836
https://github.com/openzfs/zfs/pull/11082
https://github.com/openzfs/zfs/pull/15838
https://github.com/mcmilk/zfs/actions/runs/7709789531
https://www.youtube.com/watch?v=dOhRPyQzTA0

e abd/bio alignment and splitting

12/5/2023, 1pm Pacific

Video recording
#15526 and related fallout: https://github.com/openzfs/zfs/issues/15526
Add slow disk diagnosis to ZED https://github.com/openzfs/zfs/pull/15469

BIO page splitting: https://aithub.com/openzfs/zfs/pull/15588
Block cloning tests: https://github.com/openzfs/zfs/pull/15631

ZIL prediction: https://github.com/openzfs/zfs/pull/15635
OverlayFS: https://github.com/openzfs/zfs/issues/15581

11/7/2023, 9am Pacific

Video recording

Add slow disk diagnosis to ZED https://github.com/openzfs/zfs/pull/15469
Online rollback with mmap()

arc_prune()

Arc_evict/dbuf_evict CPU usage

Integrating ARC with page cache

10/10/2023, 1pm Pacific

Video recording

e /il performance

9/12/2023, 1pm Pacific

Video recording

2.2 release is close to final RC

Parallel dataset syncing PR

Fast Dedup design

Scrub specific txg range design

Verifying data on pool import

Flushing various logs to optimize pool import time
BRT for file concatenation

“Zfs receive” error handling

8/15/2023, 9am Pacific
Video recording

e Reminder: OpenZFS Developer Summit October 16-17. CFP by September 5th
Email: matt@mahrens.org, including a 1-2 paragraph abstract.

ZED slow I/O auto-spare [Allan]

ZED enc-path auto-replace [Allan]

RAID-Z Expansion [Don]

Fast Dedup prototype update (with performance comparison) [Allan]

Per-user reservations [Allan]

ZIL locking refactor v2 #15122 [Alexander]

https://youtu.be/OnuaWyt8QZo
https://github.com/openzfs/zfs/issues/15526
https://github.com/openzfs/zfs/pull/15469
https://github.com/openzfs/zfs/pull/15588
https://github.com/openzfs/zfs/pull/15631
https://github.com/openzfs/zfs/pull/15635
https://github.com/openzfs/zfs/issues/15581
https://youtu.be/wy9M39Yb_7E
https://github.com/openzfs/zfs/pull/15469
https://www.youtube.com/watch?v=7WtPHzPEcx4
https://youtu.be/0b6uAdtMgnc
https://youtu.be/sLX-bKEDpNE
https://github.com/openzfs/zfs/pull/15122

e Tunable Compression Threshold #15174 [Rich]
7/18/2023, 1pm Pacific

Video recording

e Raid-Z Expansion https://github.com/openzfs/zfs/pull/15022 (Don)
e Gang ABDs causing alignment issues on 4Kn drives (Allan Jude)

e Review Request: https://aithub.com/openzfs/zfs/pull/15050 BRT for Linux (Allan
Jude)

e Z/ED Enhancements re: slow I/Os

e Are there any side effects to NOT unloading metaslabs (metaslab_debug_unload)?

e Test failures

6/20/2023, 1pm Pacific
Video recording

e RAIDZ Expansion (Don Brady)

e Add more Github Action runners (arm64, amd64, ppc64 via openstack machines of
the Oregon State University Open Source Lab (Tino Reichardt)

e Dedup improvements (Allan Jude)

5/23/2023, 9am Pacific

Video recording

e (OZDS dates (Matt)
e ZIL locking improvement (#14841)

4/25/2023, 1pm Pacific

Video recording

e Block cloning status after FreeBSD merge (Pawel Dawidek)

e Hierarchical rate limiting demo (Pawel Dawidek)

| get in some days / weeks 6x POWER and 6x AARCH VM’s for Github action
runners (4 Cores, 4GB RAM, 40GB Disk) /Tino

Update on 2.2 timing perhaps? Lots of cool stuff queued up

RAIDZ Expansion (anonymous vandal)

OSX support update

Direct IO Support

3/28/2023, 1pm Pacific

Video recording

e The OpenZFSonosx developers suggest it is time to decide if it is desired to merge
the macOS port. #12110 The PR is currently up to date, and is the latest installable
release.

e |O rate limiting (Pawel Dawidek, Allan Jude)

https://github.com/openzfs/zfs/pull/15174
https://youtu.be/HjkV7vuKATM
https://github.com/openzfs/zfs/pull/15022
https://github.com/openzfs/zfs/pull/15050
https://youtu.be/2p32m-7FNpM
https://www.youtube.com/watch?v=bhsbBo4tnrs
https://github.com/openzfs/zfs/pull/14841
https://www.youtube.com/watch?v=sZJMFvjqXvE
https://www.youtube.com/watch?v=vrTSukIwQzQ

2/28/2023, 9am Pacific
Video recording

Block Cloning status update (Pawel Dawidek)
Shared Slog PR introduction (Paul Dagnelie)
o https://github.com/openzfs/zfs/pull/14520
Discussed mirrored L2ARC and what it is not allowed, and possibly allowing
RAID-Z for special vdevs
I/O rate limiting properties issues (Pawel / Allan)
fsync to return error on failmode=continue (Allan Jude)

1/31/2023, 1pm Pacific

Video recording

Will 2.2 be branched at some point soon? (asking because overlayfs support is not
planned to be backported to 2.1.)

| recently submitted PR#14249, adding Chacha20-Poly1305 as an encryption
option. I'd like to talk to someone about next steps towards getting this PR
reviewed and merged. (Rob N)

ZFS Space calculations (raidz deflation)

More adaptive (data/metadata) ARC eviction: More adaptive ARC eviction. #14359

- openzfs/zfs - GitHub

1/3/2023, 1pm Pacific
Video recording

| recently submitted PR#14249, adding Chacha20-Poly1305 as an encryption
option. I'd like to talk to someone about next steps towards getting this PR
reviewed and merged. (Rob N)

Should the documentation have warnings about using native encryption, similar to
dedup? (Rich E)

o Several people who got burned by native encryption recently asked me why
there were no warnings around it if it has known bad failure modes, and |
didn’t really have a good answer.

o Klara investigating: https://qithub.com/openzfs/zfs/issues/12775

mmap issue: https://github.com/openzfs/zfs/issues/13608
Curious about the effort to update the ZFS On Disk Format document. Has this
been done? If so, where is the latest version?

o https://qgithub.com/ahrens/zfsondisk

12/6/2022, 9am Pacific

Video recording

Unmapped prefetch (requesting review)
https://github.com/openzfs/zfs/pull/14243

ZED configuration via vdev properties (requesting review)
https://github.com/openzfs/zfs/pull/13805

https://www.youtube.com/watch?v=LcHmXy34seA
https://github.com/openzfs/zfs/pull/14520
https://youtu.be/94HaCotHBAA
https://github.com/openzfs/zfs/pull/14070#issuecomment-1309116666
https://github.com/openzfs/zfs/pull/14070#issuecomment-1309116666
https://github.com/openzfs/zfs/issues/14413
https://github.com/openzfs/zfs/pull/14249
https://github.com/openzfs/zfs/pull/14359
https://github.com/openzfs/zfs/pull/14359
https://youtu.be/D6gOgkEG9X0
https://github.com/openzfs/zfs/pull/14249
https://github.com/openzfs/zfs/issues/12775
https://github.com/openzfs/zfs/issues/13608
https://github.com/ahrens/zfsondisk
https://youtu.be/atbW3Ecqm5s
https://github.com/openzfs/zfs/pull/14243
https://github.com/openzfs/zfs/pull/13805

e Top-level vdev properties (add a ZAP for the root of the pool for property
inheritance, for newly added disks)
e Bandwidth quotas

11/8/2022, 9am Pacific

Video recording

e quota performance
e ARC MRU/MFU
o BRT details

10/11/2022, 1pm Pacific

Video recording

e Are we still planning to release 2.2 in November?
o Would like to see the branch created before the end of this month
e We at iX has grown a need for OverlayFS for Docker purposes, so actively looking
on https://github.com/openzfs/zfs/pull/9600 and
https://github.com/openzfs/zfs/pull/12209 . The first seems to mostly need Linux
VFS expert review.
e Hackathon ideas spreadsheet

9/13/2022, 1pm Pacific

Video recording

e OpenZFS DevSummit talk announcement (Matt)
e How ZFS partitions disks (Michael Dexter)
e Status on encryption bugs (Hendrick)

o https://github.com nzf nzf mmit/61 12 1367 24
c4d7e8fad3c63e76
panic: zfs douf code destroys buffer still held by others on encrypted pool
https://www.illumos.org/issues/14003
https://jira.ixsystems.com/browse/NAS-113491
Updating encryption properties on a dataset makes all children unreadable
+ kernel panic
https://qithub.com/openzfs/zfs/issues/11679
https://github.com nzfs/zfs/i 1212

o O O O

o

o

8/16/2022, 9am Pacific

Video recording

e ZED configurability: does a vdev property make the most sense? Need 4 new
properties
o Possibly a root-vdev property, or recursive set
e Do we need a failmode=error (or failmode=fail). Where fsync() etc do not hang
forever, but actually return an error?

1

https://www.youtube.com/watch?v=CDe1_i37zVs
https://youtu.be/oNNTEIYX2zc
https://github.com/openzfs/zfs/pull/9600
https://github.com/openzfs/zfs/pull/12209
https://docs.google.com/spreadsheets/d/1ilt78urd1RmxACjd5OSQU6pGlRYp2RGRh1kFuVBgGeY/edit#gid=0
https://www.youtube.com/watch?v=pWSXah94Tw0
https://openzfs.org/wiki/OpenZFS_Developer_Summit_2022
https://github.com/openzfs/openzfs/commit/619c0123a513678d5824d6b1c4d7e8fad3c63e76
https://github.com/openzfs/openzfs/commit/619c0123a513678d5824d6b1c4d7e8fad3c63e76
https://www.illumos.org/issues/14003
https://jira.ixsystems.com/browse/NAS-113491
https://github.com/openzfs/zfs/issues/11679
https://github.com/openzfs/zfs/issues/12123
https://youtu.be/fi_ZKc_od54

Discussed investigating changing the default maximum size of a micro-zap
o Also discussed if the default size of indirect blocks should be lowered
(already a tunable)

7/19/2022, 1pm Pacific

Video recording

OpenZFS conference announcement (Matt)

o Matt will send out announcements later today
Relaxed quota enforcement for performance (Allan)

o When you’re close to quota, things get slow.

o Plan:

m Change to allow filesystem to go over quota by one txg worth of
dirty data or percent of quota, whatever less.

m For zvols, don’t enforce quota at all, or at least allow substantially
higher. Quota makes sense for ZVOLs though, at least in some rare
scenarios, e.g, thin provisioned ZVOLs.

o Discussion on whether the behavior should be opt-in via a property or
whether we can be a little more relaxed about quotas. Sentiment was that
avoiding a property is preferable.

o Expect a PR soon.

How best to store configuration for ZED (Allan)

o Currently, some variables are hard-coded in the ZED C code.

o It would make sense to make some of these configurable.

o Question: config file in /etc, or will some command line arguments to ZED
suffice?

o Decision: make it command line options to ZED, then users can use init
system features to override arguments.

o Still, there are use cases for making it a zpool property.

m Lengthy digression on a weird phantom error that bubbles up to
ZED on Linux with certain Broadcom chipsets. For such cases, a
zpool property would be appropriate.

What are the plans for 2.2 release? Or shall | merge scrub performance
optimizations into 2.1 branch? (Mav)

o If we stick to the previous cadence, then the due date for 2.2 is November.

o Features that are close to completion that we should include if possible

m Direct O

m BRT

Review requests

o https://github.com/openzfs/zfs/pull/12773 (spa_asize_inflation) (Allan)

o https://github.com/openzfs/zfs/pull/9372 (corruption healing recv) (Alek)
Has anyone experimented with directory scaling (how performance drops off with a
large number of files in a directory) (Allan)

o Allan will provide some data next time.

6/21/2022, 1pm Pacific

Meeting recording

https://youtu.be/GPgy9ATYeYY
https://github.com/openzfs/zfs/pull/12773
https://github.com/openzfs/zfs/pull/9372
https://youtu.be/WiyrHu6R8ow

Give an update on current status of the Direct 10 PR (Brian Atkinson)

o Wil require the app to not modify memory while write is in progress, but
have an opt-in safety check in the ZIO pipeline to catch it. If it is caught,
then all of the following happen:

m ZED event
m zpool status message
m write syscall fails with EINVAL

o Check is off by default because of bcopy+checksum overhead (bcopy is
dominant)

o Marking the page read-only to catch in-flight modification is not an option

o Brainstorming to avoid overhead:

m checksum without bcopy (susceptible to transient modification)
m opportunistic (only check in X% of cases, where X is low enough
that performance impact is low)
e Seems like this option has consensus.

o Concerns regarding in-flight modification & compression. Checksum might
match, but then decompression would fail. So, we need to make sure that
compression always copies the buffer, iff it's a userspace buffer
(abd_borrow_buf_copy doesn’t guarantee copy right now).

o Also: Brian has one weird failure on FreeBSD. Has a branch with more
debug statements & reproducer. Needs help from FreeBSD devs!

Zio taskq scaling for multiple pools (Allan)

o zio_taskqg_batch_pct defaults to 75% of CPU cores

o But with N pools, we create N times those threads, which is much more
than actually available CPU cores.

o Brainstorming session:

m Make such taskgs global
e Fairness & starvation shouldn’t be a problem because the
taskgs are FIFO
e But, fear of deadlocks if taskq operations are
interdependent. Are there any?
e Also: lock contention on taskq locks is amplified by making
them global.

o Conclusion: not an obvious solution, system-wide taskq is worth

experimenting. (=> good hackathon project)
Multiple user-keys for encryption (Jonathan Waldrep)

o UX proposal: use @ notation on the properties to distinguish different keys

(keyformat@key1, keyformat@key?, ...)
Soliciting preferences on #11679 solutions (Rich)

o NULL pointer deref on encrypted recv

o It’s arace in which you end up taking dbouf_write’s arc_write codepath,
which temporarily NULLs the buffers of what it’s writing, while something
else ends up doing a dbuf_read -> ... -> arc_buf_untransform_in_place,
which unconditionally hands the b_pabd in to decrypt from, and is
sometimes NULL unexpectedly.

o George: if the buffer is being written, it shouldn’t be discoverable in the first
place.

o Rich’s Summary provides details of how the condition happens.

https://github.com/openzfs/zfs/issues/11679
https://github.com/openzfs/zfs/issues/11679#issuecomment-1138941249

o George will take a look to understand why the buffer is discoverable.
OpenZFS Conference

o Dates: likely early November.

o Opportunities to help out are still available (see April 26 meeting)

5/24/2022, 9am Pacific

Meeting recording

Fiemap[Still needs to address comments from original PR7545] by rohan-puri - Pull
Request #9554 - openzfs/zfs - GitHub

Blake 3

Block Reference Table

Write throttle smoothing PR

04/26/2022, 1pm Pacific

Meeting recording

What about PR #12918 ? Will it be integrated ? (BLAKES)
o Looks like it’s moving forward.
o Needs reviews from requested reviewers.
Matt: Thoughts on the next OpenZFS Conference.
o High interest in an in-person event among the meeting attendees.
o Safety measures: decide closer to the conference. But don’t relax the
guidelines after announcing them.
o Matt asks for a community member to help with organizing the conference:
m Work with sponsoring companies
m Catering
m AV
m Venue
m Date
o Perk: helping organize means some control. e.g., venue location. The Bay
Area would still be a requirement, though.
Allan: Linux Namespace PR update
o Wil hold fd of the namespace (procfs path) to keep it alive while dataset is
jailed. Results in slight Ul change: refer to namespace by procfs path.
Allan: Write Inflation PR
o Needs help with a failing negative test.
Michael Dexter: Can OpenZFS native encryption be recommended with confidence
or specific caveats, not unlike deduplication?
o Send/recv has several known bugs.
m See Rich’s spreadsheet (lots of these are likely duplicates of each
other)
o Standalone (= without send/recv) has few bugs.
m lllumos has an open bug related to projectquota upgrades.

https://youtu.be/DLUIAn2jL9g
https://github.com/openzfs/zfs/pull/9554
https://github.com/openzfs/zfs/pull/9554
https://youtu.be/fTIJgGpV3HE
https://github.com/openzfs/zfs/pull/12918
https://docs.google.com/spreadsheets/d/1OfRSXibZ2nIE9DGK6swwBZXgXwdCPKgp4SbPZwTexCg/edit
https://www.illumos.org/issues/14003

m Alex Motin: some TrueNAS / FreeNAS users are using native
encryption already, plan is to only support it, instead of GELLI, in
future releases.

m Zzfs change-key has an open issue

o No crisp answer to the question.

e Rich: update on compression early-abort, using 1z4 as heuristic

o He pushed a bunch of more data.

e BRT: what'’s the status of the work?

o GitHub branch was last updates in February

o Pawel just didn’t get around creating the upstream PR. Will try to do that
this week.

o Limitation: with encryption, currently only copies within the same dataset are
covered by BRT. We can lift that limitation in a later PR, for datasets in the
same clone family.

o Linux copy_file_range has been hooked up.

o FreeBSD doesn’t have an equivalent yet, so the PR adds a syscall.
Long-term, Pawel hopes FreeBSD will grow a generic VOP interface.

e Request for reviews:

o #13130 support incremental receive of clone streams (DRR_FLAG_CLONE)

o #12767 fix use-after-free of znode_t in race between zfs_zget and
zfs_rmnode/zfs_znode_dmu_fini

o #9372 corruption correcting recv

03/29/2022, 1pm Pacific

Meeting recording

e Update on compression (Rich)
o—profmisetHi-stop-eventaalty
o Design review requested for PR #13244 zstd “early abort”

m Goal was more or less “make higher zstd levels more generally
useful”. They currently aren’t in scenarios with mixed compressibility
data due to high CPU cost on incompressible parts.

m Approach: use cheap compression algorithms as heuristics to
determine whether a large block (>= 128k) is compressible. Only
use the high zstd level if heuristic matches. Currently, heuristics are
LZ4 first, then zstd-1.

m Benchmark results:

e The Pi 4 compression chart on incompressible data is
pretty...drastic, going from over 2 hours to 15 minutes to
recv a 41 GB dataset at zstd-15. (It’s probably even more
drastic for 18, but that might take over a day to get the
baseline for...)

e The Ryzen X chart isn’t ither, 4+ minutes to under
1 at zstd-18.

e Peak losses observed in compression savings were under
100 MB across a 41 GB fairly incompressible and 54 GB
very compressible dataset, which seems more than

https://github.com/openzfs/zfs/issues/12123
https://github.com/openzfs/zfs/pull/13130
https://github.com/openzfs/zfs/pull/12767
https://github.com/openzfs/zfs/pull/9372
https://www.youtube.com/watch?v=8ugj9V6hTR4
https://github.com/openzfs/zfs/pull/13244
https://user-images.githubusercontent.com/214141/160515419-51de7625-8e4f-4913-a317-fc2e439f54d5.png
https://user-images.githubusercontent.com/214141/160515419-51de7625-8e4f-4913-a317-fc2e439f54d5.png
https://user-images.githubusercontent.com/214141/159585202-fa6d0f3d-8606-463c-a669-e5bde187d1e0.png

o

acceptable to me - and there’s an easy tunable if you'd like
to not use it.

m Regarding correctness: Since it doesn’t change the compression
parameters, it doesn’t produce different compressed results, either
the same compressed results or uncompressed.

m Could use reviewers, not that it’s a particularly invasive change (I
have an even less invasive version, just want to benchmark the
additional overhead of it isn’t noticeable)

m Could have a dataset parameter to control whether it’s tried or not, if
desired

m Probably also works with LZ4+gzip-1 on gzip, though | haven’t tried
the experiment yet.

m Aspects discussed during the meeting that need follow-up:

e Add kstats to keep track of heuristic’s decisions. Will help
characterize different datasets and determine when this is
useful.

e Need to determine the worst-case
CPU-time-saved/compression-lost ratio due to this feature.

o Synthetic benchmark where we always run Iz4,
zstd-1, and zstd-4. (zstd-4 is the first level at which
this mechanism kicks in.)

o A pathological dataset where 1z4 and zstd-1 heuristic
match, but the data is not zstd-4 compressible.

e Consider publishing the scripts that create the datasets, run
the benchmarks, and post-process results.

(Below this is just negative results, feel free to skip if people aren’t interested
in why updating |L.Z4/zstd/gzip don’t look like wins currently)
LZ4 update:

m Branch works, 1z4_version property lets you swap between 1.9.3
and legacy at will per dataset

m Want to do more stress testing, add more tests, teach ztest to
randomly swap that property while doing its other games, but...

m Not convinced the compressor’s a win, really, performance or
savings wise

e 5900X incompressible chart

e 5900X compressible chart

m No feature flag needed, older LZ4 happily decompresses it, even
with a version number hidden past where the L.Z4 size “header”
thinks the stream ends to avoid breaking older readers

m Send/recv prints an annoying message about not knowing the
Iz4_version property if you send -p it to someone who doesn’t know
it, but it doesn’t error out

m PR If | find a compelling reason to use the new version

zstd update

m Branch works, swapping compressor with zstd_version property

m Plays nice with the above 1z4_version property too

m Benchmarking
1.5.0/1.5.1/1.5.2/1.5.0+(SSE|NEON)/1.5.2+(SSE|NEON) continues

https://www.dropbox.com/s/2jun8ryhr53dsi1/lz4%201M%20lowcomp.png?dl=0
https://www.dropbox.com/s/4weiu2zhrgaofns/lz4%201M%20highcomp.png?dl=0

Preliminary results not very compelling:

e (“s” versions built with SSE2 optimizations and kernel_fpu

dance)

e 5900X incompressible chart

e 5900X compressible chart
Same thing about not needing a feature flag as L.Z4 - though zstd
already had a version in its header field, so no fun games needed
PR: same as LZ4, if | find a use case it's an improvement for or a
flaw in my approach that results in better performance

o gzip update

Kidding...

...but | really did experiment with it.

Tried benchmarking a few different zlib forks instead of Linux builtin,
none were compellingly different so far

Quick and dirty graphs of zlib-ng, which was the most different, here
Seems like at best maybe the decompressor might be worth
examining, and the SIMD improvements don’t seem to make much
difference for our use cases.

e Questions about tests like refquota_oe8_neg that are giving false fails after the write
inflation change PR #12773

o Solution: make the test lower the dirty data max tunable.

e Christian: questions on TBD PR that makes ZTS detect if a test does not properly
restore tunable values.

o test-runner.py is an internal interface, zfs-tests.sh is the external interface of
the test suite. Ok to change / cut down test-runner.py functionality that is no
longer in use.

o If we can detect the tunable change, can’t we just reset them and continue
running tests? Maybe, if we assume any tunable can be written can be
written in any order. But a test that doesn’t restore tunable values properly is
a bug. So, just fix any broken tests once in this PR, then this problem
should be solved going forward.

03/01/2022, 9am Pacific

Meeting recording

e Update on compression (Rich)

o Have a ~20% done prototype for modular compressor versions, ended up
spending more free time on following up for #13078 first, hope to finish that
in the next week or so

o Have already prepared branches for updated L.Z4 (1.9.3) and zstd (1.5.2)

Was hoping to wait until Iz4 had a new release (they said ETA H1
2022), just to avoid churn or wanting to cherrypick changes since
release

Want to benchmark 1.5.0/1.5.1/1.5.2, they made a number of
performance/compression ratio changes between 1.5.0 and 1.5.1,
some of which seem like they might only make sense if we’re also
using their SIMD knobs - see 1.5.1’s release notes (and 1.5.0, for

https://www.dropbox.com/s/f4ft7qjlpnmlfoc/zstd%205900X%20incompressible%201M.png?dl=0
https://www.dropbox.com/s/b2o1f2a2xj7th6k/zstd%205900X%20compressible%201M.png?dl=0
https://github.com/openzfs/zfs/issues/13245
https://github.com/openzfs/zfs/pull/12773
https://youtu.be/XZ0a2Ctn38I
https://github.com/facebook/zstd/releases/tag/v1.5.1
https://github.com/facebook/zstd/releases/tag/v1.5.0

the initial perf improvement mentioning wanting SSE2) to see what |
mean.
e Review requests: (Allan)
https://qithub.com/openzfs/zfs/pull/12444 (small, zfskeys rc.d script)
o https://github.com nzfs/zf /12 (write smoothing)
o https://github.com/openzfs/zfs/pull/12773 (spa_asize_inflation reduction)
o https://github.com/openzfs/zfs/pull/12263 (linux namespace delegation
support)
e Review requests: (Christian)
o https://github.com/openzfs/zfs/pull/13130 support incremental receive of
clone streams (DRR_FLAG_CLONE)
o https://github.com/openzfs/zfs/pull/12767 fix use-after-free of znode_t in
race between zfs_zget and zfs_rmnode/zfs_znode_dmu_fini

o

(U] (V)

02/01/2022, 1pm Pacific

Meeting recording

e Update on BRT (Block Reference Table) (Pawel)
o Pawel claims 98% ready.
o Design changes since last update

m [f a block is already in dedup table, we now bump the dedup
refcount instead of starting a second reference counter in the BRT.

m ZIL: now implemented. Log records just use block pointers. No use
of object IDs, since ZIL is per-objset, but BRT operation logged in
the ZIL depends on state of source and dest objset.

o Further potential design changes discussed in the meeting:
m Have a per-VDEV BRT to avoid repeating the VDEV ID in each entry.
e => on-disk & memory space savings
o Discussion about generality of the implementation

m Current implementation defines two new FreeBSD-specific syscalls

m Having the Linux copy-reflink IOCTL would make the mechanism
“just work” with existing Linux tools.

m Also, there’s Linux copy_file_range, which “gives filesystems an
opportunity to implement "copy acceleration" techniques, such as
the use of reflinks.

m The MacOS syscall is path-based, but Lundman says in chat that
the filesystem implements VNOP_CLONEFILE, which operates on
vhodes.

m |deas about a command line tool / daemon to trigger dedup/BRT
offline (i.e., after duplicates were written).

o Timeline
m Pawel first needs https://githubb.com/openzfs/zfs/pull/13027 to be
merged.

m Then he can make a PR.
m Code will need more reviewers.
e Encryption Bugs (Rich Ercolani)
o (Was not able to make it to the meeting, summary written ahead of time.)

https://github.com/openzfs/zfs/pull/12444
https://github.com/openzfs/zfs/pull/12868
https://github.com/openzfs/zfs/pull/12773
https://github.com/openzfs/zfs/pull/12263
https://github.com/openzfs/zfs/pull/13130
https://github.com/openzfs/zfs/pull/12767
https://youtu.be/hij7PGGjevc
https://github.com/openzfs/zfs/pull/13027

o One set of bugs (#12981 et al) got a workaround from George Amanakis -
thanks Georgel!

o Another bug (#12720) manifested as an error during raw send/recv. The
underlying cause is faulty on-disk dnodes with contradicting
bonuslength/spill pointer flag in < 0.6.4 versions of OpenZFS. Related PR
#13014.

o WIP PR #12943 for issue #11679 had an issue reported, going to try and
ameliorate with even more locking, but could use someone with familiarity
with send/recv a/o the ARC code to help, as I'm pretty sure this is just
papering over something being done incorrectly.

m Issue #11679 has drawn lots of attention. Someone familiar with the
DMU should take a look.

o WIP | should circulate for extending FORCE_INHERIT/FORCE_NEW_KEY to
allow you to escape situations like #12614, need to write more tests, feel
free to ping me if you're in this situation and want to try it. (Also trying to
figure out what a reasonable thing to do in most cases when you receive a
change-key in an incremental send is - so far, all of the options seem to
violate POLP sometimes.)

m Downside: not insignificantly sized foot-gun to allow you to
change-key -f

m Storing last N copies of the wrapped key and trying them all would
help you avoid that, but then you have N ways to unlock the key...

o Someone reported issues with receiving unencrypted under an encrypted
and not unlocked parent (#13033; not data loss or anything, just mentioning
for completeness)

e Add Blake3 Checksum (PR #12918) (Tino)

o Are there open issues before inclusion?

o Benchmarks (Unit is MiB/s, more is better)

o Is Blake3 a “strong” checksum, in the ZFS sense (= is it dedup-safe)?

m [tis a cryptographic checksum .
m The patch adds blake3 to the list of supported dedup checksums
e |Looking for additional reviews:

o https://qgithub.com nzfs/zf Il/12773 (reduced spa_inflation)
https://qithub.com/openzfs/zfs/pull/12868 (write smoothing)
https://github.com/openzis/zfs/pull/12263 (linux user namespace support)
https://qithub.com/openzfs/zfs/pull/12789 (log spacemap load time)
https://qithub.com nzfs/zf l/12767 (use-after free of znode_t)

o O O O

01/04/2022, 1pm Pacific

Meeting recording

e Encryption Bugs (Rich Ercolani)
m Rich’ r heet is now licl ibl
m One new bug was reported that doesn’t involve replication: #12931
(dereferencing a wild pointer in the checksum code with encryption+dedup
on under heavy load)
o Compressors (Rich Ercolani)

https://github.com/openzfs/zfs/pull/12981
https://github.com/openzfs/zfs/issues/12720
https://github.com/openzfs/zfs/pull/13014
https://github.com/openzfs/zfs/pull/12943
https://github.com/openzfs/zfs/issues/11679
https://github.com/openzfs/zfs/issues/12614
https://github.com/openzfs/zfs/issues/13033
https://github.com/openzfs/zfs/pull/12918
https://github.com/openzfs/zfs/pull/12918#issuecomment-1008202352
https://en.wikipedia.org/wiki/BLAKE_(hash_function)
https://github.com/openzfs/zfs/pull/12773
https://github.com/openzfs/zfs/pull/12868
https://github.com/openzfs/zfs/pull/12263
https://github.com/openzfs/zfs/pull/12789
https://github.com/openzfs/zfs/pull/12767
https://www.youtube.com/watch?v=tyCk376bC9A
https://docs.google.com/spreadsheets/d/1OfRSXibZ2nIE9DGK6swwBZXgXwdCPKgp4SbPZwTexCg/edit#gid=1560550070
https://github.com/openzfs/zfs/issues/12931

m Issue that sparked the discussion: #12840

m Summary: Replacing the compressor code causes problems if the output is
not bit-for-bit identical.

m Problem #1: Uncompressed ARC + Compressed On-Disk + L2ARC

e Assume uncompressed ARC, which holds the data of a block that is
compressed on disk.

e The L2ARC invariant is that it stores a bit-for-bit identical copy of the
on-disk data.

e 30, the L2ARC write must recompress the uncompressed copy.

e But if the compressor changed, the recompressed copy will not be
bit-for-bit identical to the on-disk data, and the L2ARC read will fail
with a checksum error, resulting in an L2ARC miss.

m Problem #2; NOP writes

e TODO explain

m Problem #3: Dedup

e Hashing is against the compressed blocks. Thus, blocks
compressed with the new compressor will not dedup with blocks
compressed by the old compressor.

m Initial consensus: all three problematic cases are very minor. We can just
replace-upgrade decompressor and Compressor.

e We already did that inadvertently with the different gzip
implementations (QAT, Linux, FreeBSD).

e Uncompressed ARC in general should be considered an edge case.
Users should expect that it might not interact perfectly with all other
features (such as L2ARC).

e For L2ARC, we can add a small check that marks recompressed
buffers which are not bit-for-bit identical ineligible for L2ARC.

m |74 (Rich) and ZSTD are two concrete upgrades that are planned.
m Special treatment of the LZ4 compressor upgrade?

e | 74 is the default on many systems.

e A replacement-upgrade of the LZ4 compressor would thus affect
many users of dedup.

e 30, should we require users to opt-in for LZ4 upgrades, e.g., via a
feature flag? This would require keeping multiple LZ4 compressor
versions around.

e Decision: Wait for 1 month to see whether someone comes up with
a scheme that requires user opt-in. If there is no solution, go ahead
with a replacement-upgrade.

m NB: For ZSTD, which changes more frequently, we might not want to
maintain multiple compressor versions. So, whatever will be decided for L.Z4
does not set a precedent for ZSTD.

12/07/2021, 9am Pacific

Meeting recording

e ZFS Interface for Accelerators (“Z.1.A.”); Jason Lee (Los Alamos National Laboratory)
o Slides

https://github.com/openzfs/zfs/issues/12840
https://www.youtube.com/watch?v=_097QvCwT4Y
https://drive.google.com/file/d/1KTkR-ArSj7Pt2KTarNeWxqGsHNIQA4cf/view

O

O @ O O

o

Summary: make use of hardware accelerators for compression, checksum, raidz
Main idea:

m Data is owned by either the Host CPU or the accelerator.

m ZIO pipeline refers to data owned by the accelerator through a “handle”.

m [If the accelerator doesn’t support one step of the pipeline, data is moved
back to the host for that step. But as long as the next step is supported, we
can avoid copying back-and-forth.

m Discussion about what safeguards should be put in place to keep track of
ownership / source-of-truth of the data. E.g., during ABD copy.

Software architecture provider/consumer of accelerators:

m “Data Processing Unit Services Module” decouples consumers from
providers

m Non-Restrictive License towards consumers; GPLv2 towards providers

QA / Discussion

m Watch out for byte-for-byte compatibility, otherwise incompatible with
“uncompressed ARC + L2ARC” use case.

m Maintainability / Testing: at least a software provider should be part of the
OpenZFS repo so that we can prevent accidental breakage (e.g. when
changing ZIO pipeline implementation)

m Public availability of actual hardware & corresponding providers would be
critical for upstreaming.

m Discussion on resource contention (e.g. two zpools sharing one accelerator)

Native encryption needs some work (Rich Ercolani)
Spreadsheet of encryption bugs
Biggest and scariest: incorrect dnode refcounting

m Panic stacks look very different, trapping at different ASSERTs

m Not reproducible on x86(_64), but on SPARC and on PowerPC

m Reproduces within 24 hours on a PowerPC 64 KVM VM (but not
gemu-emulated)

Earliest occurrence dates all the way back to introduction of native encryption
Other scary category: encrypted send/recv corrupts receive-side dataset

m One can be triggered by zfs change-key => will use wrong wrapping key
Problem: the community is not aware of a company that could fund fixing this.
Strategy: bring it up at future meetings to raise awareness.
Request for reviews:
Allan: calculate a more realistic allocation inflation multiplier:

https://qithub.com/openzfs/zis/pull/12773
Alek: healing recv patch - https://qithub.com/openzfs/zfs/pull/9372

10/12/2021, 1pm Pacific

Meeting recording

[]
O
O

Block Reference Table update and a demo (Pawet Dawidek)
A lot of progress has been made and was demonstrated through the demo
There are still a few interesting problems to be solved specifically:
m Dedup interaction - Freeing a block that is part of both the BRT and DDT
m Making the BRT “sendable”
m Overall memory consumption of feature under certain conditions

https://docs.google.com/spreadsheets/d/1OfRSXibZ2nIE9DGK6swwBZXgXwdCPKgp4SbPZwTexCg/edit#gid=1560550070
https://github.com/openzfs/zfs/pull/12773
https://github.com/openzfs/zfs/pull/9372
https://www.youtube.com/watch?v=VsBNknvrAas

Linux User Namespace Support https://github.com nzfs/zf l/12263 (Allan
Jude)

All of the issues in the PR have been addressed

The feature should be landing soon

VDEV Properties https://qgithub.com/openzfs/zfs/pull/11711 (Allan Jude, Mark
Maybee)

Some of the feedback has been addressed but there is still some progress to be
made

Encryption Incompatible On-Disk Format Change for illumos and OSX - (Jason
King)

Jason came up with a solution that entails using one of the reserved bits on the
object set flag field. The idea is to use that in order to migrate pools over time past
this format change.

OpenZFS Hackathon Ideas

Allan brought up the idea of going through our bug backlog and picking bugs that
would be nice for people to work on during the hackathon

List:
https://docs.google.com/spreadsheets/d/1byObaKOclYBpaJizPUNWKMeHkIUAUF
kRbTK71K8eW9qg/edit?usp=sharing

9/14/2021, 9am Pacific
Meeting recording

[]
O

O O O e O

OpenZFS Dev Summit: talks & schedule (Matt)
The talks and other Info can be found in the summit’s website:
https://openzfs.org/wiki/OpenZFS Developer Summit 2021
Like previous years we will be streaming the event live on Youtube and provide the
recordings there for future reference.
There will be a hackathon on the second day as usual. This time it would be great if
people from this meeting and the general leadership could lead some of the
hackathon efforts. One piece of feedback that we got from previous years was that
it would be nice to have people available to help newcomers get started.
https://github.com/google/triage-party
Speed up zfs list (ready for review)

ithub.com nzfs/zf ll/11
Status: Looking for reviewers
This work adds more fields to an existing optimization where we fetch specific fields
from datasets without actually opening their objsets (object sets), which leads to a
300%+ performance improvement for those scenarios.
Future ideas/work: Would be for zfs destroy to take advantage of the same
optimization and just print the datasets to be destroyed in no-op scenarios without
actually calculating the space freed, which is expensive.
ZFS allow for ‘encrypted’ send only, to only allow encrypted sends
Question for this feature was brought up in FreeBSD podcast last week
The idea is that the receiving system of such a send-receive stream won’t be able
to access/read the plain text data of the encrypted dataset.
This level of security is not currently supported and probably involves some
changes to be designed outside of the ZFS kernel module.

https://github.com/openzfs/zfs/pull/12263
https://github.com/openzfs/zfs/pull/11711
https://docs.google.com/spreadsheets/d/1byObqK0clYBpgJfzPUNWKMeHkiUAuFkRbTK71K8eW9g/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1byObqK0clYBpgJfzPUNWKMeHkiUAuFkRbTK71K8eW9g/edit?usp=sharing
https://www.youtube.com/watch?v=-WwwomHkAZg
https://openzfs.org/wiki/OpenZFS_Developer_Summit_2021
https://github.com/openzfs/zfs/pull/11080

Could be a good hackathon topic for the summit!

ZTS may fail in weird ways when re-ran on the same disks

Igor has been experiencing ZTS issues in DIlOS where the first time the ZTS runs
successfully but subsequent runs experience sporadic failures. His hypothesis so
far is that the labels are not cleared for the tests that run on disk-based pools (as
opposed to file-based ones).

Historically, we’ve seen that all test cleanups work when tests pass, but sometimes
they do experience issues when tests fail. Proper error-handling and cleanup for all
possible scenarios during a test failure can get tricky.

Igor will be filling an issue after he comes up with a minimal reproducer and/or a list
of the troublesome tests so we can test whether the same issues come up in the
OS'’s officially supported by the OpenZFS repo.

Issue Triaging & Stalebot

There exist some concerns within the community about Issue Triaging and the use
of the Stalebot to mark and close them.

lllumos has been occasionally hitting a panic described in
https://www.illumos.org/issues/14003 , which apparently was also reported in
OpenZFS under https://github.com/openzfs/zfs/issues/6881 once but was
subsequently closed by Stalebot.

The underlying problem seems to be issue involvement and triaging from the
community. There’s recently been efforts from the leadership to assign specific folks
to help with PRs (ensuring that they get the attention of the right reviews and people
to test them) but unfortunately issue triaging is something that people do on a
volunteer-basis. In the meantime the stalebot mark old issues as Stale and if there is
no activity on them for 90 days, only then closes them.

The next steps on this would be to start a discussion on the issue and encourage
hackathon ideas around it during the summit.

8/17/2021, 1pm Pacific

Meeting recording

OpenZFS call for presentations (matt)

7/20/2021, 9am Pacific

Meeting recording

OpenZFS Dev Summit: Dates, planning, etc.

- Registration for talk proposals opens on July 23rd and deadline is on
August 30th

- Conference Nov 8-9th

- Remote or hybrid (in-person and remote) conference is being discussed.
Would folks be interested in the hybrid option? Only Allan expressed interest. Most
interest is in remote-only.
Run ztest with asan (Address Sanitizer malloc debugger) (Matt/Mark)
There was some initial issue with ztest, issue 12215 that needs to be tracked down
before we can enable ASan
Related: MarkJ@FreeBSD also using KMSAN:
https://github.com/openzfs/zfs/pull/12383
Status update on Panzura’s temporal dedup?

https://www.illumos.org/issues/14003#note-1
https://github.com/openzfs/zfs/issues/6881
https://youtu.be/D56PfP7KSCs
https://youtu.be/5Lby_Vl6H88

(matt:) looks like the last update was 4/28/2020, they have “de-prioritized” this upstreaming

work

No one on the call has update.

o e e o

Allan Jude:

- Linux Namespace support PR12263 is ready for review

- About time to remove WIP status for vdev properties PR11711, new tests are
being written.

- Klara is working on zvol performance, if you have known pathologies, please share
Allan Jude brought up enabling LZ4 compression by default.

Ryan Moller suggests changing default for xattr to SA

Alexander Motin suggests changing default zvol block size from 8kb to 16kb
Discussed possibly forcing allocations to be far apart on the disk (ala ditto blocks) to
improve flash performance

Xattr compat (Ryan): https://github.com/openzfs/zfs/pull/11919

Requesting design/code review. Tony to reach out to Brian.

Formalize a procedure for ‘erratas’, like the encryption+ project dnode issue, or
even the zstd big-endian issue (like a bug@ not a feature@ flag)

Due to zfs projects being ported after encryption, #7177 (include the project dnode
as part of the objset hash on encrypted datasets) was missed (this appears to have
happened with the macOS port as well). As a result, there are now encrypted zfs
datasets on illumos that are incompatible with OpenZFS and vice versa. While it is
possible to re-try any objset hash failures for compatibility between the two, ‘fixing’
such a dataset presents some thorny issues. One approach that was floated in the
illumos community (see
https://illumos.topicbox.com/groups/developer/T1981ce734a4a8c50-M4a3b3cOaff
56debacOceddfc) was to propose an SPA feature that’s largely a dummy feature on
non-illumos platforms (i.e. is ighored), which would allow for explicit identification of
the two pools.

6/22/2021, 9am Pacific

Meeting recording

[]
O

Whatever happened with ztour? Is anyone working on it or an equivalent? (Rich)
ZTOUR was a FUSE project with ZDB-like functionality. It would mount a pseudo
filesystem where one can look at on-disk metadata through files and directories in it.
It was started by Don Brady and demoed during the hackathon of a ZFS Developer
Summit a few years back.

No one is currently working on it and there don’t seem to be any alternatives.
People in general think it is a good idea so if anyone is interested in picking that up
let Matt know and he can connect them with Don, or just bring Don to the next
Leadership meeting.

Aside: Something like ZTOUR may be needed for the object-storage project (see
below) for exploring the backend’s state.

Linux User Namespace Support https://github.com/openzfs/zfs/pull/12263

First PR is out and everything seems to be in order.

The commit implements INGLOBALZONE() for Linux and it tries to map all the jail
(FreeBSD)/zone(Solaris/illumos) code to their respective Linux counterparts.

https://github.com/openzfs/zfs/pull/11919
https://illumos.topicbox.com/groups/developer/T1981ce734a4a8c50-M4a3b3c0aff56de6ac0ceddfc
https://illumos.topicbox.com/groups/developer/T1981ce734a4a8c50-M4a3b3c0aff56de6ac0ceddfc
https://youtu.be/nVYeW48SxWk
https://github.com/openzfs/zfs/pull/12263

Allan is interested in reviews but more importantly wants to make sure that people
are aware of this change and they get to double-check that it doesn’t break any of
their existing workflows.

As a future goal we may want to add additional testing for the jails code too since
we are here. The ZTS code had(has?) some conditional logic to ensure that most of
its tests pass in a local zone in Solaris/illumos. We may want to use that code as a
reference point and, once verified, change it appropriately for jails and Linux
containers.

ZREPL bugs

There have been a couple of recurring bug reports that stem from zfs send and we
have a reproducing dataset for one of them.

The best way forward would be to file an official bug so others are also aware of it
and ping Paul Dagnelie.

Update on ZFS-on-object-storage (Matt)

Overview:

m We want ZFS to be able to consume object storage (currently only block
storage is supported). The idea here is to use something like S3 for backend
storage instead of “traditional disks/drives”. This can be cost efficient
especially in cloud environments like AWS where S3 is a quarter or fifth of
the cost of EBS.

Update:

m We are currently on our way to an initial implementation and most of the
Delphix ZFS developers are slowly getting involved in the development of
this project.

m We've also opened an issue in the repo online where we give an overview of
the project and we showcase the preliminary user interface in the CLI.
Feedback from the community is welcomel!

Other Design Details - User Agent & Zettacache:

m The general use-case within Delphix is databases which means random
writes with small record sizes (as opposed to backups where one can use a
big record size and never look back). For this reason we want to combine a
lot of small blocks when sending them to the block storage. This way we
can ignore the latencies of the backend. For writes that can work well as
they can be batched from our side (in the ZIL can be used to persist the
writes closer in the access hierarchy).

m Reads unfortunately are a different story as batching them is not as
straightforward and, and waiting for dozens of milliseconds is too slow. We
considered using the L2ARC to alleviate this but, besides the fact that it can
take up too much memory on the system, its eviction policy is not great and
that in turn affects our hit rate.

m For that reason we have an agent that handles all the object store 1/0O -
including the batching and the caching of data locally. The agent runs in the
userland and it is written in Rust.

5/25/2021, 1pm Pacific

Meeting recording

New maintainers (Matt)

https://youtu.be/GKusXS8T_KY

O O @ O e

Brian has been the sole maintainer for ZoL -> OpenZFS for almost a decade now.
The volume of contribution and users has been increasing and we need more
people

Matt and Tony Hutter will be joining him as maintainers

Tony Nguyen, John Kennedy, and Mark Maybee will also be helping out by ushering
incoming PRs through the review process (e.g. finding reviewers, applying the
appropriate tags, and merging them).

Settings vdev properties at pool create time (Allan)

This is not a pressing matter for getting the vdev properties PR merged, but if
anyone comes up with a good idea on how the argument parsing should be done
for this, they should definitely send an email to Allan or open a discussion in the

mailing list.
Getting zpool status details via pool properties (scrub progress, etc) (related issue)
(Allan)

Some of these properties you can get with the vdev properties PR as it is right now
but certain pool properties like a scan estimate or other things that admins see from
commands like zpool-status are harder to get.
It would be useful to expose some of these properties through zpool-get as-is or at
least parts of them.
If we add a bunch more pool and dataset properties, do we need a new ‘verbose’
type or something, where a lot of these new (not for human consumption)
properties are not displayed by default?
zpool/zfs get all has been pretty verbose in general as more properties are piling up
on it and its output is not very friendly in terms of parsing it programmatically
Allan and Matt are considering a potential alternative command option that’s more
human readable and outputs some important properties (not all of them).
Userland zfs (PR) (Mayank)
The above PR needs reviewers
There is a lot more work to be scoped and done. Ideally the upstreaming work from
the cStor folks would involve incremental PRs adding more IOCTLs or other minimal
functionality that can be tested independently in the userland and slowly become
part of the existing testing

m Allan brought up an old idea of the userland send/receive tests

m Other options include but are not limited to Matt’s old socket-based

userland ZFS testing.

Keeping in mind FUSE and laying the groundwork for it during this effort should also
provide some long-term benefits and flexibility as we discover more ways on how to
bring the kernel code to the userland.
There is a lot of ground to be covered but given the excitement there should be
volunteers to help. If you are interested please reach out to Mayank, Matt, or
Serapheim.
Corrective Recv PR (Alek)
The above PR seems to be passing our tests and needs reviewers/reviews.
FreeBSD Summit
Matt will be giving a talk about RAIDZ expansion
There will be other storage topics covered outside of ZFS for folks that are
interested
ZFS support for LXD and similar container technologies (Allan)

https://github.com/openzfs/zfs/issues/2626
https://github.com/openzfs/zfs/pull/11766
https://github.com/openzfs/zfs/pull/9372

A PR should be out soon (probably next week)

There will be a need for both reviewers and testers

ZFS Forced Export (Allan)

Tests are passing and a PR should be open soon

OSX port (Jorgen)

Around 71% of the tests currently pass and we’d like to start opening PRs soon

Besides the above, one thing that is pending in terms of infrastructure is figuring out

which solution to use for incorporating testing for the new OS in our CI/CD. Github

Action seems to provide some MacOS instances but there may be a timeout that’s

not enough for us to run ZTS. AWS is another option.

e Add Blake3 Checksum (PR) (Tino)

o Sorry, did not have time for this currently (will do it in the next 4 weeks)

o | got an account on the gcc farm project, so assembler routines for sha2 will also
come from me (aarch64, ppc, x64) ... together with blake3 and benchmarks

o (Moving as an agenda item for next time)

O O @€ O @ O O

4/27/2021, 1pm Pacific
Meeting recording

e Corrective Recv PR (Alek)

o The functionality introduced here is for being able to “heal” a corrupted dataset from
a send file (instead of deleting and recreating it). An interesting detail is that this
feature works regardless of the differences in the configuration of the target
machine and the machine that generated the test file (e.g. compression or other
properties).

o Current status is that most of the tests are passing except a couple from the
redacted send-receive tests in FreeBSD which cause a panic.

m John Kennedy and Paul Dagnelie can help with this

o Besides fixing the panic - the PR needs reviews.

e Add Blake3 Checksum (PR) (Tino)

o Currently experiencing problems with supporting this on FreeBSD. The
complications seem specific to the code organization and getting the right
directives in autoconf/automake and make to work.

o Besides just adding this new checksum algorithm, the community would like to see
how this algorithm compares to existing ones, running on a sufficiently modern CPU
under different block sizes.

e Should | add sha_ni (x86) and maybe also aarch64 sha2 hardware support?

o There is probably some low-hanging fruit for performance improvements, especially
for our choice of CPU instructions.

o Some support for this in FreeBSD has started being worked on:
https://qithub.com/freebsd/freebsd-src/compare/main...allanjude:zfssha

e Interface for /proc/spl/kstat/zfs/hashing_bench ? echo blake3-sse2 > hashing ..
e /FS and Linux Containers (LXD) (Allan Jude)

o Theidea here is jailing a dataset (group of datasets) to a user namespace in LXD.

m Interms of code, this would mean at least implementing the
IS_GLOBAL_ZONE() macro that currently in Linux always returns true.
o Do people have interesting use/test cases?

https://github.com/openzfs/zfs/pull/11897
https://youtu.be/6zb6AxL26d8
https://github.com/openzfs/zfs/pull/9372
https://github.com/openzfs/zfs/pull/11897
https://github.com/freebsd/freebsd-src/compare/main...allanjude:zfssha

m [f you do, please do reach out to Allan.
o What makes sense for extending the ZTS to cover containers?
m Besides the actual ZTS-specific additions, we’ll need to look at what we can
reasonably add to our automated testing bots in Github to run those tests.
Cross-platform compatible xattr support (Alexander Motin - amotin)
o Current status: There is progress but we’d love it if more people are able to look at
the code and/or bring alternative solutions/ideas to the discussion.
ZFS on Object Storage
o Currently an experiment within Delphix
o Theideais to run ZFS on top of an object store like S3 or MinlO.
o The focus is on performance for small record sizes.
o There are currently two brand-new components being introduced:
m A userland agent that facilitates the interaction between ZFS and the object
store
m A new block-based local cache introduced as a vdev type to improve the
performance of the overall design of this project.

e The L2ARC was briefly considered but it doesn’t satisfy the
requirements for the current use-case as its memory requirements
are high.

o More technical details on the upcoming OpenZFS Summit.
o Until then, while the technical requirements are still being designed we’d love any
feedback on the administrative/user interface of this project.
m Currently we just provide a couple of user properties just to test the design
(e.g. a property for the s3 URL, credentials file, etc..). Eventually if we are to
start supporting other protocols we’ll need to have a user interface and
workflow that works for all of them.

3/20/2021, 9am Pacific

Meeting recording

Version numbering scheme (Bryan)
o Major.Minor.Patch
m Major - support for new platforms and new feature that target very common
use-cases
m Minor - new features, properties, feature flags (e.g draid), refactors
m Patch - support for new kernels, bug fixes
o Periodical Releases and LTS
m We’'ll be creating a new release branch about every 6 months, marking the
occasional LTS. The LTS releases will contain only very critical bug fixes (e.g.
security or data corruptions - crashes for rarely used code paths are not
part of this).
OpenZFS Developer Summit (Matt)
o Wil be held online November 3rd-4th Wed-Thu
o Submit Proposals - Deadline: End of August
m What are you working on now or the next few months?
m |deas: New features, performance investigations/analyses, interesting
use-cases/applications/workloads.
o Wil be sending announcements to the mailing list and other channels soon

https://www.youtube.com/watch?v=ZXkSVkq0bgM

o COVID & Travelling: Depending on how things are by that time we may reconsider
allowing folks to gather in person somewhere. That said we plan to remain
“remote-first” regardless of the situation (e.g. if you want to participate/present but
don’t feel safe travelling you can still participate/present remotely)

e Patches to fix bugs and upstreaming from DilOS (Igor K)
o Igor found some bugs in the dRAID and L2ARC features, for some of which he has
fixes for. He'll be working with the upstream community to create issues for them.
o He also wants to make integration with DilOS easier. The proper plan for this would
be like adding support for any other platform (similar to the MacQOS effort taking
place currently).

m This involves things like refactoring code and re-organizing files and folders
so we end up with the least amount of ifdefs, more common code among
platforms, and any platform-specific code that we cannot avoid to be
refactored into its own files.

RAIDz Expansion (Matt)
o Currently cleaning up the code and polishing the design doc
o A PR should be out soon
Proposal: Optionally calculate the space deleted in zfs destroy -v (Allan)
o Motivation: For pools with a lot of snapshots the overhead of the space calculation
that happens by default incurs a lot of overhead.
o The idea is not to change the default behavior but at least provide an option to get
the list of the snapshots to be deleted without the space calculation
Performance Improvements for zfs list (Allan)
o PR;: https://github.com/openzfs/zfs/pull/11080
o The idea here is to improve the performance of zfs list by performing the least
computation that is required to gather the specific fields/properties specified by the
-0 flag.

3/2/2021, 1pm Pacific

Meeting recording

Vdev properties (Allan)

o Allan will be posting a PR about this soon to demonstrate the state that the code is
currently in. In terms of functionality that PR is expected to work only with read-only
properties for the time-being.

o The Ul/Syntax component of this change is currently modelled after other existing
zpool commands (e.g. zpool list, zpool iostat, etc..).

o Mark Maybee will be working on the vdev_noalloc feature and could potentially
leverage the vdev properties infrastructure for his change. Depending on the state
of the PR he may help Allan push it through the finish line.

e More meaningful error messages for admins using zpool import
o The idea here was to propagate the debug statements produced during pool import
to the userland in order to replace generic import errors that are not particularly
helpful. Could be a good hackathon project.
e Cleanup and refactoring of platform independent ZVOL code (Christian)
o Relevant PR: FreeBSD struct bio support for zfs_uio_t (needed by

https://github.com/openzfs/zfs/pull/11657 #issuecomment- 788860549)

https://github.com/openzfs/zfs/pull/11080
https://www.youtube.com/watch?v=z5JoRoBbUmA
https://openzfs.topicbox.com/groups/developer/Tb11994f96a39413b/vdev-properties
https://github.com/openzfs/zfs/pull/11657#issuecomment-788860549

o

Currently having problems dealing with GEOM-related code - Sean Fagan
volunteered to help over Slack.

e Pool user properties: https://github.com/openzfs/zfs/pull/11680
e Next Meeting Preview:

O
O

WIIl take place earlier (9am Pacific in 4 weeks)

Brian may have some information/updates in the version numbering scheme for
OpenZFS

Matt may have information/updates for this year’'s OpenZFS summit.

2/2/2021, 1pm Pacific

Meeting recording

e Seagate command priority call tomorrow

©)
O
O

Mentioned in the last OpenZFS meeting
Get in contact with Mohammed if interested
WIIl take place tomorrow 11:30 PST

e OpenZFS Versioning Scheme and what it means

o

o

Motivation: Folks were interested in learning when would dRAID be included in an
official release
Brian will put something together for the next meeting to be discussed

e Status of specific PRs:

o

O

o

DirectlO
m Brian Atkinson is still working on it. We expect it to be updated soon, at
which point we’ll need reviewers
Pool Feature Compatibility Options during pool creation
m Still ongoing, needs reviewers
Force Pool Export
m Should be good to go soon. We’d like to get more reviewers as the PR
touches many different parts of the codebase.

1/5/2021, 9am Pacific

Meeting recording

e What is on the current roadmap in terms of OpenZFS releases?

O

©)
O

2.0.1 and subsequent 2.0.X releases are coming out soon that better support the
latest Linux kernel versions.
2.1 is expected to be released in this quarter
Main projects that are inflight that we hope to release in 2.1:
m DRAID, Forced Pool Export, DirectlO
Further quarterly releases are expected to mostly have bug fixes
We expect OpenZFS 3.0 within the year~18 months (first half of 2022)

e RAIDZ Expansion

O
©)

Work is still underway, expect to see progress on that soon
Currently Matt is breaking out some ABD related changes from his branch and a PR
with them is expected to be out later this week. These changes mostly make it

https://github.com/openzfs/zfs/pull/11680
https://youtu.be/VmXoHO2PDP4
https://www.youtube.com/watch?v=Zhx17DyCWFo

possible for the abd_t to be allocated by the caller. The BSD-specific parts of this
work are a bit more tricky but still doable.
Marking vdevs as non-allocatable

o Mark Maybee is expected be working on this feature

o Goal: Making the removal of multiple devices easier

m Ensure that all devices can be removed (e.g. there is enough space in the
pool for the data after their removal)

m Don’t spread data of device being removed to devices that will be removed
next, mark them as non-allocatable first as you queue up their removal.

o Current design just passivates the vdev’s metaslab group

o Christian also threw the idea of removing the vdev from the metaslab class
altogether, instead of just passivating the group

o Allan Jude has some code for the vdev-properties he could try and upstream soon

m No-alloc could be a part of this, and save Mark from having to write an
interface to the userland for it

Potential Talks with Seagate SCSI/Firmware Folks about priority policies

o Seagate Firmware Folks want to get a better understanding of how ZFS prioritizes
operations, and coordinate with the community on their designs of how operations
can be prioritized best.

o From our community’s perspective, getting a high-level description of what the
driver can do, how we can take advantage of that, and if the benefit is enough for
us to implement any logic, are the main questions.

o Alexander Motin’s work/discussion of separating priorities for different requests
(ZFS background work, user-triggered requests, synchronous vs asynchronous,
etc..) is also relevant on the matter.

o For next steps on this:

m [t would be nice to have some information from the firmware folks before
setting a meeting, so we can have a better understanding of what this
entails and gather up the right folks that can discuss the topic in more
detail.

m For setting up the actual meeting, we can coordinate on Slack, have an
initial discussion there, and then send out an email when everyone is
prepared to talk about this.

12/8/2020, 1pm Pacific

Meeting recording

OpenZFS 2.0 released!

DRAID integrated to master!

Further review requested for forced-export https://github.com/openzts/zfs/pull/11082
RAIDZ expansion performance

Visibility of .zfs/snapshot inside a FreeBSD jail

11/10/2020, 1pm Pacific

Meeting recording

OpenZFS 2.0 release schedule (Brian)
o Release expected to come out this month

https://www.youtube.com/watch?v=ZUOBo8X5VY4&feature=youtu.be
https://github.com/openzfs/zfs/pull/11082
https://www.youtube.com/watch?v=S-SAfg1Awos

o Most probably any recent change from master that is not big commit or a project
will be part of it
DRAID PR (Brian)
o Expect to be merged this week
Review request: Forced Export PR (Allan)

o Main use-case reminder: On multi-pool setups, the user should be able to remove a
suspended pool from the system (even if that pool is holding the
spa_namespace_lock and thus affecting the operations of other poals).

o Commit now passes all tests and it is ready to go

Testing request: RAIDZ Expansion (Matt)

o Expectation is to have the final PR out around the of this year/ beginning of the next
one

o Would love to see people trying out the current PR to uncover any potential
issues/bugs in it.

Non-interactive zio’s (Alexander)

o Problem: Current prioritization of ZFS internal/background work (e.g. scrubs, trims,
etc..) vs priorities of sync and async 1/Os coming from the userland (that’s what is
meant above by the term interactive 1/Os - non-interactive being the I/Os from ZFS
background work), can hurt performance.

o Alexander has a patch out that helps improve the overall latencies for certain
workloads.

o There is still a lot of discussion to be made as a couple key questions were raised
during the meeting:

m What’s the benefit of increasing the write queue depth when the write-cache
is enabled?
m Why is the limit 10 and not 37

o From the general discussion a few key points where made:

m |t does make sense to address background activities from normal /0O
separately

m We should revisit a lot of these parts of ZFS and the assumptions behind
them

m Ensuring that we prevent starvation of any queue should be a good starting
point for this exploration

m Allowing the ability to change different queue depths would be nice.
Changing the defaults though would require more upfront experimentation.
It would be interesting to also explore if we could change these depths
dynamically somehow.

10/13/2020, 9am Pacific

Meeting recording

e Determine Al's from conference discussions
o Code reviews for Add "features" property for zpool feature sets. - PR #10980
m PR needs reviewers of 2 kinds:
e [1] Reviewers of the actual code
e [2] Reviewers for the feature sets outlined
o Draid code reviews (Brian)

https://github.com/openzfs/zfs/pull/11082
https://github.com/openzfs/zfs/pull/8853
https://github.com/openzfs/zfs/pull/11166
https://youtu.be/KzdgeBFmLl8
https://github.com/openzfs/zfs/pull/10980

m Thereis a PR out and we are looking for reviewers.
m Brian is expected to squash his commits today or tomorrow to make
reviews easier
m [tis alot of code so the more reviewers the better - if you are interested in
how dRaid works, how it interacts with the rest of ZFS’s features, or just
want to read the documentation and see the tradeoffs involved in its usage
you are more than welcome to take a look at the PR.
m Brian is also welcoming people to pull the code and test it
Block reference tracking design doc (Matt/Pawel)
m There was some work on writing up an initial design doc in the conference
m The goal here is to complete the doc and share it in one of the future
meetings.
Terminology review, make sure we use the terms “Healing resilver” in the docs, and
maybe even zpool status etc (Allan)
m After Mark Maybee’s sequential rebuild talk during the summit, it would be
nice to have distinct terminology for the two resilver options that we provide.
m This work entails ensuring that there is no ambiguous terminology used in
docs, man pages, and command output.
ZDB --cp upstreaming (Allan)
m Initial PR is out - the span of this work does not include the zdb long-opts
refactoring
m Current status:
e Need to add some test cases for the feature and add its option to
the help message
e Update PR with misc fixes like the dump_all option bug
m Potential future work for this would be to use the dnode’s blocksize (instead
of the standard 1MB used now)
Forced Export Feature (Allan)
m Feature was rebased to latest master with some new improvements
m PR should be out soon
m Of particular interest may be the code introduced for dataset unmounting in
Linux to work around some specific VFS cases
zfs list improvements (Allan)
m There is some effort in the works of making the usage of zfs-list faster when
specific dataset info/properties are requested as some of them are bundled
with the information queried at the initial stages of dataset lookup.

9/15/2020, 1pm Pacific

Meeting recording

OpenZFS hackathon (Matt)

o

Spreadsheet with Hackathon Ideas/Breakout Sessions:
https://docs.google.com/spreadsheets/d/1aH-gST3uSYVh7IZWHWIB1eM1y5rAYC
Qs6tRDONVYx0/edit#gid=0

Feel free to put your ideas in the doc even if you are just working by yourself!

Since it will be held virtually, the hackathon will be slightly more structured this year.
Each idea proposer will be given a couple of minutes in the beginning of the day to

https://www.youtube.com/watch?v=fVcNnFHDwHY
https://docs.google.com/spreadsheets/d/1qH-qST3uSYVh7fzWHWIB1eM1y5rAYCQs6tRDjOhVYx0/edit#gid=0
https://docs.google.com/spreadsheets/d/1qH-qST3uSYVh7fzWHWIB1eM1y5rAYCQs6tRDjOhVYx0/edit#gid=0

pitch their idea. Then a Zoom Room (and/or a Slack channel) will be created for
each team project.

e Per-pool ARC STATS (Richard Elling)

o

o

Unlike the L2ARC, the ARC statistics are not broken down to per-pool statistics. It
would be nice to be able to break them down into that fashion when dealing with
issues.
For the short-term we could just add a few trace points but in the long term we may
want something more integrated to ZFS.
This is still in the idea phase and the most straightforward solution so far seems to
be adding more specific arcstats under the SPL kstat code (the upside of this
approach being that there is no need for a userland change whatsoever).
There were also a couple of tangential issues brought up to the discussion:
m The idea to potentially attempt to break this info even further to a
per-dataset level
m Existing aggsum implementation being slightly more heavy-weight and not
as scalable as existing percpu counter implementations in FreeBSD and
Linux. We could either learn from these platform-specific solutions and
improve the aggsum code’s design, or just get rid of its existing code and
make it a thin wrapper on top of the existing platform-specific solutions.

e ZED all-syslog.sh (Don Brady)

o

o

lllumos’ FMA logs were retained after a crash but Linux’s zpool events are not.
There exists all-syslog.sh in ZED but its output is terse and misses any useful
information.

Don has prototyped a change in all-syslogs.sh to provide more useful information
for some events (e.g. the vdev, and offset fields for checksum error events).

Even though changing that code may result in the breakage of some existing stuff,
all agreed that this is a step into the right direction.

Don expects to open a PR for this soon.

e OpenZFS 2.0RC (Brian)

o

The first 2.0 release candidate was created 2 weeks ago and a new one is
expected to open this week.

People who want to try it out are encouraged to do so while the code is soaking
There is no strict schedule for these RC releases but for now we expect to see one
every two weeks approximately.

As an overall status, the project is still on track for the official 2.0 release before the
end of the year.

8/18/2020, 1pm Pacific

Meeting recording

e OpenZFS Developer Summit (Matt)

©)
O
O

Speakers have been announced and registration is open

First day will be talks, second day will be the hackathon

The hackathon this year will be slightly more organized, as participation is virtual.
There will be a small idea pitching session at first before people break out to
per-project sessions.

https://www.youtube.com/watch?v=OpvyKVjHEFE

m We are looking for people to lead the hackathon project sessions. If you are
working towards something as part of the hackathon you can probably
create a session for it and others can join to help.

Boot once API changes (extend Delphix nextboot with nvlist support, want to get the

signatures stable before 2.0) (Allan)

O
O

O
O

o

O

o

There is a working prototype which has undergone some preliminary testing
Allan and Toomas hope to have the API change in before the 2.0 release so it
becomes part of stable.

dRAID (Brian)

Distributed parity/spare implementation for ZFS.

The feature has been wrapping up - there is a PR that needs more reviewers. Users
are also welcome to clone that branch and test the code.

Mark Maybee will give a talk about this.

2.0 branching (Brian)

Plan was originally to branch mid-August, we are close to that - the timeline has
been stretched by a couple of weeks.
There is a possibility that DRAID will be part of it too.

e meta: move to or explicitly endorse semantic versioning for release versions - Issue #10334

(Galbriel Devenyi)

o

Discussion around having concrete information/communication for the
patch/release branches of the code. E.g. What do patch releases contain? What
branches do we maintain in parallel and for how long?

So far the policy has been that for major release branches we don’t add new
features or on-disk format changes, we provide fixes for kernel bugs and
compatibility for new kernels, we sometimes include performance improvements if
they are not very invasive. The cadence of those releases and their updates is
roughly 3 months in general.

The point raised by Gabriel is that users may need some of these
kernel/compatibility fixes earlier in some branches.

e | 2ARC cache policy (Georgios)

O

o

Discussion started up on Github for the policy; MFU vs MRU, data vs metadata,
etc.. - the main question raised was how do we move forward from here to allow
users to get the most performance. Should we allow a kernel module parameter? A
full-fledged knob from the userlard that is per-dataset? Should we just go ahead
and change the default and leave it at that?
There are two guiding principles for answering the above:
m [1] Is to incorporate more observability into the policy so we can make
points through data-driven observations.
m [2] If we are to provide a user-knob - we should be able to easily answer the
question of what the knob does and when to turn it.

e dnode sync is careless with range tree - Issue #10708 - openzfs/zfs (jclulow/pmooney; we

would like someone to take a look!)

O

George and/or Matt will be taking a look at this

7/21/2020, 1pm Pacific

Meeting recording

e OpenZFS Developer Summit (Matt)

https://github.com/openzfs/zfs/issues/10334
https://github.com/openzfs/zfs/pull/10710
https://github.com/openzfs/zfs/issues/10708
https://youtu.be/rKK1pfNt66g

o Event pushed 1 week later than the initial date - to the beginning of October
o Talk Submission deadline extended by 2 weeks
m [f you have things you want to hear about feel free to ping Matt and he can
bug the right people
e /FS send compatibility for ZSTD (Allan)

o Problem: Creating a stream that the receiving side can’t understand (e.g. the
receiving machine doesn’t know about ZSTD because it uses an older ZFS version)

o Multiple ways to go about it - there was common agreement that whatever the
solution it should probably follow the following principles:

m The receiving side should be able to tell the user whether it supports
receiving the given stream, hopefully with a friendly error message

m The default behavior in general should be to use the latest and most
common thing but also give the option for the user to explicitly
downrev/configure it to their needs.

e FE.g. people rarely do plain “zfs send” without -c

m The above principles are not expected to be enforced/implemented for the
ZSTD PR but they should guide the future direction of dealing with this
issue. The ZSTD PR will proceed as discussed.

Activating feature flags on ‘zfs set’ instead of first block birth (ZSTD) (Allan)

o Problem: Activating a feature flag for a dataset, but not enabling it (e.g. haven’t
written any blocks yet), can cause panics when the dataset is opened by a ZFS
version that doesn’t know about that feature.

o This issue has been brought up in the past, the next steps would be to have
someone implement the fix.

What are the plans for OpenZFS release? (Alexander Motin)

o There are no features officially holding the release.

o Brian will create the 2.0 version branch mid-August and probably make the release
at some point before the end of the year.

o The master branch will remain open for development during that time.

o Any bug fixes applicable to the 2.0 branch will be “backported” from master.

Forceful export - zpool export -F (Allan Jude)

o Functionality: A pool’s suspension doesn’t cause ZFS operations to hang for other
pools (e.g. no holding the namespace lock. etc..). In addition the suspended pool
can be exported.

6/23/2020, 9am Pacific

Meeting recording

OpenZES Developer Summit 2020 (Matt)
o Will be virtual due to COVID - dates 29-30th of September

o Registration is open and FREE
o Call for presentations is open
m [f you have done interesting work in/with ZFS we’d love to hear from you.
Let us know by July 20th.
o Talks will be recorded and will be streamed on the day of the presentation.
Presenters will be in a live-stream at the same time to answer questions.

https://youtu.be/Y9HQ4RbqIEw
https://openzfs.org/wiki/OpenZFS_Developer_Summit_2020

o We'll try to emulate hallway/water-cooler discussions virtually. There will also be a
virtual hackathon.

o We’re still looking into the technology to do this. If you have suggestions from other
conferences please let us know

o There are still sponsorship opportunities - 501¢(3) tax-advantaged contributions

m Even though the conference will be online doesn’t mean that there are no
costs

m We are also trying to create different budgets such as paying for testing
infrastructure or reduced ticket prices to future in-person conferences for
underrepresented groups.

o An email was recently sent on the mailing list with all the info
e Dblock reference table for file cloning (Pawel)
o File-cloning can be thought of as hard-links with copy-on-write properties
o Use-cases include cloning VM images and other large files or being able to recover
files from snapshots, fast and without additional space.
o Implementation:

m Dedup comes to mind as the end-functionality is somewhat similar. That
said we would like this to be a generic feature of ZFS and not a feature flag.
We’d also like to avoid the performance issues that come with dedup.

m Current idea revolves around a new block-reference table, a mapping of
vdev_id+offset to a refcount. The attempt would be to avoid overhead in
reads/writes and just put the overhead in when freeing blocks with more
than one reference (to make such operations performant we’d probably
need to maintain most if not all of our structures/metadata in memory).

m There are a few implementation questions that we’d need to iron-out. For
example, do we expect this to work across datasets? If that’s the case how
would it affect send/receive assuming we want to maintain the
cloning-property? What about memory? Can’t that table grow too big?
We’d probably need to think hard of how the table is managed and how to
avoid unpredictable performance.

e Renaming nextboot feature to bootonce (Alan)
o There is a naming conflict between the nextboot ioctl used by ZFS and the nextboot
feature specific to the FreeBSD bootloader.
o Proposal: Change nextboot ioctl name to bootonce
e Aliased system properties (Sean)
o PRis out: https://qgithub.com/openzfs/zfs/pull/10111
o Still looking for reviewers and feedback
e Send toggle -L fix (Matt)
o The original bug is discussed in the PR

m Doing incremental sends where you mix enabling and disabling the -L flag
can cause a bug that zeroes data.

o The PR has been merged and now receives will do the right thing or fail to start.

5/26/2020, 1pm Pacific

Meeting recording

e (OpenZFS conference
o Will be held virtually/online this year

https://github.com/openzfs/zfs/pull/10111
https://github.com/openzfs/zfs/pull/10383
https://www.youtube.com/watch?v=SyNn26YbRZY

o Currently planned at the end of September
m there is flexibility as people won’t be travelling
m higher attendance is expected for the same reason
o Talk Submissions is opening next week
o Format will be roughly the same as other years
o We still haven’t decided on the platform to host it
m We want to hear from others: what conference tools and formats worked on
other conferences (or didn’t) - contact Karyn or Matt
Rebuild PR (Brian)
o Work came out as preparatory work for the DRAID projects but for mirrors
o The PR as it stands introduces a new option (-R) for the zpool replace and zpool
attach commands that performs the rebuild and provides redundancy
o The caveat is that no checksums are verified but for that same reason it can be a lot
faster (especially for fragmented pools and/or small block sizes)
o Each vdev can be rebuilt independently, so you can have multiple operations going
on, unlike resilver which is pool-wide.
o The code used to be part of resilver but then it was reworked to have its own
standalone infrastructure.
o Looking for feedback: https://aithub.com/openzfs/zfs/pull/10349
Documentation system (George Melikov)
o https://openzfs.qithub.io/openzfs-docs/
o Short-term goal: Move Linux Wiki to the above repo and add automation
o Long-term goal: Have all documentation at one place (e.g. man pages, content
from the media wiki, etc..)
o For folks interested in migrating the media wiki content feel free to ping Karyn,
Michael Dexter, or Matt to see what content is still relevant and what is stale.
o Open to feedback on what format and tools to use or other ideas
o Several concerns with using RST as the source for manpages.
POSIX AIO for async dmu? (Matt Macy)
o “wondering if it's worth integrating async dmu with [POSIX AlQO] as opposed
to just using [async dmu] for zvol”
o Some work was started by SpectralLogic years ago
o The goal is to expose the asynchronous ZIO interfaces at the dmu level and
integrate it to ZVOLs or the POSIX AIO interface (standard syscalls like
POSIX reads cannot take advantage of this).
o Regarding POSIX AlO the questions are:
m Is anyone already using these interfaces? If so, what’s their
experience?
m Would people be interested in using it if it existed? If so, for what
use-case?
Upstreaming “forced export” feature (Allan)
o Work for this project will be starting soon
o Use-Case: Problems in connectivity with remote vdevs would suspend the pool
(and potentially block other pools when higher-level locks are grabbed)
o Proposal: zpool export -F - force the export of that pool so everything goes back to
normal.
Formalizing pad2, bootonce/nextboot/rescue counter (Allan)

https://github.com/openzfs/zfs/pull/10349
https://openzfs.github.io/openzfs-docs/

o Aninterface introduced recently regarding this functionality only accepts a character
array as an argument (in libZFS_Core). The proposal here is to either change this
existing call or add a new one that accepts an nvlist instead to provide more
flexibility for new features.

e OS-specific properties (Sean)

o PRis out: https://github.com/openzfs/zfs/pull/10111

o Deals with the issue of os-specific properties varying wildly in their behavior
between platforms while there is room for normalization.

o Needs Reviewers/Feedback

4/28/2020, 1pm Pacific

Meeting recording

e Libshare changes (George Wilson)

o George has been doing work revamping the sharenfs property codepaths. The
reason is performance and consistency between multiple consumers that need to
look at the state of the system.

o Work mostly combines what exists in FreeBSD while at the same time removing a
lot of the logic around sharetab. The changes affect the FreeBSD code too where
libzfs_fsshare is renamed/moved to libshare.

o Preliminary Performance Testing (having ~1000 filesystems and multiple threads
that share/unshare them) shows up to 99% performance improvements, on the
scale of going from minutes to seconds.

o During questions:

m (Michael Dexter) Is iISCSI and/or FiberChannel on the radar?

e There is some existing code to handle these subsystems but it
hasn’t been touched(used?) in a long time. It would be an interesting
project if someone is using them and wants to pick up the work.

e Status on Panzura dedup (Josh P)
o |Initially thought to be self-contained but was discovered that this is not the case.
o Internally within Panzura the effort has been temporarily deprioritized.

e Status on dedup-log & DDT limit (Allan)

o Both coming along nicely. DDT is on the last round of feedback.

o REMINDER: For the DDT limit the semantics have changed - it is not an explicit
memory limit but more of an on-disk one. The memory-limit was causing usability
problems and its behavior was hard to model.

e Persistent L2ZARC merged

o Feature doesn’t require a feature flag.

o There are still a couple of follow-up patches for that change that could use
reviewers.

o NOTE: The version merged is a slightly modified version of what initially had started
from Nexenta.

e Dedup’d send/recv removed

o NOTE: This feature has actually nothing to do with Dedup and is a specific feature
of Send/Recv (zfs send --dedup/-D)

o The feature has been removed from master. From 0.8.4 users should see a
deprecation notice if they try to use it.

e OpenZFS for OSX common repo

https://github.com/openzfs/zfs/pull/10111
https://www.youtube.com/watch?v=AfvBY8du8OE

o

Since FreeBSD was merged Jorgen is looking into a fresh new port for OSX to be
merged into the OpenZFS repo. The new port gives us a chance to redo
somethings that were not optimal in terms of implementation. The ability to migrate
from old OSX pools to use the new implementation is not a requirement but it would
be good to have.

Once everything is green with existing tests Jorgen will start pinging people for
feedback, the potential of adding OSX tests in the Cl pipeline, and to discuss issues
found in the common code used by all the operating systems.

e /Zpool user properties

O
O

Allan hopes to open a PR to upstream this soon.
Still looking to hear from people who already have use cases for this and overall any

feedback.

e Changes that need reviewers:

o

o

o

Introduction of ZSTD compr. to ZFS - https://github.com/openzfs/zfs/pull/9735

m Needs to be updated now that persistent L2ARC has been merged. There
is also some leftover feedback to incorporate.

m Allan is looking for feedback on how to break this change down to logical
parts so it becomes easier to review, and potentially make it smaller.

m There are also a few old ZSTD PRs laying around in the PR list of OpenZFS
on Github, we should take one last look before closing them to ensure we
haven’t missed anything.

Dedup DDT load https://github.com/zfsonlinux/zfs/pull/9464/
m Has been out for a while - we need to solicit the mailing list so we:
e [1] Give a heads up that this is coming
e [2] Get any high or low-level feedback
e [3] Ensure that conflicts with other dedup patches that are still
downstream are minimized.
Dedup Ceiling https://qithub.com/openzfs/zfs/pull/10169

m Feedback from Matt is almost done and change should be ready to go

soon.

3/31/2020, 9am Pacific

Meeting recording

e Add “zstream redup” utility; remove “zfs send --dedup” (Matt)

o

In ZoL version 0.8 a message was added to “zfs send --dedup” that the specific
option will be deprecated

A userland utility “zstream redup” provides the exact same functionality now (taking
a deduplicated stream and yield a normal one).

The “zstreamdump” utility is being deprecated too and its functionality is relocated
under the same “zstream” command - “zstream dump”

PR is open and ready for feedback (https://qithub.com/openzfs/zfs/pull/10156)
The next part of this project would be to remove the deprecated functionality from
the kernel.

e New API, higher-level than libzfs (Mike)

o

Goal: Expose the administrative interface of the CLI over an API - similar model to
what AWS do with its CLI and APL.

https://github.com/openzfs/zfs/pull/9735
https://github.com/zfsonlinux/zfs/pull/9464/
https://github.com/openzfs/zfs/pull/10169
https://www.youtube.com/watch?v=hGTjxSypEKU&feature=youtu.be
https://github.com/openzfs/zfs/pull/10156
https://github.com/openzfs/zfs/pull/10117
https://github.com/openzfs/zfs/pull/10156

o Moativation: Simplify integration with applications that want to administer ZFS.
o Presentation Link:
https://www.dropbox.com/s/gldjal30bw3he52/libzfs api.pdf?di=0
o Takeaways:
m People agree that this is a good idea, solves a real problem, and it is doable.
m At first glance it seems like the majority of the work would be around
error-handling as code from places like zfs_main.c would be moved to the
library.
o Next steps:
m Get more folks involved as use-cases vary
m Refine the proposal with more detailed and concrete examples
m Share the above with the mailing list for more in-depth discussions
Add O_DIRECT support: design update (Matt)
o Updates since last meeting:
m Incorporated feedback and made progress
e One of the main questions from before: What are the semantics of
concurrent stores to the buffer for the direct write? - the key thing is
that the checksum should match the buffer, therefore if the user has
checksums (and/or other related features enabled) a copy of the
buffer is created.
e More refinement of properties and misaligned operations
m There is a design doc out discussing the different ideas and trade-offs:
https://docs.google.com/document/d/1C8AggoRodxutvYlodH39J8hRQ2xc
P9poEl UBZ6CXmzY/edit?usp=sharing
m The doc has been shared with the mailing list for open discussion.

3/3/2020, 1pm Pacific

Meeting recording

Zfs repo move (Matt)
o Which repo should they use:
m [f FreeBSD / ZoL, you can continue to use the same URL. There should be
link forwarding via GitHub, and you shouldn’t have to do any local updates.
o Code coverage links point to the wrong place, so they don’t resolve. At least for
PRs that were open at the time when the move happened. Probably this won’t
come up for new PRs.
FreeBSD progress (Brian)
o Qver the past few weeks, they’ve been getting all of the tests running. That’s mostly
done.
o There is one more big PR open to push the code (new files). Hopefully that will be
merged this week or next.
o Who is reviewing the code? Are reviewers needed?
m FreeBSD folks have done reviews. Not waiting for any reviewers, but speak
up if you have an issue.
o Won’t turn on Cl by default until we know the tests are passing. You may have to
manually initiate.
o lllumos is watching the progress of FreeBSD closely and will then look at doing
something similar with illumos.

https://www.dropbox.com/s/gldjal30bw3he52/libzfs_api.pdf?dl=0
https://docs.google.com/document/d/1C8AgqoRodxutvYIodH39J8hRQ2xcP9poELU6Z6CXmzY/edit#
https://docs.google.com/document/d/1C8AgqoRodxutvYIodH39J8hRQ2xcP9poELU6Z6CXmzY/edit?usp=sharing
https://docs.google.com/document/d/1C8AgqoRodxutvYIodH39J8hRQ2xcP9poELU6Z6CXmzY/edit?usp=sharing
https://www.youtube.com/watch?v=FVwYAwrKZCU&feature=youtu.be

e Directio (Mark M)
o Moativation

Cray wanting to improve performance on NVMe drives

Sequential large-block read/write

Concerned with cost of bcopy to/from userland

With prototype, can saturate up to 12 NVMe drives (up from ~4 without
directio)

o implications of directly reading/writing

Less bcopy() of buffers

Less memory is allocated (e.g. no dirty data in douf cache)

Data is not added to ARC cache

Write happens before call returns (but data is not necessarily persistent if the
system crashes)

Are directio reads truly zero-copy? How to compute checksum
consistently? A: It isn’t consistent. You could get a “false” checksum error
(hardware is fine but software caused checksum to be wrong).

e Maybe add a flag to the block that indicates that the checksum may
be faulty because it was a directio write and userland may have
modified the block while it was being written, causing a checksum
error. Then handle checksum errors on these blocks differently.

o User interface

Modes
e Some mode that’s the same as the current behavior (ignore
DIRECTIO request, do it the old way)
e Some mode that will be the new default, which does (at least some)
DIRECTIO-requested operations directly.
e (perhaps) some mode that does i/o directly even when DIRECTIO is
not requested.
What happens to partial-block reads that are DIRECTIO-requested?
e Fail?
e Fall back to normal behavior, adding block to the ARC?
e Do directly, discarding non-requested data?
o performance impact to sequential partial-block reads
What happens to partial-block writes that are DIRECTIO-requested?
e Fail?
e Fall back to normal behavior, adding block to the ARC?
e Fall back to normal behavior, but don’t add block to the ARC?

o le. write is buffered until sync context, potentially
accumulating more changes, but after it’s written in sync
context, we discard it from the ARC/dbuf caches

e Do directly (read-modify-write before returning)?
o performance impact to sequential partial-block writes
o (probably) implementation complexity

e Nobody wants to argue against failing partial block writes

How does directio and regular i/o interact?

e Inconsistent?
o Matt says no

e Consistent?

o May be complicated to implement
e fails?

2/4/2020, 1pm Pacific

Meeting recording

Thread priorities on linux (Paul D)
o Context: Performance analysis of ZFS send on ZFSonLinux found discrepancies
with illumos
o Root cause: Linux the threads are minimum priority, lower than user threads (as
opposed to lllumos)
o Workaround: Increased the priority for now
o Question: How do we want to deal with this among different OS’s?

m FreeBSD has the same priority scheme as illumos (Linux being the outlier of
the 3)

m In Linux there were performance issues related with thread priorities in the
past but there hasn’t been any recent investigations

m Thereis no silver bullet for this

o Consensus:

m There are not many thread cases whose performance we don’t care about
but we should at least break down threads into different groups and decide
on the priority of each group

m Thisissue is to be added to the list of issues that we need an open PR on
Glthub for discussion

Do we need to enhance the feature flag activation code. Setting checksum=sha512 or
compress=zstd but not writing any blocks, can cause the pool to panic on older systems
o Summary: Setting the compression to zstd but you don’t write any blocks, and then
re-import that pool in a ZFS version that doesn’t understand zstd triggers an
assertion failure
o Consensus:

m Bump the counter when the feature gets activated AND for each block
created with it (refcount never goes to zero until the dataset is destroyed).

m Although seemingly difficult to implement we should at least pay a close
look at the code paths as it may not be as intractable as it seems.

Support for ignoring (not being able to mount) datasets with unsupported feature flags
o Consensus: This is a good idea in general but it should not be considered a solution
for the aforementioned zstd problem.
Moving of the OpenZFS website from Joyent to University of Washington is in-progress
o No problems with Joyent, just planning for the long-term
o No actual website changes, just the DNS endpoint will change
o Still would be happy to update any contributions to update the website’s content :)
Changes that need reviewers:
o Persistent L2ARC - https://qithub.com/zfsonlinux/zfs/pull/9582
o Introduction of ZSTD compr. to ZFS - https://github.com/zfsonlinux/zfs/pull/9735
o Performance Optimization for Encryption

m Includes new algorithms and changing the default algorithm used

m Action Item: Send an email to the mailing list as a heads up about changing
the default before going ahead an applying that change

https://youtu.be/upUOXBhx-us
https://github.com/zfsonlinux/zfs/pull/9582
https://github.com/zfsonlinux/zfs/pull/9735

FOSDEM, Scale, and other conferences
o There doesn’t seem to be any talks related to ZFS in the aforementioned
conferences but people attending can submit BoF discussions
m iXsystems will potentially be at Scale this year
o Allan Jude has done a ZFS-related talk in the main track of FOSDEM in the past
o There will be a ZFS BoF in this year’s BSDCan and potentially one ZFS-related talk
too.
o The BSDNow podcast is open to interview people doing interesting work on ZFS
o General Idea: It would be good to be active in conferences and groups outside of
the OpenZFS summit and BSD
m On this note, OpenZFS is considering spinning up funds for people that
want to work on that (e.g. setting up a booth on those conferences and
getting the word out).

1/7/2020, 9am Pacific

Meeting recording

When will 0.8.3 ship and will it include the large-dnode “zfs diff” fix (FireSnake)
o Currently there is an outstanding patch PR for 0.8.3 (#9776)
o it should be landing when we wrap up our testing so very soon (probably within this
month!)
o The goal is to have it pulled in for Ubuntu and Debian LTS
o Let us know if there is a patch that you really want to see there
Changing the checksum algorithm at an existing dataset - even if no new blocks have been
written - exporting and then importing that pool from a different version of ZFS hits an
assertion error. [Allan Jude]
o That was an oversight on the design of feature flags.
o We should be able to handle this more gracefully.
o Afew ideas were thrown including:
m Bump feature refcount for every dataset that has the property set
m Being able to open the pool but not that dataset (property would show as
“unsupported”)
Any further comments on this Ubuntu developer's proposal to enable encryption by default
with a fixed passphrase: https://bugs.launchpad.net/bugs/1857398 (rlaager)
o Is there any additional feedback that we haven’t already provided them? Feel free to
add in the thread.
o Tangent on secure-erase and changing encryption keys:
m Secure erase and not having dataset’s being partially secure were two of
the main motivators on the current encryption design.
m The latter is ensured by setting encryption on at creation but not guaranteed
as the encryption key may later be changed and will affect only new blocks.
m Even if encryption key (user/wrapping key) is changed, new blocks can be
read/manipulated if the old (compromised/public) key is known, and the
old-key-wrapped master key is found (e.g. by forensic analysis of the disk).
m The trade-off being usability and practicality varies wildly between cases.
o Given the above tangent, we should really understand what the Canonical folks
want to do and try to come up with the best practises and design. This includes

https://youtu.be/x9-wua_mzt0
https://bugs.launchpad.net/bugs/1857398

communicating best practices, and potentially implementing something different
than what we currently have.
o We need to be more clear about the security implications of “zfs change-key”
m PRfiled
e Change encryption=on from aes-256-ccm to aes-256-gcm? See especially the comments
starting here: https://qithub.com/zfsonlinux/zfs/pull/97 49#issuecomment-568633557
(rlaager)
o The two main motivators of this proposal are security and performance.
m From a security standpoint, Mozilla and TLS default to gcm.
m According to Richard’s estimates, performance could get a ~3x
improvement with gcm.
o There seems to be an overall consensus on this but we should really check with
Tom Caputi.
e encryption: from ivset guid check missing on resumed recv? (Christian Schwarz)
o turned into issue post-meeting, do not include in upcoming agenda
e bookmark cloning & zcp bookmark support PR (Christian Schwarz)

o n ign tion: what tr tion kmarks?
o reviewers needed once above question is resolved
o outcome:

m redaction object might be too large to copy it in syncing context, would
have to be done in the background
m =>don’t implement redaction bookmark cloning at this point
m => create thin bookmark: zfs bookmark #redactionbook #newbook
e will not contain the redaction object itself

12/10/2019, 1pm Pacific

Meeting recording

e Saved send feature (Tom)

o Be able to get a partially received dataset from one machine to another - do a ZFS
“send of a partially received dataset”

o Add-on functionality: ability to resume a saved receive from a bookmark

o Status: Testing is almost done and Datto will soon start using it in production

o Looking for extra reviewers for the PR -_https://github.com/zfsonlinux/zfs/pull/9007

m Paul Dagnelie and Matt Ahrens will take a look
o Action Iltem: Send a heads up in the mailing list about the feature for other platforms
e ZSTD rework (WIP_PR) (Kjeld)

o The goal of this new PR is to get the best of all the existing forks of this feature

o Status: Sebastien Gottschall (Brainslayer) have completed the majority of the design
and thorough testing has been done. Code is being cleaned up and restructured.

o Action Iltem: Sync with Allan who has also done some work with this

o Action item: Get reviewers and feedback for the change

e Feature Request: Encryption to work with dedup across multiple datasets - Tom:

o Today different “clone families” have different master keys (the key actually used to
encrypt the blocks), so blocks with the same plaintext will have different cyphertext
if they are in the same clone family - even if they have the same wrapping (user) key
(i.e. same/inherited keysource property)

o Want to add a mechanism to have the same master key for different clone families

https://github.com/zfsonlinux/zfs/pull/9819
https://github.com/zfsonlinux/zfs/pull/9749#issuecomment-568633557
https://github.com/zfsonlinux/zfs/issues/9818
https://github.com/zfsonlinux/zfs/pull/9571
https://github.com/zfsonlinux/zfs/pull/9571/files#diff-4d2e1215100af304404ae6328e0bbc97R589
https://www.youtube.com/watch?v=Wq64VoZhDMY
https://github.com/zfsonlinux/zfs/pull/9007
https://github.com/zfsonlinux/zfs/pull/9673

o Need to design user interface to make it clear what’s going on.
o Suggestion: use a property to indicate that all children have the same master key
m Need to work out the details of how this would interact with things like
rename (into / out of the “same master key hierarchy”)
Pull Request Open for Persistent L2ARC in ZoL - Brian Behlendorf:
o Thisis a port of Sasso’s/Nexenta’s work (PR 9582)
o Reviews requested
ZoF update:
o Getting closer! - Bulk of refactoring is done ~ approximately 4 files left to go

11/12/2019, 1pm Pacific

Meeting recording

Rescheduled OpenZFS DevSummit talk: Securing the Cloud with ZFS Encryption (Jason
King)
New ZoL minimum kernel version (Brian)
o Change: Increase the minimum version to 3.10 kernel (from 2.6)
o Practical implication:
i. Dropping some support for very old enterprise releases of Linux
ii. Netremoval of around 2,000 lines of code
o Timeline: will not roll out until OpenZFS 2.0 version
ZoL repo move/rename (Matt)

o From ZFSonLinux to OpenZFS (mentioned at the conference during Matt’s Talk)

o Transfer ownership feature on Github is to be used (all PRs, issues, even URLs
should be moved/redirected to the new home)

i. Ifanyone has had a bad experience with this feature, please let us now

o Should be a non-event for people doing development

o Currently targeting to do this by the end of the year

o Notes: We will keep all the existing ZoL resources like email list and IRC channel
under the same name (ZFSonLinux, not OpenZFS) - OpenZFS mailing list will
remain the canonical place for developer discussions for new features. Leave
user-centered questions or platform-specific issues to per-platform mailing lists

Issue tracker curation (Matt)

o Request for input from folks: Several issues that have been filed against ZoL end up
being open for a long time and contain a lot of off-topic discussion (some getting
close to an actual flamewar). What should we do about this?

o Consequences of this issue:

i. Discourages new members from getting involved with the community
ii. Itis counter-productive for existing members- especially the ones who can
fix the actual issue

o Potential ways forward:

i. Ignore these messages (status quo)

https://youtu.be/WKfS3lAmLGc

ii. Trytorespond to every message (re-iterate the current status, explain the
situation or dependencies on other issues, etc..) - showing that we
understand the situation - diffusing the situation a bit

iii. Hide the off-topic comments - this could backfire a bit and cause more
impolite messages.

iv. A combination of 2 & 3 - where they do get a reply and then we hide the
messages.

o |dea for dealing with incoming bugs:

i. Afterinitial triaging or skimming through the issue, assign a specific tag or
component and have a certain group of folks responsible for each
component.

ii. Have more folks help with labeling incoming issues

e Unfortunately (and incredibly) github permissions only allow people
with write access to the repo to do this.
o Discussion

i. The most popular “potential ways forward” were i (status quo) and ii (try to
respond to every comment)

o Action ltem: Brian and Matt will draft a proposal for this and present it in the next
meeting and the mailing list.

10/15/2019, 11am Pacific

Meeting recording

e Dev Summit
o Please register if you haven't already - almost at capacity
o Recorded and live-stream (same service as last year)

e zpool ddtload
o A new subcommand proposed by Will Andrews

o Use-case: Large DDT table - after reboot write-performance is bad because we
have to read from the DDT

o Proposed Solution: The new command will preload the DDT in the ARC on-demand

o Current Status: Looking into plugging it in zpool wait so we know when it is finished
and looking for reviewers. PR Link: https://github.com/zfsonlinux/zfs/pull/9464

e xattrs update:
o Update from Gordon Ross:

m Still gathering information. Currently looking for contacts and survey of how
things happen today, especially for Windows and OSX (Jorgen Lundman is
probably a good point of contact for that).

m ACLs and DOS-style attribute bits are also an issue, but less critical. They
are stored in a platform-agnostic way, but some platforms don’t support
them so this state is not visible on all platforms. Just a heads up, we are still
trying to document those.

https://help.github.com/en/github/managing-your-work-on-github/applying-labels-to-issues-and-pull-requests
https://www.youtube.com/watch?v=hL31yMN6Eq0
https://github.com/zfsonlinux/zfs/pull/9464

Question: What is the status of OpenZFS repo - no sync with illumos a long time?

o

o

Currently planning to retire that repo - an email will be sent to let everyone know.
The plan is to reinstate a repo with the same name (OpenZFS) but based on ZoL
(and ZoF soon)

There is no real-deadline or schedule for this. Probably going to have it finalized
once ZoF is part of ZoL and we have Cl setup

More info on this and the status of ZoF at the Dev Summit

Status of ZoF (ZFS on FreeBSD using ZoL codebase) (Post-meeting update):

o

o

o

Igork -

o

o

o

o

Code is mostly written.
Working on upstreaming to ZoL. Probably at least a few more months to finish that.
Testing
m ZTS runs on ZoF prototype
m Still need to hook up buildbot to FreeBSD
m Would like to upgrade buildbot
Integration process idea:

Problem: The master branch has shown to have test regressions (or even panics) in
the past. This is especially bad when you want to introduce a change and your PR
fails for unrelated issues.

Idea: Have a separate branch (like a staging branch) and collect weekly/bi-weekly
changes on it and test it thoroughly before merging it to 'master' (or potentially use
different tag). Ideally we'd want a branch with no sporadic failures.

People agree that this definitely has been an issue in the past, but the proposed
solution may increase the maintenance/coordination/release burden of our
release/branching process. Additionally, testing may be incomplete as people test
against a clean build but not the final product where everything will be merged
together. This could surface new bugs and merging issues.

Another way would be to look into ways that we can tackle the same problem by
having different kinds of testing, reverting commits faster, etc..

Igork: It would be nice to see the drafts of the release notes of future versions. Helps
people plan their upgrades accordingly for they things that matter to them.

o

We'd have to talk to the folks at Livermore who are currently organizing all the
release logistics. Use of Milestones by Brian in Github achieves part of that but it is
not a full solution to the problem. In general it would be nice to communicate more
about branching and our release cycle.

Matt will work with Brian and others on this starting from the next release
(transparent and communicate better, so we don't have to ping Brian personally)

Possibility to move the "early" meeting even earlier (request from Ubuntu ZFS people in the
UK who have family commitments at our usual times)

O

Current pattern: 2 at a later time for folks in Asia and 2 at an earlier time for folks in
Europe. Proposal: 9am (2 hrs earlier)

o Most folks seem to agree that this is acceptable
o Plan: New meeting time to take effect from January onwards

9/17/2019, 1pm Pacific

Meeting recording
EOL ZoL on RHEL 6 (Brian Behlendorf)
o RHEL 6 could be old enough that we could drop support for it on master (still
supported for 0.8)
o Technically will be EOL'd by Red Hat in November 2020.
o Feedback from the community: Given enough Notifications beforehand, people
should be fine
o Actual change needed in ZoL:

i. Go through build system code and remove any references of v3.10 kernel
and older (new oldest supported kernel would be 3.11). The process should
be similar on what ZoL did for deprecating RHELS5.

o Action ltems:

i. Brian/Matt will give a heads up in the mailing list, in the release notes of
each versions until then, open PR for this

ii. We need volunteers for the build system changes

Xattr cross-platform compatibility (Andrew Walker)
o Problem:

i. ixSystems works with services that receive alternate data streams written as
xattrs in FreeBSD in the user namespace, which is implemented slightly
different in Linux (there is "user." prefix - FreeBSD uses "freebsd." prefix(?) -
Solaris uses "smb." prefix). Their application (Samba) is doing the same
thing in Linux and FreeBSD, but ZFS represents them different on-disk
between each platform. As a result, xattrs that are written in FreeBSD are
visible in other OSes except from ZoL where the metadata disappears.

o Potential Solutions:

i. Brian: ZoL has around 4 prefixes, so one solution would be to have user as
a fallback choice (e.g. if it is not part of any namespace, it is part of the user
namespace).

i. Andrew Walker: Have a zfs dataset property to be able to tell which format
is used

ii. — Andriy Gapon: Add some OS info on the actual attribute and have ZFS
interpret them differently

e Sef: Some form a feature flag that would fix the prefixes.

iv. Matt Ahrens: First make it possible to read xattrs from all platforms, even if
the names show up differently. A potential long-term solution: New stuff is
written in some new format that is portable across platforms (e.g. in the zfs.
namespace) and each platform translates the ZFS prefixes to the local
platform’s prefixes.

o Question: Is it an incompatibility between different OSes? or an incompatibility
between different implementations of ZFS? Shall we have a translation layer outside
of ZFS?

*

https://www.youtube.com/watch?v=kjBWhEE8tZ8

A bit of both but mostly VFS layer (outside of ZFS code). Assuming it is only
on the VFS layer, it would be reasonable to still have some way of accessing
these attributes. A point for this, is that in ZoL there is little flexibility in
changing the VFS code.

o Action ltems:

i. Proposal & Next steps - Andrew can start a writeup and coordinate with
Alexander from iXSystems

Relax quota semantics for improved performance (Allan Jude)

o Problem: As you approach quotas, ZFS performance degrades.

o Proposal: Can we have a property like quota-policy=strict or loose, where we can
optionally allow ZFS to run over the quota as long as performance is not decreased.

o People's Feedback/Questions:

i. Richard Elling - Isn't it the same problem when the pool is almost full (SLOP
space)? Answer: This is slightly different, but the mechanism is the same,
and we don't want to break that (e.g. run beyond SLOP space just like that).

o Tangent: Should we scale the SLOP space appropriately? The SLOP space can bite
a big chunk of space in big pools.

i. Feedback: That seems reasonable, though the use cases may not be that
many (fragmentation issues in such big pools will probably arise before
encountering the SLOP space issue). See discussion on previous PR.

zpool replace of a log (and maybe a cache) vdev — does this work well? Can it be
improved? (Andriy Gapon)

o Problem: a user had to replace a log device using the replace command and it took
a long time (dozens of gigabytes were scanned). Can we do better? It seems like
there is not special logic for devices like that, do we want to do something different
for log vdevs? Even maybe prohibit using replace for these devices and advice the
remove & add workflow.

o Feedback: the above sound reasonable except for one thing. Log devices can have
actual data on them. If you crash and you have blocks in the log device and you've
removed the device, and you don't mount the specific filesystems, these blocks will
stay there. Encryption should also make this more common. We need to retain the
ability for the scrub-based replace/attach. We could improve the performance by
looking at all the blocks of all the logs instead of looking at all the blocks in the pool.

o Action Iltem: Andriy will look into this and create a doc

Renaming bookmarks — are there any pitfalls? Seems like a useful feature that’s not been
implemented in a long time (Andriy Gapon)

o Feedback: It should just work - one more thing to plumb through the CLI, libzfs,
etc... internally, removing the ZAP entry and re-adding it with the new name should
do the trick

Panzura to open source their temporal dedup implementation (Josh P)

o Panzura will be open-sourcing some parts of their self-contained ZFS
implementation of temporal dedup on Github. There is hope from Panzura that this
will be integrated within OpenZFS but at least for now there are no concrete plans
of getting this code upstreamed without volunteers.

o Question: What is temporal dedup?

https://github.com/zfsonlinux/zfs/pull/8106#issuecomment-437499997

A dedup scheme that groups blocks by the time that they are
created/modified etc... Grouping blocks in such way should allow for faster
access to the data due to caching based on temporal locality

8/20/2019, 1pm Pacific

Meeting recording

OpenZFS DevSummit talks (matt)

O
©)

Lots of great talks so far, but there is still room.

If you forgot to submit a talk before yesterday’s deadline, please reach out right
away. Matt will announce selected speakers in 2 weeks, so there is a small grace
period.

Registration is open now, and Matt will publicize this more once we announce the
speakers.

Linux Plumbers conf (Serapheim)

o

o

George WIllson and Serapheim will be at the Conference if you want to talk ZFS or
Debugging the Linux Kernel
If sO, please reach out so the ZFS folks can meet up and talk about all things ZFS.

OpenZFS on 32-bit architectures (relevant for FreeBSD, Linux, ...): plain reads of 64-bit
“atomics” (Andriy)

O

Issue discovered: We use atomic operations to modify 64-bit values that we treat as
atomic, but to read them we use plain C assignment operations, which works ok for
64-bit platforms, but not for 32-bit. Those plain reads are implemented as 2
instructions there (32-bit), which is incorrect.
At this point it is mostly theoretical (its is rare to hit a write while crossing the 32-bit
boundary) but it is still a valid concern.
The code paths are not very critical - mostly stats that we send to user space.
Proposal for discussion: Should we introduce some kind of format wrappers for
those operations?
i. Paul Dagnelie: Has done some similar work for the SPL back in the day and
this should be straightforward.
e Question: How many 32-bit platforms do we actually care for at this
point?
ii. Andriy: Have heard of a few 32-bit Intel users out there
i. — Tom Caputi: Has some experience for compile-time checks for structures of
these nature.
It seems like people are for it. Andriy will first talk with FreeBSD developers, figure
out how they want to proceed, and try to propose designs common for all
platforms.

zfs share -a (George)

O

Issue: Stale file handles using zfs share -a and the sharenfs property, by restarting
or rebooting the nfs server.
i. Thereason is that ZFS plugs into SystemD in a cumbersome/non-natural
way.
ii. NFS shares actually start before the ZFS service. Mountd responds to the
client before the ZFS share is actually completed leading to the stale
handles.

https://www.youtube.com/watch?v=zl4CUMOIi18

o Hacky Approach:
i. Introduce a new component to zfs share. Instead of zfs share -a, zfs share
-g (short for generate)
i. Theideaisto add ZFS logic that ties it closer to NFS
ii. Change of dependency ordering, zfs share -g generates the handles for
NFS, before NFS, and NFS consumes those generated handles.
iv. Cons: A bit hacky for now
v. Pros: Simple and fast
vi. Plan: To do more redesign on top of this for a cleaner solution
vii. Others that have similar issues with George/Delphix feel free to reach out.
e Tom Caputi: Datto had issues with NFS in the past, and don't use
sharenfs, but they are interested on having control over this
functionality
e Allan Jude: Seems like FreeBSD already does something similar, so
there may be some convergence of goals.
o Submitted this as lightning talk at the Dev Summit
Anyone interested in working on implementing Matt’s ideas for dedup ceiling and on disk
format log (http://open-zfs.ora/w/images/8/8d/ZFS _dedup.pdf) please contact
allan@klarasystems.com to discuss. (Allan)
o Problems using the feature for Terabytes of data due to known memory issues
o There is budget for a contract to implement the limit of the size of the DDT
proposed during one of the past Dev Summits
o Feel free to reach out if you are interested in undertaking that work
o Matt is willing to mentor whoever takes on this work

Attendees

Linux: Brian Behlendorf, Tom Caputi

illumos: Jason King, Jerry Jelinek, Joshua M. Clulow, Kody Kantor, Mike Gerdts, Roman
Strashkin

Linux & illumos: Don Brady, John Kennedy, Matt Ahrens, George Wilson, Paul Dagnelie,
Serapheim Dimitropoulos

FreeBSD: Alexander Motin, Allan Jude, Andriy Gapon, Josh Paetzel

OSX & Windows:

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees: Rich Teer, Ryan Moeller

7/23/2019, 11am Pacific

Meeting recording

ZoL + SIMD + Linux 5.0 (Matt)
o Brian integrated some support for this already but he is currently on vacation
o 5.0+ made some changes to the floating point registers that were used by ZoL for
SIMD instructions
o Brian reimplemented some of those in ZoL and now these instructions work again
and will be backported in 0.8

http://open-zfs.org/w/images/8/8d/ZFS_dedup.pdf
mailto:allan@klarasystems.com
https://www.youtube.com/watch?v=ltIIDDq9qag

o Needed for performant RAIDZ, Encryption, and some compression algorithms
o Used only if the underlying CPU architecture actually supported (checked during
runtime)
e OpenZFS Developer Summit (Matt)
o Announced: Nov 4-5. Same locations as last year in SF.
o Registration and call for papers is open. Please submit a talk and tell us about the
cool stuff you're doing with ZFS
o We appreciate people volunteering to help out with things for the conference.
i. Karyn will reach out to Rainbow about help with AV.
o Ticket prices went up to $100. There are some discount tickets available, and let us
know if the pricing is a hardship and we can try to figure something out.
i. FreeBSD Foundation may have travel grants available if want to apply
o Get all the details (including a link to the registration site) on the OpenZES wiki page
e Property to track amount of queued TRIM/UNMAP (like “freeing” for async destroy) (Allan)
o Allan Jude: users may want to know how many trim/unmapped is left or in-progress
before performing other actions instead of performing the pool
o Matt: Maybe a flag to zpool sync —trim that could wait for all trim activity to be
done. Probably better than the existing proposal where we have a property like
freeing for it, which would jump up and down
o ‘zpool wait that is about to be upstreamed from Delphix and should be a good
candidate to add this functionality. You can look at the Delphix repo if you want to
see it before the PR.
e RAIDZ removal issue with design ideas (Igor)
e RAIDZ expansion progress (Matt)
o No progress to report since preview posted
o The hope is to have takers to test it out
o The functionality is there, there are on-disk format changes (so don't use it in
production), a few race conditions being fixed and some more error handling for
device failures.
o Important to note that even though we can expand the RAIDZ we still can't remove
devices (e.g. zpool remove)
o ZolL PR exists with design considerations for the feature
e Open/FS feature matrix (everyone)
o FreeBSD is hoping to catch up with ZoL through the ZoF work
o NFSv4 ACL PR waiting for code review - should we consider tracking this in the
feature Matrix?
i. Update: Added
ii. Note: already on illumos

Attendees

e Linux: Andreas Dilger, Christopher Voltz, Garrett Fields, Tony Hutter

e illumos: Jason King, Jerry Jelinek, Joshua M. Clulow, Kody Kantor, Mike Gerdts, Mike
Zeller, Sanjay Nadkarni

e Linux & illumos: Alek Pinchuk, Don Brady, John Kennedy, Matt Ahrens, Paul Dagnelie,
Pavel Zakharov, Prakash Surya, Sara Hartse, Serapheim Dimitropoulos

e FreeBSD: Allan Jude, Andriy Gapon, Josh Paetzel, Kirk McKusick, Rainbow

e OSX & Windows:

http://open-zfs.org/wiki/OpenZFS_Developer_Summit_2019
https://github.com/zfsonlinux/zfs/issues/9013
https://github.com/zfsonlinux/zfs/pull/8853
https://docs.google.com/spreadsheets/d/1CFapSYxA5QRFYy5k6ge3FutU7zbAWbaeGN2nKVXgxCI/edit?usp=sharing

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees: Chip Schweiss, Dipack Panjabi, Igor Kozhukhov, Marcin Skarbek, Neal
Gomba, Ryan Moeller, sef, Steve Castano, zfslurker

6/25/2019, 1pm Pactific

Meeting recording

FreeBSD / ZoL integration update
Goal: Single repo that builds for both platforms
https://qithub.com/zfsonfreebsd/ZoF/tree/projects/zfsbsd/module
Goal is for FreeBSD 13 to use ZoF by default (but may slip to FreeBSD 14)
Goal to get it into current repo around end of September?
Jorgen: Where should | direct Windows/OSX questions? (#openzfs or ZoL
Developer list)
Do a PR for additional platforms/tree for additional platforms
o Change zfsonlinux/zfs => openzfs/zfs. Brian & Matt will come up with a proposal for
naming and structure that reflects what developers do/use
Announcements of big, long-standing projects being available:
o Linux - Redacted send/recv merged!
o lllumos - ZFS crypto landed!
Discuss error reporting (Tom)
o Do we want to move to something more general (e.g., have the kernel return
strings)?
o Continue to extend zfs_errno_t, though this doesn’t help provide additional
context/information, and then add new strings for user
pyzfs PR (Richard E)
o Specifically how to get the pool config info programmatically
o Programmatic “zpool status” that is retrievable, and any time you add something to
zpool you need to make sure status continues to be retrievable. (some mistake that
Joshua pointed out...)
o Translation of the config to a stable nvlist? Not sure if this should be in libzfs_core or
the kernel. Kernel is better but might ignore backward compatibility.
o Newer version of userland continue to work without rebooting the kernel.
Could a spanning mode option be added for multi-vdev zpools instead of the default
striping data across all vdevs? The intent is to prioritize data integrity over access speed for
large archival / backup pools, and a workaround with multiple pools joined with mergerfs
seems suboptimal if the LOE of adding support for this is low. (Guirara DaiKaiju)
o Matt: | think you’re suggesting that ‘zpool create disk1 disk2 ..." create the pool as
a mirror, as though you typed zpool create mirror disk1 disk 2 ...". And perhaps
that “zpool add...” should instead do "zpool attach ...".

O O O O O

o

Attendees

Linux: Andreas Dilger, Brian Behlendorf, Garrett Fields, Tom Caputi, Tony Hutter
illumos: Jason King, Jerry Jelinek, Joshua M. Clulow, Joyce MclIntosh, Kody Kantor, Mike
Gerdts, Mike Zeller, RomanS, Sanjay Nadkarni

https://www.youtube.com/watch?v=TJwykiJmH0M&feature=youtu.be
https://github.com/zfsonfreebsd/ZoF/tree/projects/zfsbsd/module
https://github.com/zfsonlinux/zfs/pull/8956

Linux & illumos: Alek Pinchuk, Brad Lewis, Don Brady, Matt Ahrens, George Wilson,
Prakash Surya

FreeBSD: Alexander Motin, Allan Jude, Andriy Gapon, Josh Paetzel, sef (+Leo)

OSX & Windows: Jorgen Lundman

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees: Christian Schwarz, Hajo Moller, Richard Elling JMoS

5/28/2019, 1pm Pacific
Meeting recording

Happy ZoL 0.8!

o Lots of downloads and excited people. Successful so farl

lllumos encryption status (Jerry/Jason/Jérgen)

o Jerry has all of Jorgen’s work pulled over and building on illumos. Resolving some
test failures and then will put it out for an illumos code review.

o The code review will go out to the illumos developer mailing list and ask that they
identify issues with the platform-dependent changes in the port. People will have
ample time to comment and raise issues before the RTl is submitted.

RAIDZ Expansion status (Matt)

o Wil have an Alpha out this week or next. Pools will need to be destroyed if you use
it.

o The change lets you add a device to an existing pool and reflows the data between
disks.

o All of the caveats and details of what does and doesn’t work will be included in the
PR.

o Call for testing! Once the code is up, any manual testing under different workloads
and setups will be greatly appreciated. It would also be great if people could help
write systemic tests.

e BSDCAN update
o The future of ZFS on FreeBSD (Allan)

m One of the goals of the talk was to motivate the ZFS repo of FreeBSD
rebasing over ZoL. The advantages of having the consumers of ZFS closer
together was highlighted.

m There was some initial pushback people thought that the rebase will make
ZFS use the Linux Compatibility layer of FreeBSD, which is not the case.
Once this was clear, there were no further pushbacks

m Matt brought up that once the rebase is done and stable, discussions may
be initiated for potentially renaming the ZoL repo.

o snapshot scalability (Matt)

m Slides are posted and video will be up eventually. Please check them out if
you’re interested in learning more about snapshots.

m Matt will post a link to #openzfs once he has one.

e DRAID meeting recap (Richard Elling)
o There were about 11 participants

https://youtu.be/EzyPr3BuePo
https://www.bsdcan.org/2019/schedule/events/1060.en.html
https://www.bsdcan.org/2019/schedule/events/1073.en.html
https://docs.google.com/document/d/1SDuFWjiAZbsqJSYOt0iO2Dh4RvU-CzcixtQqLW6TuIw/edit#heading=h.zd12b6w407aq

o There is a design doc (linked above) with all the history of its edits based on the
discussions that took place. Please add comments to the doc to further the
discussion.

o There is still work to be done but since the code changes are sizeable, we’ll try to
split them into individual commits when it makes sense.

m Sef says he is available to do reviews at any time, just reach out.
CoC update (Matt/Karyn)

o Code of Conduct was put into place since the last meeting. We made several
changes based on community feedback. Thanks for participating!

o We will have a call for nominees for the Working Group in the fall, and then will
review the CoC at that point and have another community comment period. The
goal is to complete this before the Dev Summit.

The Dev Summit is Nov 4-5 in SF. See open-zfs.org for upcoming dates (e.g., call for
presentations).

o Reqgistration opens July 8th

o Send presentations to Matt by August 19th

o Thanks to Datto, Delphix, and Intel for already sponsoring! Reach out to @kritter if
you want to sponsor and she can give you the details.

Request from sefl The On-Disk Format document is out of date, and doesn’t reflect recent
changes (e.g., encryption). It would be really helpful to update this and keep it up-to-date
going forward (Perhaps in a semi-automated way?)

o Tom: The info about how things look today exists in various places, so it is just a
question of pulling it together into a single place.

o Matt: We only have a pdf for that, and we probably can’t just copy-paste it
somewhere else. It would be good to have a document with this info. Let’s put out
a call for a volunteer to do this.

m Paul pointed out that it is licensed under a Berkeley License
Compressed arc performance issue - single threaded sequential read

o Sequential reads are decompressed by the (one) user’s thread.

o With non-compressed ARC, they are decompressed by the (several) zio threads,
leading to more parallelism and improved performance.

o This is a good reason to disable compressed ARC (for workloads with single
threaded sequential read).

o We could make the prefetches decompress into the dbuf cache, to get this
performance back.

m If we do that, could we then make compressed ARC mandatory?
m Maybe... but Allan may have found another way to address the problem
that motivated him to make compressed ARC mandatory
Please take a look at the redacted send-receive requests as soon as you get a chance so
we can push this now that 0.8 is out. It's in sync with 0.8.
Next meeting will be in 4 weeks: June 25

Attendees

Linux: Brian Behlendorf, Tom Caputi
illumos: Jason King, Jerry Jelinek, Kody Kantor, Mike Zeller, RomanS

http://open-zfs.org/wiki/OpenZFS_Developer_Summit_2019
http://www.giis.co.in/Zfs_ondiskformat.pdf
https://web.archive.org/web/20120825093052/http://developers.sun.com/berkeley_license.html

Linux & illumos: Matt Ahrens, George Wilson, John Kennedy, Paul Dagnelie, Pavel
Zakharov, Prakash Surya, Sara Hartse, Serapheim Dimitropoulos

FreeBSD: Alexander Motin, Allan Jude, Josh Paetzel

OSX & Windows: Jorgen Lundman

Cross-platform:

Project management: Karyn Ritter

Other attendees: jiyer, Kelly Hays, Richard Elling, Ryan Moeller, sef, Steve Castano

4/23/2019, 11am Pacific
Meeting recording

DRAID meetup (Richard Elling)
o This is an all-day workshop for people interested in using and developing the
feature
o The goal is to finalize the design and start working on it
o May 3 at the Delphix SF office (343 Sansome St, Suite 900, San Francisco) at 9am
o Please RSVP so we are sure to have enough space. Reach out to anyone on the
team over email, Slack (#draid)
o Karyn to set up Zoom
o Richard will pull together an agenda document: remote folks (in particular) can add
comments and items to the agenda
ZolL 0.8 status (Brian B)
o Tagged final release candidate last week. FC and soaking since then.
o Please test it as much as possible!
o There are a few remaining bugs they are trying to finish up, but there shouldn’t be
major changes.
o Also working on documentation
o Hoping to release in 2-3 weeks
ZolL. => FreeBSD: test images available (based on Dec ZoL)! See this announcement for
details. Please test it out.
o Allan will cross-post the ZoL on FreeBSD announcement to the openzfs list.
o JoshP: The current ZolL-based implementation doesn't have TRIM enabled, are we
dropping it?
m Darth is waiting for ZoL to reach 0.8 and Delphix to upstream their latest
features to ZoL before doing a final rebase for release. Hopefully in 4-6
weeks.
e This rebase should also include the TRIM changes.
Any feedback on Porting ZoL. commits to other platforms? (Brian B)

Are there things we can do to make this easier? Problems found during porting?

o lgor: Identify pre-platform features, functions, etc. where things have diverged
between platforms. How to report issues in a way that provides visibility to all of the
platforms?

m BB: They've tried to keep things consistent with illumos, but have likely
diverged. Getting some documentation from illumos and other folks would
help. Source code? Wiki? Mailing list?

https://youtu.be/dIVGGJaZ7zk
https://lists.freebsd.org/pipermail/freebsd-stable/2019-April/090915.html

o Jerry J: Has been documenting divergence in the SPL interfaces (that he noticed as
he was porting from ZoL to illumos) in the and can send that out to the mailing list
and we can figure out a better place to put it.

Enable compression by default at pool creation (Issue) (kpande)

The idea is to give a better out of the box experience. The downsides are: potential CPU
cost (and write performance due to compressing) and new users misunderstanding how
the space is used in certain cases.

o Igor: There have been issues when root pools are expecting compression to be
disabled (on SPARC?)
o Allan: This has been the default in FreeBSD installer for ~2 years
o Sef: Boot pools need to be different for each platform, but grub doesn’t seem like it
needs to be different. Sef supports it being the default.
o Compression=0on has been the default in FreeNAS for several years; no complaints
o ** Someone to take an action item to investigate benefits and issues, and write it
up? (Matt will put out a call for someone to take ownership of this)
Next meeting: push back 1 week (to May 28)?
o Donel
Code of Conduct
o Send feedback by Apr 29!
Allan: Proposal to upgrade the L.Z47
o In general people are in favor of this
o The first step is to just update decompression so people get the performance
improvements
o Next is the exploration of enabling the compressor potentially with a tunable that
can fall back to the old decompressor
m The fear is that enabling the new compressor could increase the space
usage if using nopwrite (e.g. double it for existing snapshots)
o Igor: How stable is LZ4+compression?
o Allan: No known issues that he is aware of.

Attendees

Linux: Brian Behlendorf, Garrett Fields, Tom Caputi

illumos: Joshua M. Clulow, Mike Gerdts, Kody Kantor, Jason King, Jerry Jelinek, Patrick
Mooney, Sanjay Nadkarni, Mike Zeller

Linux & illumos: Matt Ahrens, Serapheim Dimitropoulos, Sara Hartse, Prakash Surya, Don
Brady, George Wilson, Pavel Zakharov, John Kennedy, Paul Dagnelie

FreeBSD: Alexander Motin, Josh Paetzel, Allan Jude, Darth

OSX & Windows:

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees:, zfslurker, sef, Richard Elling, Rich Teer, Christian Schwarz, Steve
Castano, Igor Kozhukhov, Ryan Zezeski

https://github.com/zfsonlinux/zfs/issues/8213

3/26/2019, 1pm Pacific

Meeting recording

Next meeting will be at 11am PT

Log spacemap is out for review (Serapheim)

o Open PR for this work, including performance results

o For people who want to port this feature to another platform, Serapheim also has a
list of other changes required

DRAID summit (Richard Elling)

o This work has been progressing, and it is at the point where it would be great to get
people together in a conference room (physically and virtually) for a day to hash it all
out. We would do this in the May/June timeframe.

o Please raise your hand (click yes in the participants window) if you want to
participate.

o Working on finding the venue.

o Yes votes: Joyent, Mark Maybee, BrianB, Don Brady, Matt Ahrens, Tom Capuitti.
Please reach out to Richard if you are interested in participating.

Default pool features (Josh P)
o Summary of the proposal
m Portable, current, and what was available in 20XX + Tier 1 platforms
m Tier 1 platforms: FreeBSD (11.X), ZoL (0.7.X), illumos-gate (from 1 year ago)
m zpool status or upgrade would use the previously selected portability setting
o Questions raised:
m Ability to define the feature sets at runtime, so you can add new definitions
on your own
e Sef: Disagrees with the editable file. My own suggested addition
would be the ability to query an existing pool against portability list.
e.g., "How portable is this pool?" | don’t know if that’s useful
outside my head.
m Tier 1 platform: specific ZoL version rather than a specific OS platform
Root pools: grub doesn’t support the same features as the Tier 1 platforms.
m Matt’s take:
e User-configurable features may or may not be useful, but we can
hold off and decide on that later.
e /olL: Which distros are shipping their own versions and how
important are they?
e (Grub: We discussed this before, and we decided it was too hard
and we were going to defer the conversation until later
m Do we want to bias toward portability or the latest feature set?
m Each distro ships different versions of ZoL:
e RHEL has a separate repo for ZoL (0.7)
e Debian ships 0.6.x
o Matt: If you aren’t shipping your own version of ZoL, you
aren’t a Tier 1 platform?
m Since portability isn’t turned on by default, maybe it’s fine

https://youtu.be/tVhf4ZxfB1Y
https://github.com/zfsonlinux/zfs/pull/8442

o

m You could say that only RHEL & SLES (+Ubuntu) are the platforms that
matter since they are large, supported releases. Focus on main distros and
release versions

m Ubuntu LTS will be Tier 1

m Christian: Heard a rumor that Canonical is working on an installer that will
include ZoL. Is that happening? What will that mean for portability”?

e Canonical are working on it, but we don’t have all the details.

m Jorgen: Considering that "upgrading” is one-way - you need to be
conservative. At the moment, users want to dual boot Windows and Linux,
and don't care they are missing "userobj quota" as it's not exactly going to
make the pool faster.

m JoshP: Boot pool is not nearly as important as data pools

No volunteers to lead the implementation effort.

m Suggestion to have the discussion on the mailing list to make sure people
are included.

m Matt pointed out that the person leading the implementation gets to decide
the details beyond what'’s in the core requirements. (subject to code review)

e Feature idea: GUIDs for filesystems that are invariant to zfs send | recv (Christian)

O
©)
O

o

‘quid’ is publicly documented since https://aithub.com/zfsonlinux/zfs/pull/6102
The "guid property for snapshots is invariant to zfs send | recv
| use "guid' in zrepl to build diffs of the snapshot lists between “the same” filesystem
on the sending & receiving side.
However, filesystem identity is currently derived from the dataset path. The "guid’ for
a sent-recvd filesystem is different on the receiving side, hence not invariant.
Filesystem identity across pools / machines is required to reliably track renames &
destroys of filesystems for purposes of replication.
Question: Do we want such a cross-pool ‘guid’ for filesystems _in_ ZFS?

m Previous work & ideas in that area”?

m How does a receiving pool handle an (unlikely) collision of GUIDs?

e Do we have this problem for snapshots already?

m Alternative: implement it as a user-property.
JoshC: How does -R work with this?

m Matt: It is in userland, and it does work. When you send, it has the from
guid and you send it to the new guid. You don’t necessarily know the name
if it has been renamed, but you can find the snapshot that has the same
guid as the from guid that the send stream is describing. You can receive
the same snapshot in one pool. The problem is solvable with the solution
today.

m Christian: Exhaustive search is good, but it can be ambiguous if we want to
properly distinguish divergence from deletion & recreation (=> proper error
messages, etc). Wants reliable detection mechanism.

No clear conclusion on this, and Christian also doesn’t have time to implement this
on his own at this point.

m Matt is open to someone implementing a guid for zrepl / other ZFS-specific
functions.

e For pjd’s need: Exclude these sub-filesystems or metadata. Use
redacted send/receive (+ more stuff)

https://github.com/zfsonlinux/zfs/pull/6102

Attendees

Linux: Brian Behlendorf, 2 LLNL people, Tony Hutter, Carles Mateo, Garrett Fields
illumos: Joshua M. Clulow, Kody Kantor, Jason King, Jerry Jelinek, Joyce Mclntosh,
RomanS

Linux & illumos: Matt Ahrens, Serapheim Dimitropoulos, Sara Hartse, Prakash Surya, Don
Brady, George Wilson, Pavel Zakharov

FreeBSD: Pawel Dawidek, Kirk McKusick, Alexander Motin, Josh Paetzel

OSX & Windows: Jérgen Lundman

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees:, zfslurker, sef (+cat), Richard Elling, Rich Teer, Christian Schwarz, Jason,
Ryan Moeller, Steve Castano, Mark Maybee, Dan Langille

2/26/2019, 1pm Pacific

Meeting recording available here

Reviewers for fast clone deletion (ZoL PR; illumos PR) (Sara)
o Thereis a feature flag change that Sara sent email out about.
o Sarais seeking reviewers.
m Brian volunteered to review, initial pass looks great
o How much review is needed?
o Will have some conflicts with bpobj iteration work.
o BB: Wasn’t planning to get this in before 0.8, but if it would be useful it is possible.

m Let’s get it in right after 0.8 (which is due out in March)

m There are a few fixes that are pending for 0.8 to go out. Matt will look at
them!

FIPS 140-2 certification (Luke)
o Defense contractors could use ZFS for many things, but require FIPS. Other
industries (e.g., healthcare) also have this requirement.

m JC: Can you get certification for a source or is it a specific binary build?

m Rainbow: It is for specific binary builds, and she does a lot of compliance
and can help here. You can do source code level certification.

m sef: Itis really expensive and time consuming. Level of configuration for
testing and certification is super specific.

m BB: We do have binaries from companies like RHEL, but they aren’t official
builds.“FIPS verified” rather than certified? We're already using the
appropriate crypto algorithm.

m PD: Certifying at the source level makes it easier for a vendor to get
certified. There are some additional components that would probably need
to be looked at (like hash algorithms).

m MA: Certification applies to the crypto algorithm. Does that help us since it is
a separate module.

m AJ: Different Linux distros will have different binaries that would need to be
certified separately.

o Luke can connect with Rainbow and sef to see what would need to be done to see
if it is viable.

https://www.youtube.com/watch?v=EXstK9ckcZQ
https://github.com/zfsonlinux/zfs/pull/8416
https://github.com/openzfs/openzfs/pull/731

e Should compressed ARC be mandatory? (Issue) (Allan J)
o Does anyone turn off compressed ARC? If not, we can avoid special cases for this.
o Please let Allan know right away if you do turn off compressed ARC. Else that
functionality may just be taken out.

MA: Seems like there are some cases on Linux where we can be confident
that people aren’t using this combination (i.e., it doesn’t work), but that
doesn’t cover all cases.

AJ: The crypto changes definitely made it different than what was in
FreeBSD.

JC: FWIW, compressed ARC makes ARC better in many different ways in
Postgres (at least). They haven’t noticed any latency increases or memory
overhead that has been called out.

AM: It is pretty pointless to disable compressed ARC. The difference when
you disable it and use other mechanisms (e.g., bcopy), is negligible and
there are other benefits to keep it on.

o Please comment in github!
o There was no significant negative feedback, so we plan to move forward with
making compressed ARC mandatory.
e Platform-specific sharenfs (George)
o Sent this out the proposal last night.
o Create platform-specific properties. These platform-specific properties won'’t take
effect when importing the pool on a different platform.

MA: ‘sharenfs’ is a system property because ZFS takes action based on it
(e.g. share/unshare when you do ‘zfs rename’). It should be
platform-specific because the value of the property isn’t verified/interpreted
by ZFS - it's passed to the OS-specific share utility without modification.
AJ: Cross-OS import is a feature I'd like to keep as a 1st class citizen.

MA: JC provided feedback on the proposal. Please talk about your
counter-proposal.

JC: Biggest difference was to keep the functionality the same if people really
want it, but there would be a “veneer” interface that would allow
platform-specific properties. Generally people would just use whatever
properties on their OS. Garrett’s comments are an appliance-centric view.
The key bit of the proposal is to ensure that it isn’t dangerous to import onto
a different platform. The better eventual solution is to actually do something
good in this scenario.

AJ: What about namespacing the property like we do for the user
properties: sharenfs:illumos. Maybe make it more feature flag. Do it in a way
that is consistent with what is already done.

CS: bikeshed: org.openzfs.illumos:sharenfs

RE: There could be many different iSCSI servers, and would need to figure
out how to get to the right one. Some sharing is cross-OS: samba,
nfs-ganesha

AJ: share@samba, share@nfs-ganesha, share@illumos... -- Tie this to the
server rather than OS?

JC/GW: Maybe a “” instead of “@”?

sef: Who is going to decide if this is an OS-specific property?

https://github.com/zfsonlinux/zfs/issues/7896

m CS: Have some hooks into a layer (e.g., via lua) rather than having this built
into zfs.
o MA: Seems like George’s proposal is better than what we have now, but we should
get feedback from various platform vendors.
Next meeting will be at this time. The following meeting will be at the earlier time.

Attendees

Linux: Brian Behlendorf

illumos: Joshua M. Clulow, Kody Kantor, Jason King, Jerry Jelinek, Joyce Mclntosh

Linux & illumos: Matt Ahrens, Serapheim Dimitropoulos, Sara Hartse, Prakash Surya, Don
Brady, John Kennedy, George Wilson, Pavel Zakharov

FreeBSD: Rainbow, Pawel Dawidek, Allan Jude, Kirk McKusick, Alexander Motin

OSX & Windows: Jorgen Lundman

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees:, zfslurker, sef, Richard Elling, Rich Teer, Jeff, Christian Schwarz, Luke
Olson, evanl, Garrett Fields

1/29/2019, 11am Pacific

Meeting recording available here

Code review progress on redacted send/recv (Paul D)

o Still need people to review chunks to minimize code churn

o BrianB: What is the schedule for 0.87 This wouldn’t make .8 because they are
trying to get this out in Feb/March (as quickly as possible).

TRIM update (Brian)
o User visible change is to align CLI with vdev ... Everything else is under the covers
o Looking for reviewers this week! Please review it if you have time.

Update on default pool features to enable (Josh P)

o Bootpool hasn’t been considered. Proposal to include thoughts about this to spark
the broader discussion.

o Josh P will send email with a consensus proposal. Please send feedback /
questions. As needed, discuss at the next meeting

Remove dedup-ditto (Matt)

o This is very little used and not very useful. The option still exists, and the system can
deal with existing pools. But users won'’t be able to use this functionality going
forward.

o Silence and encouragement for removing this.

Remove zpool remap (Matt/Brian)

o Itis possible to get value out of this in certain circumstances, but there are lots of
caveats. Also, the cost to maintain it is significant since there is a bug that causes a
panic if you’re removing a device (remap) and a receive hits at the wrong time.

o Seems like this functionality also isn’'t much use, and isn’t helpful. This has already
been removed from Linux since there were no tagged releases (and it was new to
Linux). Command line options were removed in Linux, but the code is there and
disabled. At some point in the not-too-distant future, the code would be removed.

https://youtu.be/E6lvNOxCxOw

o Propose removing it from illumos & FreeBSD (shipped in 12.0 in Nov/Dec).

o Josh C: Seems fine to remove the mechanism. For illumos, they will probably want
to think more about what to do with the command (deprecation warning, etc)

o Allan Jude: Seems to make sense to neuter it as soon as possible so that people
don’t start to rely on it. Similar to Linux, there should be and exit O and error.

Log spacemap (Serapheim)

o Upstreaming of this feature, which improves random writes. It is an on-disk format
change

o Opened multiple PRs in ZoL to break down the changes.

o Aiming to have a pull request for the feature end of this week / beginning of next
week.

o There are a lot of metaslab changes.

o Igor: What about upstreaming to OZFS and illumos?

m Serapheim: Planning to do this work after ZoL, and will do it as a separate
change. Mostly the code is the same. Will give an update at the next
meeting.

Fast clone deletion (Sara)

o Originally developed on illumos as well. Pull request for OpenZFS and ZoL.

o Performance enhancement for doing clone deletion, and tying it back to the number
of changes on the clone.

o PR has a lot of information about the design and implementation.

o Igor: Please share performance details about this change.

m Sara: Perf results are in the PR, will add test code for reproducing the
results

How many event/fault management frameworks exist? Can they be unified? (Michael
Dexter)

o Onillumos is system-wide, not just ZFS. Not sure about other platforms.

o lIgor: Should we port FMA to other platforms?

o Don B: In Linux, they emulated enough of FMA to get things working, and there is a
README in that code that provides some details. In Linux, they had ZFS Event
Daemon (ZED), and that allowed them to share the same modules as illumos.

o Josh C: FMA provides details about faults and their resolution. It goes through
sysevent to a daemon. Events are collected across the system, and then you can
correlate errors from across the system and ties those to issues in the vdev layer. It
would likely be problematic to put all of this into ZFS because the broader context
of the system and source of the error would be missing.

o Josh P: FreeBSD also has some emulation. There was a lot of effort put into getting
things working, and he would prefer not to touch it at this point.

OpenZFS/openzfs github repo (Matt)

o Primary motivator to create this repo: Make it easier to get changes into illumos for
non-illumos developers (e.g., porting ZFS changes from one platform to another).

o Secondary motivatory: Gives visibility to the project and community rather than
having changes and activity distributed across platform-specific repositories.

o The primary motivator is still valid and valuable. It is also a lot of work to maintain it.

o Delphix is spending the most time on this, but we’re going to be focusing on Linux
going forward.

o Do people find it useful? Are others willing to take this on / help?

m Josh C: Joyent is looking to set up and maintain infrastructure this year
(especially around testing), and provide facilities and drive engagement.
You’re welcome to rename it to “illumos”-something.
m Allan J: Does it make sense to also use it to help coordinate changes across
platforms? Like changes to on-disk format.
Mixing raw/non-raw send streams (Tom)
o Last(?) encryption issue (that we know ofl)
o Tom is working on the PR

Attendees

Linux: Brian Behlendorf, Andreas Dilger

illumos: Joshua M. Clulow, Kody Kantor, Sriram Narayanan, Jerry Jelinek, Sanjay Nadkarni,
Joyce Mclintosh, Roman

Linux & illumos: Matt Ahrens, Paul Dagnelie, Serapheim Dimitropoulos, Sara Hartse,
Prakash Surya, Don Brady, John Kennedy, George Wilson, Alek Pinchuk

FreeBSD: Rainbow, Josh Paetzel, Pawel Dawidek, Allan Jude, Kirk McKusick, Alexander
Motin

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees:, zfslurker, sef, Igor Kozhukhov, Dan Langille, Richard Elling, ram, Rich
Teer, Ryan Moeller, Tony Hutter, wombat

1/8/2019, 1pm Pacific

Meeting recording available here

sharenfs property:
o Currently wrong, because this is an illumos-specific string that it is up to other
platforms to interpret it.
o For now, this property is implementation dependent.
o Linux folks barely use it, mostly for simple scenarios. In FreeBSD the effects of this
property varies between system versions.
o Conclusion/Next Steps: George Wilson will make a proposal and send it to
the mailing list.
Persistent L2ARC:
o No activity on this for the past few years.
o Currently, no high priority for anyone involved in ZFS.
o Conclusion: We leave the status as it is, until some new need/effort comes up.
TRIM Support:
o Currently two implementations. One already merged in FreeBSD and another one in
PRs to illumos and Linux originating from Nexenta.
o FreeBSD users have seen some performance improvements. Same for some
Nexenta folks.
o The common pattern being that this is very vendor specific and having TRIM on can
boost or degrade performance.
o The complexity that the TRIM change introduces is fairly significant at the same
time, so hard evidence is needed to convince going through with those PRs.

https://youtu.be/Li8Z08KZvg8

o Conclusion: We can continue with this once we have some hard data on its
behavior and how it helps from existing users of TRIM.
e Anyone using LSI HBAs with many SSDs or NVMes on FreeBSD contact
allan@klarasystems.com

12/4/2018, 1pm Pacific

Meeting recording available here

e Default pool features to enable. A couple of options:
o All features are enabled

m Tom: This is the right thing to do because otherwise people miss key
features.

o Compatibility flag for platform and version

m Sef: This is a horrible, non-scalable solution to actually list everything.
Instead, have a tag which the platform can map to a specific release/set of
features.

m Joshua Clulow: Thought sef’s idea was more manageable.

m Neal Gompa: Downstream from ZoL users (e.g., Ubuntu) could see some
issues because kernel and userspace tools may be out of sync and cause
troubles.

o No features on by default
o All, none, least-common denominator (“portable pool”)
Moving the next meeting to Jan 8 (rather than Jan 1), but not changing the time.

Attendees

Linux: Brian Behlendorf, Tom Caputi, Garrett Fields, Andreas Dilger, Neal Gompa
illumos: Joshua M. Clulow, Mike Gerdts, Kody Kantor, Jason King, Patrick Mooney, Mike
Zeller, Sriram Narayanan

Linux & illumos: Matt Ahrens, Paul Dagnelie, Serapheim Dimitropoulos, Sara Hartse,
Prakash Surya, Pavel Zakharov, Don Brady, John Kennedy

FreeBSD: Rainbow, Andriy Gapon, Josh Paetzel

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees: Joyce Mclintosh, zfslurker, sef (+ lovely black cat), Chris Johnson, Igor
Kozhukhov, Chip, Dan Langille, Glenn Lockwood, Galaxy S8, Jerry, Richard Elling

11/6, 1pm Pacific

Meeting recording available here

Status update on encryption ports
o Update from Jason King: continuing to try to reproduce reported issue
o Update from Sean Fagan & Matt Macy: still seeing some ztest failures, need to
investigate
Status update on redacted send/recv code review
o Requested reviews from Tom, Roman, Brian
o Tom requests breaking down review into different parts

mailto:allan@klarasystems.com
https://youtu.be/TwCc9zjhRw4
https://www.youtube.com/watch?v=oV58X-z8xVU&feature=youtu.be

e Discuss the OpenZFS Feature Matrix (by platform): details in this spreadsheet
o Attempt to assign owners for all features “integrated to at least one platform”
e Openzfs github emails - vote against reinstating the notifications
e Meseting logistics - vote to extend future meetings to 1 hour
e New ZFS on Linux committer - it's Matt Ahrens!

Completed Action ltems

Karyn to change calendar invite to 1 hour meetings going forward, and add as many
attendees to the calendar invite as possible.

Status: (11/6) Done. Attendees of today’s meeting with a * next to their name have
not been added to the calendar invitation because | don’t have their email address.

Attendees

e Linux: Brian Behlendorf, Tom Caputi, Tony Hutter(?), *Garrett Fields

e illumos: Joshua M. Clulow, Mike Gerdts, Kody Kantor, *Jason King, *Patrick Mooney, *Mike
Zeller

e Linux & illumos: Matt Ahrens, Paul Dagnelie, Serapheim Dimitropoulos, Sara Hartse,

Prakash Surya, George Wilson, Pavel Zakharov

FreeBSD: Allan Jude, Alexander Motin, Rainbow, *Kirill Ponomarev

OSX & Windows: Jorgen Lundman

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees: Sanjay Nadkarni, *Joyce Mclintosh, *zfslurker, *tech, *sef, “Roman, *Ryan

Moeller, *“Tim Chase, *Darth, *Chris Johnson, *Andreas Dilger, *“Neal Gomba, *Rich Teer

10/9/2018, 1pm Pacific - Meeting Kickoff

Agenda

e Discuss the OpenZFS Feature Matrix (by platform): details in this spreadsheet
o Attempt to assign owners for all features “integrated to at least one platform”

Notes

Meeting Recording is now available

Michael Dexter, for iXsystems:

My lab now has six identical Xeon E3 systems with two disks each for testing of different
platforms in parallel: Windows, NetBSD, FreeBSD 12, Encryption on FreeBSD, Centos and
someone suggested Openindiana as a go-to lllumos.

Updated the spreadsheet with feedback. Main updates were to:

Zpool initialize on linux

Encryption on illumos

MMP on illumos

Sequential scrub/resilver on illumos

We received feedback that 30 minutes was not enough time. That’s true but I’'m hoping that we
didn’t miss anything urgent, and we’ll get to the whole spreadsheet in the next few months.

https://docs.google.com/spreadsheets/d/1CFapSYxA5QRFYy5k6ge3FutU7zbAWbaeGN2nKVXgxCI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CFapSYxA5QRFYy5k6ge3FutU7zbAWbaeGN2nKVXgxCI/edit?usp=sharing
https://www.youtube.com/watch?v=2Bi0ZicXEz0

Attendees

Linux: Tom Caputi, Carles Mateo, Tony Hutter

illumos: Bryan Cantrill, Joshua M. Clulow, Jerry Jelinek, Kody Kantor, Mike Zeller

Linux & illumos: Matt Ahrens, Don Brady, Paul Dagnelie, Serapheim Dimitropoulos, John
Kennedy, George Wilson

FreeBSD: Andriy Gapon, Allan Jude, Warner Losh, Kirk McKusick , Alexander Motin, Josh
Paetzel, Rainbow, Kirill Ponomarev

OSX & Windows: Jérgen Lundman

Cross-platform: Michael Dexter

Other attendees: Chris, Richard Elling, Glenn Lockwood

Project management: Karyn Ritter

Team Members

Matt Ahrens - Linux & illumos
Brian Behlendorf - Linux

Don Brady - Linux

Bryan Cantrill - illumos

Tom Caputi - Linux

Joshua M. Clulow - illumos

Paul Dagnelie - Linux & illumos
Michael Dexter - Cross-platform
Serapheim Dimitropoulos - Linux & illumos
Richard Elling -

Andriy Gapon - FreeBSD

Tony Hutter - Linux

Jerry Jelinek - illumos

Allan Jude - FreeBSD

Kody Kantor - illumos

John Kennedy - Linux & illumos
Glenn Lockwood -

Warner Losh - FreeBSD

Jorgen Lundman - OSX & Windows
Carles Mateo - Linux

Kirk McKusick - FreeBSD
Alexander Motin - FreeBSD

Josh Paetzel - FreeBSD

Rainbow - FreeBSD (Moogsoft)
Karyn Ritter - project management
George Wilson - Linux & illumos
Pavel Zakharov - Linux & illumos
Mike Zeller - illumos

Chris -

Full Attendee list (baseline)

Linux: Andreas Dilger, Brian Behlendorf, Carles Mateo, Christopher Voltz, Garrett Fields,
Tom Caputi, Tony Hutter

illumos: Jason King, Jerry Jelinek, Joshua M. Clulow, Joyce McIntosh, Kody Kantor, Mike
Gerdts, Mike Zeller, Patrick Mooney, RomanS, Sanjay Nadkarni, Sriram Narayanan

Linux & illumos: Alek Pinchuk, Don Brady, John Kennedy, Matt Ahrens, George Wilson,
Paul Dagnelie, Pavel Zakharov, Prakash Surya, Sara Hartse, Serapheim Dimitropoulos
FreeBSD: Alexander Motin, Allan Jude, Andriy Gapon, Darth, Josh Paetzel, Kirill
Ponomarev, Kirk McKusick, Pawel Dawidek, Rainbow, Warner Losh

OSX & Windows: Jorgen Lundman

Cross-platform: Michael Dexter

Project management: Karyn Ritter

Other attendees: Chip Schweiss, Chris Johnson, Christian Schwarz, Dan Langille, Dipack
Panjabi, evanl, Glenn Lockwood, Igor Kozhukhov, Jeff, jiyer, Kelly Hays, Luke Olson,
Marcin Skarbek, Mark Maybee, Neal Gomba, ram, Rich Teer, Richard Elling, Ryan Moeller,
Ryan Zezeski, sef, Steve Castano, Tim Chase, zfslurker

	Open Action Items
	Upcoming Agenda Items (for next meeting - 2025-11-04, 13:00 US Pacific)
	Agenda Items (2025-10-07, 10:00 US Pacific)
	Agenda Items (2025-09-09, 13:00 US Pacific)
	Agenda Items (2025-08-12, 10:00am US Pacific)
	
	
	9/10/2024, 1pm pacific
	5/23/2023, 9am Pacific
	4/25/2023, 1pm Pacific
	
	3/28/2023, 1pm Pacific
	2/28/2023, 9am Pacific
	1/31/2023, 1pm Pacific
	1/3/2023, 1pm Pacific
	12/6/2022, 9am Pacific
	11/8/2022, 9am Pacific
	10/11/2022, 1pm Pacific
	9/13/2022, 1pm Pacific
	8/16/2022, 9am Pacific
	7/19/2022, 1pm Pacific
	6/21/2022, 1pm Pacific
	5/24/2022, 9am Pacific
	04/26/2022, 1pm Pacific
	03/29/2022, 1pm Pacific
	03/01/2022, 9am Pacific
	
	02/01/2022, 1pm Pacific
	01/04/2022, 1pm Pacific
	12/07/2021, 9am Pacific
	10/12/2021, 1pm Pacific
	9/14/2021, 9am Pacific
	8/17/2021, 1pm Pacific
	7/20/2021, 9am Pacific
	6/22/2021, 9am Pacific
	5/25/2021, 1pm Pacific
	4/27/2021, 1pm Pacific
	3/20/2021, 9am Pacific
	3/2/2021, 1pm Pacific
	2/2/2021, 1pm Pacific
	1/5/2021, 9am Pacific
	12/8/2020, 1pm Pacific
	11/10/2020, 1pm Pacific
	10/13/2020, 9am Pacific
	9/15/2020, 1pm Pacific
	8/18/2020, 1pm Pacific
	7/21/2020, 1pm Pacific
	6/23/2020, 9am Pacific
	5/26/2020, 1pm Pacific
	4/28/2020, 1pm Pacific
	3/31/2020, 9am Pacific
	3/3/2020, 1pm Pacific
	2/4/2020, 1pm Pacific
	1/7/2020, 9am Pacific
	12/10/2019, 1pm Pacific
	
	11/12/2019, 1pm Pacific
	10/15/2019, 11am Pacific
	9/17/2019, 1pm Pacific
	8/20/2019, 1pm Pacific
	Attendees

	7/23/2019, 11am Pacific
	Attendees

	6/25/2019, 1pm Pactific
	Attendees

	5/28/2019, 1pm Pacific
	Attendees

	4/23/2019, 11am Pacific
	Attendees

	
	3/26/2019, 1pm Pacific
	Attendees

	2/26/2019, 1pm Pacific
	Attendees

	1/29/2019, 11am Pacific
	Attendees

	1/8/2019, 1pm Pacific
	12/4/2018, 1pm Pacific
	Attendees

	
	11/6, 1pm Pacific
	Completed Action Items
	Attendees

	10/9/2018, 1pm Pacific - Meeting Kickoff
	Agenda
	Notes
	Attendees

	Team Members

