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Section 1: The Strategic Imperative for a Context Architecture (The Why) 
The discipline of building applications powered by Large Language Models (LLMs) is undergoing a 
critical transition. The initial phase of development, characterized by fascination with the novelty of 
generative AI and the creation of simple, proof-of-concept chatbots, is rapidly drawing to a close. 
As organizations move to deploy these technologies in mission-critical, enterprise-scale systems, 
the focus must shift from novelty to infrastructure. The ad-hoc methods and simplistic "prompt 
engineering" that defined the first wave of LLM applications are insufficient for building the reliable, 
scalable, and maintainable systems that businesses now demand. A more rigorous, architectural 
approach is not merely beneficial; it is a strategic imperative. 

 

1.1 The Post-Hype Era of LLM Development 

The current era of AI development is defined by the challenge of operationalizing LLMs. While 
foundational models have demonstrated remarkable capabilities, their integration into real-world 
products exposes fundamental limitations that cannot be ignored. These are not minor flaws to be 
patched but inherent characteristics that demand a deliberate architectural response. Two 
limitations are paramount 1: 

1.​ Statelessness (No Memory Between Sessions): By their nature, most LLMs are stateless. 
Each interaction, or API call, is an independent event. The model possesses no intrinsic 
memory of past conversations, user preferences, or the broader context of a project. Every 
session begins from a blank slate, forcing developers to manually re-inject all relevant context 
with every turn of the conversation. This creates significant overhead and leads to user 
experiences that feel disjointed and inefficient. 

2.​ Cognitive Fallibility ("Lost in the Middle" Syndrome): Even within a single, long interaction, 
an LLM's performance is not uniform. Research has shown that models exhibit a significant 
degradation in their ability to recall and utilize information presented in the middle of a large 
context window. This "lost in the middle" phenomenon can result in accuracy drops of 20-50%, 
a catastrophic failure rate for any system that relies on precise information retrieval and 
reasoning over extensive context.1 

These challenges reveal a crucial truth: the raw power of an LLM is only a starting point. The true 
value of an AI application is unlocked not by the model alone, but in coordination with the 
surrounding system that intelligently manages and constructs its context. The industry's focus is 
thus shifting from a purely "model-centric" view, where progress is measured by the release of the 
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next-largest model, to an "application-centric" view. In this new paradigm, progress is measured by 
the robustness, reliability, and contextual awareness of the end-to-end system built around the 
model. This shift necessitates a move away from improvised solutions and towards formal 
architectural patterns. 

 

1.2 The Core Problem: The Context Window as the Central Payload 

At the heart of every LLM interaction is the context window. It can be understood as the model's 
"working memory" or "attention span"—the total amount of information it can "see" at once when 
formulating a response.1 This information, which constitutes the prompt payload sent to the 
model's API, is the single most critical artifact in any AI-infused system. It is the sole conduit 
through which we can influence the model's behavior, ground its knowledge, and direct its 
reasoning. 

Everything the AI needs to consider must be packed into this finite space: system instructions, user 
personalization data, retrieved documents, task status, conversational history, tool definitions, and 
the user's latest query.1 As an analogy, imagine a brilliant expert who can only work with the 
information written on a single whiteboard. The size of the whiteboard dictates how much context 
they can handle. Once it's full, old information must be erased to make room for new data. If crucial 
information is erased or written haphazardly, the expert's output will suffer, no matter how brilliant 
they are. 

Developers have relied on ad-hoc string concatenation and informal rules of thumb, resulting in 
systems that are brittle, difficult to debug, and impossible to scale. When an AI system produces an 
incorrect or unexpected response, the lack of a structured approach makes it nearly impossible to 
diagnose the root cause. Was the core instruction flawed? Was the wrong document retrieved? 
Was the conversational history truncated incorrectly? Without a formal architecture, debugging 
becomes a process of guesswork. This ad-hoc approach is unsustainable for building 
enterprise-grade software. 

 

1.3 Vision and Mission: Introducing the Context Window Architecture (CWA) 

To address this foundational challenge, this document introduces the Context Window 
Architecture (CWA). It is critical to understand that CWA is not a new software library, framework, 
or proprietary tool. It is a conceptual reference architecture—a standardized blueprint or design 
pattern for strategically organizing the information within an LLM's context window.1 While other 
tools provide the materials for building AI applications, CWA provides the architectural plan. 

The vision for CWA is to elevate the practice of prompt construction from an informal craft to a 
disciplined engineering practice. By conceptualizing the context window as a stack of distinct, 
purposeful layers, CWA provides a mental model that brings clarity, predictability, and structure to 



LLM interaction design. 

The mission of the Context Window Architecture is to provide a standardized, layered model for 
developers and architects to strategically construct, manage, and diagnose the LLM prompt 
payload. The adoption of this architecture will empower teams to build more predictable, capable, 
debuggable, and contextually aware AI systems, leading to more effective and trustworthy user 
experiences.1 

 

1.4 Intended Audience and Use of This Document 

This document is intended for a technical audience deeply involved in the creation of AI-powered 
products and services. The primary audience includes software architects, technical leaders, and 
senior developers who are responsible for designing and implementing these complex systems. 

Initially, this report is targeted at our internal teams. The goal is to establish CWA as a universal best 
practice that ensures a high standard of quality, consistency, and reliability in the AI solutions we 
deliver to our customers and partners. By adopting a common architectural language, we can 
improve collaboration, accelerate development, and simplify maintenance across all of our AI 
projects. 

Following successful internal adoption, the secondary audience for this document will be our 
partners, our customers, and ultimately, the broader AI development community. We believe that 
the challenges CWA addresses are universal, and we intend to evangelize this architecture as a 
public contribution to the field. 

This document is designed to be used in several ways: 

●​ For Architects: As a foundational guide for designing robust, multi-component AI systems that 
are modular and maintainable. CWA provides the high-level schematic for how different 
context sources should be orchestrated. 

●​ For Developers: As a practical mental model for structuring their code. When using agentic 
frameworks like LangChain or building custom solutions, developers can use the CWA layers to 
organize their context-management logic, making their code cleaner and more intentional. 

●​ For Product Managers: As a clear and consistent vocabulary for defining the desired 
capabilities and behaviors of AI features. Discussing whether a feature requires "Layer 2: User 
Info" for personalization or "Layer 4: Task State" for a multi-step workflow brings precision to 
product requirements. 

●​ For Enterprises: As the cornerstone document for a new best practice. It will serve as the 
basis for internal training, the standard against which new AI projects are measured, and a key 
piece of intellectual property that demonstrates our thought leadership in the AI space. 

 



Section 2: Deconstructing the Context Window Architecture (CWA) (The 
What) 
The Context Window Architecture is composed of 11 distinct layers, each serving a specific and 
strategic purpose. These layers are organized in a logical stack, designed to be assembled by an 
orchestration system before the final payload is sent to the LLM. This structure is not arbitrary; it is 
deliberately designed to maximize the LLM's cognitive strengths and mitigate its weaknesses. 

 

2.1 The Layered Stack: Leveraging Primacy and Recency Effects 

The 11 layers of CWA are ordered to take advantage of well-documented cognitive biases in LLMs, 
namely the "primacy effect" and the "recency effect." Research indicates that LLMs pay the most 
attention to information presented at the very beginning and the very end of their context window, 
while information in the middle is more likely to be overlooked or "lost".1 

CWA's structure directly addresses this. The most foundational, enduring, and high-level 
information is placed at the top of the stack (Layers 1-4), ensuring it benefits from the primacy 
effect. This includes the AI's core identity, its long-term knowledge, and its overall goals. 
Conversely, the most immediate and actionable information—the user's latest query—is placed at 
the very bottom of the stack (Layer 11), ensuring it benefits from the recency effect and becomes 
the primary focus of the model's response generation. The layers in between contain supporting 
and transitional context. This strategic ordering is a core feature of the architecture, designed to 
create the most effective and reliable prompt payload possible. 

 

2.2 Foundational Layers (1-4): Establishing the Ground Truth 

These first four layers form the bedrock of the AI's identity and knowledge base. They establish the 
stable context upon which all subsequent interactions are built. 

 

Layer 1: Instructions (System Configuration & Core Directives) 

●​ Purpose: This layer defines the LLM's fundamental operational parameters. It sets the AI's 
persona, role, overarching goals, ethical boundaries, and behavioral guidelines. Crucially, it can 
also contain meta-instructions on how the model should interpret and prioritize the other 
context layers.1 

●​ Strategic Value: Layer 1 acts as the AI's "constitution" or core programming. It is the primary 
mechanism for ensuring consistent behavior, aligning the model with its intended use case, and 
enforcing safety protocols. A well-defined Instructions layer is the foundation of a predictable 
and trustworthy AI system.1 

●​ Enterprise Use Case: Consider a customer service AI for a global financial institution. The 
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Instructions layer would specify: "You are 'FinSecure Helper,' a professional and 
security-conscious assistant. Your primary goal is to help users with account inquiries. Your 
tone must always be formal and reassuring. You must never ask for or process full account 
numbers or passwords. If a user asks for financial advice, you must decline and provide a 
disclaimer pointing them to a certified human advisor. All responses must adhere to Company’s  
communication policy provided in the Curated Knowledge Context." This ensures brand 
alignment, operational safety, and regulatory compliance in every interaction. 

 

Layer 2: User Info (Personalization & User Profile Context) 

●​ Purpose: This layer provides the LLM with specific, relevant information about the individual 
user it is interacting with. This data is typically pulled from a user database or CRM system and 
can include preferences, account details, language, location, accessibility needs, and a 
summary of past interactions (distinct from the immediate chat history).1 

●​ Strategic Value: Personalization is a key driver of user engagement and satisfaction. This layer 
transforms a generic assistant into a personal one. It allows the LLM to tailor its responses, 
recall user-specific details, and provide a more efficient and empathetic interaction, making 
the user feel understood and valued.1 

●​ Enterprise Use Case: An LLM-powered onboarding assistant for a complex enterprise 
software product. For a new user, "Jane Doe, a Project Manager at Acme Corp," the User Info 
layer might contain: 

{ 
    'name': 'Jane Doe', 
    'role': 'Project Manager', 
    'company': 'Acme Corp', 
    'subscription_tier': 'Enterprise', 
    'preferred_features':'', 
    'language': 'en-GB' 
} 

When Jane asks, "How do I set up my first project?", the AI can provide a response tailored to a 
Project Manager's perspective, highlight the features relevant to her role, use British English 
spelling, and potentially reference Enterprise-tier functionalities. 

 

Layer 3: Curated Knowledge Context (Domain-Specific Grounding) 

●​ Purpose: This layer is where the system injects verified, highly relevant factual information 
pertinent to the current query. This content is typically retrieved from a trusted knowledge 
base, such as internal company documents, technical manuals, product specifications, or a 
curated set of external articles. This is the layer where the Retrieval-Augmented Generation 
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(RAG) pattern is implemented.1 

●​ Strategic Value: This layer directly combats the core LLM problems of knowledge cut-offs and 
hallucination. By providing the model with a "just-in-time" feed of accurate, up-to-date 
information, it dramatically boosts the factual accuracy, relevance, and trustworthiness of the 
generated response. For enterprise applications in fields like medicine, law, or engineering, this 
grounding in verifiable data is non-negotiable.1 It provides the specific knowledge that drives 
the majority of value in specialized domains. 

●​ Enterprise Use Case: An AI assistant for an automotive technician. When the technician asks, 
"What is the torque specification for the cylinder head bolts on a 2024 Model-T truck with the 
V8 engine?", the system performs a retrieval query against the official service manuals. The 
Curated Knowledge Context layer is then populated with the exact excerpt: "For the 2024 
Model-T V8 engine (VIN Prefix 4T), the cylinder head bolts must be tightened in a three-stage 
sequence: Stage 1 to 30 Nm, Stage 2 to 60 Nm, and Stage 3 an additional 90-degree turn." The 
LLM's response is therefore grounded in the authoritative source, ensuring safety and 
correctness. 

 

Layer 4: Task/Goal State Context (Multi-Turn Task Management) 

●​ Purpose: This layer maintains a structured, explicit representation of a complex, ongoing task 
or a multi-step goal. It tracks the overall objective, a list of sub-tasks with their statuses (e.g., 
to-do, in-progress, completed), any collected parameters, and intermediate results.1 

●​ Strategic Value: This layer is what enables an LLM to function as a true agent capable of 
complex problem-solving. It prevents the AI from getting lost during long, stateful interactions. 
It allows the system to guide a user through a process, resume an interrupted workflow, and 
handle intricate instructions by breaking them down into manageable parts. This is essential for 
moving beyond simple Q&A to sophisticated, goal-oriented applications.1 

●​ Enterprise Use Case: An LLM-powered automated IT support agent helping an employee 
troubleshoot a VPN connection issue. The Task/Goal State Context might look like this: 

{ 
    'main_goal': 'Resolve VPN connectivity', 
    'sub_tasks': [ 
        { 
            'name': 'check_credentials', 
            'status': 'completed', 
            'result': 'valid' 
        }, 
        { 
            'name': 'check_network', 
            'status': 'in-progress' 
        }, 
        { 
            'name': 'check_vpn_client_version', 



            'status': 'to-do' 
        } 
    ] 
} 

If the user confirms their network is working, the LLM updates the state and proceeds to the next step: "Great, 
your network is fine. Now, let's check the version of your VPN client." If the conversation is interrupted, the LLM 
can resume precisely where it left off by consulting this state object. 

 

2.3 Conversational and Tooling Layers (5-8): The Action-Perception Loop 

This middle section of the stack manages the dynamic aspects of the interaction: the flow of 
conversation and the AI's ability to interact with external systems. This is where the agent perceives 
its environment, reasons about its capabilities, and acts upon the world. 

 

Layer 5: Chat History Summary (Long-Term Conversational Memory) 

●​ Purpose: To provide condensed, abstractive summaries of older parts of the conversation. As 
the conversation grows too long to fit entirely within the context window, a background 
process can summarize earlier turns, retaining the key decisions, entities, and outcomes.1 

●​ Strategic Value: Humans build conversations on a foundation of shared history. This layer 
simulates that long-term memory, allowing the AI to maintain coherence over extended 
interactions that might span hours, days, or even weeks. It prevents the AI from asking 
repetitive questions or forgetting important context established much earlier in the dialogue, 
which is crucial for building long-term user relationships. This layer is a practical 
implementation of the memory modules found in advanced agent frameworks.2 

●​ Enterprise Use Case: A financial planning AI working with a client over several sessions. In the 
first session, the client stated their risk tolerance is "conservative." Two weeks later, the 
conversation resumes. The Chat History Summary layer would contain: "Client 'John Smith' 
established a 'conservative' risk tolerance and a primary goal of 'retirement planning'." When 
the AI suggests investment options, it will use this summarized memory to filter out high-risk 
assets, demonstrating a coherent and continuous understanding of the client's needs. 

 

Layer 6: Chat History (Recent Conversational Flow) 

●​ Purpose: This layer contains the raw, verbatim transcript of the most recent turns in the 
conversation between the user and the AI.1 

●​ Strategic Value: This is the primary source for understanding the immediate conversational 
context. It allows the LLM to resolve pronouns (e.g., understanding that "it" refers to the 
"report" mentioned in the previous sentence), follow the natural back-and-forth of dialogue, 
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and respond directly to the user's last statement. It is the foundation of short-term 
conversational coherence.1 

●​ Enterprise Use Case: A simple interaction with an e-commerce bot. 

User: "Do you have the 'RX-78' model in stock?" 
AI: "Yes, we do. It's available in blue and red." 
User: "How much is the blue one?" 

The LLM uses the verbatim Chat History to understand that "the blue one" refers to the 
"RX-78" model, allowing it to provide the correct price. 

 

Layer 7: Tool Explanation (System Capabilities & Affordances) 

●​ Purpose: To inform the LLM about the external tools, APIs, or functions it has the ability to 
invoke. This layer provides a structured description of each tool, including its name, its 
purpose, the parameters it requires, and the format of its expected output.1 

●​ Strategic Value: This layer is what transforms an LLM from a passive text generator into an 
active agent that can perform actions. It grounds the model in what it can concretely do 
beyond generating words. By giving the LLM access to tools, it can fetch real-time information 
(e.g., stock prices, weather), interact with other software systems (e.g., book a meeting, update 
a CRM), or perform specialized computations. This is a core concept in all modern agent 
frameworks.2 

●​ Enterprise Use Case: An AI assistant integrated into a sales team's workflow. The Tool 
Explanation layer would define available functions like: 

{ 
    'name': 'get_contact_details', 
    'description': 'Retrieves email and phone for a contact in the CRM.', 
    'parameters': { 
        'contact_name': 'string' 
    } 
}, 
{ 
    'name': 'schedule_meeting', 
    'description': 'Books a meeting in the calendar.', 
    'parameters': { 
        'attendees': 'list[string]', 
        'topic': 'string', 
        'time': 'datetime' 
    } 
} 

When a salesperson says, "Find John Doe's email and schedule a follow-up call with him for 
tomorrow at 2 PM," the LLM knows exactly which tools to call and what information to provide 
to them. 
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Layer 8: Function Call Results (Feedback from External Actions) 

●​ Purpose: To provide the LLM with the results, data, or status messages returned from the tools 
it invoked in a previous step. This is the feedback from the actions it took based on Layer 7.1 

●​ Strategic Value: This layer closes the "action-perception loop." After an agent decides to use 
a tool, it needs to see the result of that action to determine the next step. This feedback is 
essential for the LLM to formulate a useful response for the user, handle errors (e.g., an API 
returning a 'not found' message), or decide if another tool is needed to complete the task. 

●​ Enterprise Use Case: Continuing the sales assistant example, after the LLM calls the 
get_contact_details tool, the Function Call Results layer is populated with the output: 

{ 
    'tool_call_id': 'crm_lookup', 
    'parameters': { 
        'user_id': 0 
    } 
    'status': 'success', 
    'output': { 
        'email': 'john.doe@example.com', 
        'phone': '555-1234' 
    } 
} 

The LLM now has the necessary information to proceed with the second part of the user's 
request, calling the schedule_meeting tool with the retrieved email address. 

 

2.4 Guidance and Execution Layers (9-11): Final Shaping 

 

These final layers provide fine-grained, immediate control over the LLM's response, ensuring the 
output is not only correct but also formatted and styled appropriately for the specific context. 

 

Layer 9: Few-Shot Examples (Behavioral Guidance & Pattern Recognition) 

●​ Purpose: To provide the LLM with a small number of illustrative input-output examples that 
demonstrate a desired reasoning process, style, or output format. This is a powerful technique 
for in-context learning.1 

●​ Strategic Value: For novel, complex, or nuanced tasks, general instructions in Layer 1 may be 
insufficient. Few-shot examples guide the model's behavior by showing, not just telling, what to 
do. This is highly effective for tasks like data transformation, code generation, or adopting a 
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very specific stylistic voice without the need for expensive model fine-tuning.6 

●​ Enterprise Use Case: An LLM used to extract structured data from unstructured customer 
feedback emails. The Few-Shot Examples layer could include: 
Input: "I was really unhappy with my recent purchase, battery life was terrible." 
Output: {'sentiment': 'negative', 'topic': 'battery_life'} 

When a new email arrives saying, "The screen on my new phone is amazing, so bright!", the 
LLM can follow the demonstrated pattern to produce the correct structured output: 
{'sentiment': 'positive', 'topic': 'screen_quality'}. 

 

Layer 10: Dynamic Output Formatting & Constraints (Immediate Response Specification) 

●​ Purpose: To give the LLM explicit, turn-specific instructions about the structure, style, or 
constraints of its next response. This can include specifying an output format like JSON or 
XML, setting a word limit, or requesting a particular tone (e.g., empathetic, formal).1 

●​ Strategic Value: This layer ensures the LLM's output is directly usable by downstream systems 
or is appropriate for the delivery channel (e.g., a concise response for SMS vs. a detailed one 
for email). It provides the adaptability that makes an LLM a versatile component in a larger 
application, allowing the system to dynamically control the nature of the output based on the 
immediate need. 

●​ Enterprise Use Case: A marketing assistant AI helping to generate ad copy. The user first 
asks, "Generate three taglines for our new coffee maker." The AI provides them. The user then 
follows up: "I like the second one. Now, expand it into a 280-character tweet, include the 
hashtag #MorningBrew, and give me the output as a JSON object with a 'tweet_text' key." The 
Dynamic Output Formatting & Constraints layer is updated to {'format': 'json', 'schema': 
{'tweet_text': 'string'}, 'length_constraint': 280, 'required_hashtags':}. The LLM then generates 
the response in the exact format required. 

 

Layer 11: User's Latest Question (Immediate Input Trigger) 

●​ Purpose: This layer contains the most recent, unprocessed input, query, or command from the 
user that the AI must now address.1 

●​ Strategic Value: This is the primary stimulus for the entire generation process. All the other 
ten layers exist to provide the rich, structured context needed to formulate the best possible 
response to this single, immediate trigger. Its position at the very end of the prompt leverages 
the recency effect, ensuring it is the central focus of the LLM's attention. 

●​ Enterprise Use Case: In any AI application, this is simply the user's input. For example: 
"Compare our Q3 revenue with our top three competitors and summarize the findings in a 
markdown table." This input in Layer 11 is what kicks off the entire orchestration process: 
retrieving competitor data (Layer 3), potentially calling financial APIs (Layers 7 & 8), and 
formatting the final output as a markdown table (Layer 10). 



 

Table 1: The 11 Layers of the Context Window Architecture 

To provide a clear, scannable reference, the entire architecture is summarized below. This table 
serves as a quick guide for architects and developers to understand the purpose and strategic 
value of each component in the CWA stack. 

 

Layer # Layer Name Purpose Strategic Value 

1 Instructions Defines the AI's core 
identity, persona, 
goals, and ethical 
boundaries. Acts as 
the system's 
constitution. 

Ensures consistent, 
safe, and 
brand-aligned 
behavior. Provides a 
foundational control 
mechanism for the 
entire system. 

2 User Info Provides 
personalization 
context about the 
specific user, such as 
preferences, account 
details, and history. 

Drives user 
engagement and 
satisfaction by 
creating a tailored, 
efficient, and 
empathetic 
experience. 

3 Curated Knowledge 
Context 

Injects verified, 
domain-specific 
factual information 
relevant to the query 
(the RAG layer). 

Mitigates 
hallucinations and 
knowledge cut-offs. 
Boosts factual 
accuracy and 
trustworthiness, 
which is critical for 
enterprise 
applications. 

4 Task/Goal State 
Context 

Maintains a 
structured 
representation of an 
ongoing, multi-step 
task, including 
sub-tasks and their 
statuses. 

Enables complex, 
stateful 
problem-solving and 
allows the AI to 
manage and resume 
long-running 
workflows without 
losing track of 
progress. 

5 Chat History 
Summary 

Contains condensed 
summaries of older 

Maintains 
conversational 



parts of the 
conversation to 
provide long-term 
memory. 

coherence over 
extended periods or 
multiple sessions, 
preventing repetitive 
questions and 
demonstrating 
long-term recall. 

6 Chat History Provides the raw, 
verbatim transcript of 
the most recent 
conversational turns. 

Allows the AI to 
follow the immediate 
flow of dialogue, 
resolve pronouns, 
and maintain 
short-term 
conversational 
context. 

7 Tool Explanation Describes the 
available external 
tools, APIs, and 
functions that the AI 
can invoke to perform 
actions. 

Transforms the LLM 
from a passive text 
generator into an 
active agent that can 
interact with external 
systems and access 
real-time data. 

8 Function Call Results Provides the output, 
data, or status 
returned from a 
previously executed 
tool or function call. 

Closes the 
action-perception 
loop, allowing the AI 
to reason based on 
the outcome of its 
actions and inform its 
next steps. 

9 Few-Shot Examples Offers illustrative 
input-output 
examples to guide 
the AI's reasoning, 
style, or formatting 
for specific tasks. 

Enables powerful 
in-context learning to 
steer model behavior 
for complex or 
nuanced tasks 
without requiring 
expensive 
fine-tuning. 

10 Dynamic Output 
Formatting & 
Constraints 

Specifies the 
required structure 
(e.g., JSON, CSV), 
style, or length for 
the AI's immediate 
upcoming response. 

Ensures the AI's 
output is directly 
usable by 
downstream systems 
or is perfectly 
tailored for the 
specific delivery 



channel and user 
request. 

11 User's Latest 
Question 

Contains the most 
recent, unprocessed 
input from the user 
that the AI must 
respond to. 

Acts as the primary 
trigger for the 
generation process, 
benefiting from the 
recency effect to be 
the central focus of 
the AI's attention. 

 

Section 3: A Comparative Analysis: Positioning CWA in the Modern AI Stack 
The Context Window Architecture does not exist in a vacuum. It enters a vibrant and rapidly 
evolving ecosystem of tools, techniques, and frameworks, all aimed at making LLMs more powerful 
and reliable. To fully appreciate the strategic value of CWA, it is essential to position it relative to 
two of the most significant concepts in modern AI development: Retrieval-Augmented Generation 
(RAG) and LLM Agent Frameworks. The central argument of this section is that CWA is not a 
competitor to these technologies but a higher-level architectural pattern that organizes and 
enhances them. CWA provides the blueprint, while RAG and agent frameworks provide the 
specialized tools and materials. 

 

3.1 CWA and Retrieval-Augmented Generation (RAG): From Technique to Architecture 

Retrieval-Augmented Generation has emerged as the single most important technique for 
mitigating LLM hallucinations and grounding them in factual, domain-specific knowledge.7 
Understanding its relationship with CWA is fundamental. 

 

3.1.1 Understanding RAG 

RAG is a powerful technique that enhances an LLM's knowledge by connecting it to an external 
data source at inference time.9 Instead of relying solely on the static, pre-trained information baked 
into its parameters, the model is given access to a dynamic, up-to-date knowledge base. The 
typical RAG workflow involves several steps 10: 

1.​ Indexing: A corpus of documents (e.g., company policies, technical manuals, support articles) 
is processed. The documents are broken down into smaller, manageable chunks. Each chunk is 
then passed through an embedding model to create a numerical vector representation, which 
captures its semantic meaning. These vectors are stored in a specialized vector database (e.g., 
Pinecone, Milvus, Weaviate) for efficient searching.10 

2.​ Retrieval: When a user submits a query, the query itself is also converted into a vector 



embedding. The system then performs a similarity search in the vector database to find the 
document chunks whose embeddings are most semantically similar to the query's embedding.7 

3.​ Augmentation: The top-ranked, most relevant document chunks are retrieved and 
"augmented" into the LLM's context window alongside the original user query. 

4.​ Generation: The LLM then generates a response, drawing upon both its internal knowledge 
and the specific, relevant context provided by the retrieved documents. 

The benefits of this approach are profound. It ensures responses are factually grounded, reduces 
the likelihood of making things up (hallucination), allows the AI's knowledge to be updated simply 
by updating the document store, and provides auditability by allowing the system to cite its 
sources.8 

 

3.1.2 RAG as an Implementation of CWA Layer 3 

The relationship between RAG and CWA is direct and complementary: RAG is the primary 
implementation pattern for CWA's Layer 3: Curated Knowledge Context. The entire RAG 
process—retrieving relevant information from a knowledge base to ground the LLM—is precisely 
the function that Layer 3 is designed to fulfill within the broader architecture.1 

CWA does not seek to replace RAG; it contextualizes it. It recognizes that providing curated 
knowledge is a critical architectural concern and dedicates a specific layer to it. The CWA model 
then shows how to make that RAG-retrieved context even more powerful by surrounding it with 
other essential information. For example, the query used for the retrieval step (in the RAG workflow) 
can be enriched with information from Layer 2 (User Info) to fetch more personalized results. The 
final generated answer can be constrained by Layer 10 (Dynamic Output Formatting) to ensure it's 
usable. 

 

3.1.3 The Limits of RAG-Only Systems 

This relationship also highlights the limitations of systems built only around RAG. While powerful, a 
RAG-only architecture is incomplete for many sophisticated enterprise use cases. Such systems 
often lack: 

●​ Personalization (Layer 2): A standard RAG system treats all users the same. It cannot tailor its 
retrieved information or its final response based on the user's role, preferences, or history. 

●​ Task Management (Layer 4): A simple RAG system is stateless. It is designed for single-shot 
question-answering and cannot manage a multi-step task, track progress, or guide a user 
through a complex workflow. 

●​ Sophisticated Tool Use (Layers 7 & 8): RAG is typically focused on retrieving information 
from a static document store. It does not inherently provide a mechanism for the AI to interact 
with APIs, execute code, or perform actions in external systems. 



By viewing RAG through the lens of CWA, it becomes clear that it is one crucial component among 
many. A truly robust AI application requires not just retrieved knowledge, but also personalization, 
state management, and the ability to act. 

 

3.1.4 Advanced RAG Patterns and CWA 

The field of RAG is itself evolving beyond simple vector search. Several advanced RAG patterns 
have emerged, and CWA provides a natural architectural home for orchestrating them. 

●​ Structured RAG: This pattern involves retrieving information from structured data sources like 
SQL databases or knowledge graphs (GraphRAG).14 This often requires the LLM to first 
generate a query (e.g., a SQL statement) and then execute it. This pattern maps perfectly to a 
combination of CWA layers. The description of the database schema or graph ontology resides 
in​
Layer 7 (Tool Explanation), the LLM's action of generating and running the query is an 
instance of tool use, and the data returned by the database populates Layer 8 (Function Call 
Results), which is then used alongside Layer 3 (Curated Knowledge Context) to generate 
the final answer. 

●​ API-Augmented RAG: This pattern retrieves real-time, dynamic information by calling external 
APIs.14 For example, an AI might call a weather API or a stock market data API. This is a direct 
implementation of​
CWA Layers 7 and 8. The API's specification is the "Tool Explanation," and the live data it 
returns is the "Function Call Result." This demonstrates that the concept of "retrieval" in CWA is 
broader than just static documents. 

●​ Self-Corrective / Iterative RAG: Advanced RAG systems can refine their own retrieval 
process. They might decompose a complex question into sub-questions, reflect on the quality 
of retrieved documents and re-query if they are irrelevant, or re-rank results for better 
coherence.10 This iterative reasoning process can be guided and managed by the structured 
objectives and sub-task tracking defined in CWA Layer 4 (Task/Goal State Context). 

 

Table 2: Alternative RAG Architectures and their CWA Layer Mapping 

This table visually demonstrates how CWA serves as a superset architecture that accommodates 
and orchestrates various RAG patterns, refuting any misconception that they are competing ideas. 

RAG Pattern Description Primary CWA Layer(s) 
Implemented 

Vector-Based RAG Retrieves semantically similar 
text chunks from an 
unstructured document 

Layer 3 (Curated Knowledge 
Context): Directly populates 
this layer with retrieved text. 



corpus stored in a vector 
database. The most common 
form of RAG. 14 

Structured RAG Retrieves data by generating 
and executing queries against 
a structured database (e.g., 
SQL) or knowledge graph 
(e.g., Cypher). 14 

Layer 7 (Tool Explanation): 
Contains the database 
schema. 
Layer 8 (Function Call 
Results): Contains the query 
results. 
Layer 3 (Curated Knowledge 
Context): The results are used 
as grounding knowledge. 

API-Augmented RAG Retrieves real-time data by 
calling external APIs (e.g., for 
weather, stock prices, or flight 
information). 14 

Layer 7 (Tool Explanation): 
Contains the API 
specifications. 
Layer 8 (Function Call 
Results): Contains the live 
data returned from the API 
call. 

Knowledge-Based RAG Retrieves information from 
structured knowledge 
representations like 
ontologies or rule-based 
systems, enabling more 
precise and explainable 
reasoning. 14 

Layer 7 (Tool Explanation): 
Describes the knowledge 
base rules/ontology. 
Layer 8 (Function Call 
Results): Contains the output 
of the rule engine or 
knowledge graph traversal. 

Self-Corrective RAG Involves an iterative process 
where the agent refines its 
query or evaluates the 
relevance of retrieved 
documents to improve the 
final result. 10 

Layer 4 (Task/Goal State 
Context): Manages the 
iterative process, tracking the 
goal and the status of 
sub-queries. 
Layer 3 (Curated Knowledge 
Context): Is refined over 
multiple steps. 

 

3.2 CWA and LLM Agent Frameworks: Blueprint vs. Toolkit 

If RAG is a key technique, then LLM Agent Frameworks are the toolkits that provide the 
pre-fabricated "plumbing" to implement it, along with many other necessary functions. Frameworks 
like LangChain, LlamaIndex, Haystack, and AutoGen have become central to AI application 
development.5 



 

3.2.1 The Rise of Agent Frameworks 

Building a sophisticated AI agent from scratch is a significant engineering effort. It requires 
managing communication with the LLM, maintaining conversational memory, integrating external 
tools, and orchestrating complex, multi-step logic.4 Agent frameworks exist to simplify this process 
by providing structured, reusable components for these common tasks.2 They allow developers to 
build applications that can reason, plan, and act autonomously to achieve goals. 

However, the power and flexibility of these frameworks can also be a source of complexity. 
Frameworks like LangChain, with their vast array of modules and chains, can have a steep learning 
curve and lead to code that is difficult to debug and maintain, a problem some developers have 
described as "painful" when trying to scale.18 This very complexity creates a need for a higher-level 
architectural guide to inform how these powerful tools should be used. 

 

3.2.2 LangChain & LlamaIndex: A Tale of Two Philosophies 

Among the many frameworks, LangChain and LlamaIndex are arguably the most prominent, and 
their differing philosophies perfectly illustrate the need for an overarching architecture like CWA. 

●​ LangChain: LangChain is a highly flexible, general-purpose orchestration framework. It is 
often described as a "Swiss Army knife" for building LLM applications.20 Its core strength lies in 
its modularity, allowing developers to "chain" together LLM calls with tools, memory systems, 
and other components to create complex, agentic workflows.3 It provides a vast library of 
integrations for different models, databases, and APIs, giving developers maximum control.3 
LangChain's components can be used to implement nearly every layer of the CWA. 

●​ LlamaIndex: LlamaIndex, by contrast, is a more specialized, data-centric framework. It excels 
at the "data-to-context" part of the problem.22 Its primary focus is on providing a highly 
optimized and streamlined experience for indexing data from diverse sources and performing 
sophisticated retrieval for RAG applications.18 While LangChain is about general-purpose 
orchestration, LlamaIndex is a best-in-class implementation toolkit for CWA Layer 3.22 

A very common and powerful pattern is to use LlamaIndex and LangChain together.21 In this 
pattern, LlamaIndex is used for its superior data indexing and retrieval capabilities (to populate 
Layer 3), and LangChain is used to orchestrate the overall agentic logic, tool use, and memory (to 
manage the other CWA layers). The fact that developers are naturally combining these tools is 
powerful evidence that they might actually be trying to build an architecture that separates 
data-handling concerns from agent-orchestration concerns—a separation that CWA makes explicit 
and formal. 

 



3.2.3 CWA as the Framework-Agnostic Architectural Guide 

This leads to the central argument of this subsection: CWA is the framework-agnostic 
architectural blueprint that guides the effective use of toolkits like LangChain and 
LlamaIndex. 

Instead of a developer starting a project by asking "Which LangChain module should I use?", CWA 
encourages them to start by asking "What architectural layers does my application need?" The 
developer first thinks architecturally: "To solve this business problem, my AI needs a persistent 
identity (Layer 1), it needs to know about the user (Layer 2), it must be grounded in our product 
documentation (Layer 3), and it needs to guide the user through a three-step process (Layer 4)." 

Only after defining these architectural requirements does the developer turn to the framework. The 
question then becomes much more focused: "What is the best LangChain component to implement 
Layer 2? What is the best way to use LlamaIndex to implement Layer 3?" CWA provides the 
structured thinking that prevents developers from getting lost in the complexity of the frameworks. 
It turns framework selection and usage from a bottom-up, tool-driven process into a top-down, 
architecturally-driven one. This leads to cleaner, more modular, and more maintainable code 
because the code's structure directly reflects the application's architectural design. 

 

Table 3: Mapping CWA Layers to Agent Framework Concepts 

To make this relationship concrete, the following table helps by translating the conceptual CWA 
layers into specific, implementable components from popular agent frameworks. This provides a 
practical guide for developers looking to apply the CWA pattern in their work. 

CWA Layer LangChain 
Component(s) 

LlamaIndex 
Component(s) 

Other Frameworks 
(Examples) 

1. Instructions SystemMessage in 
Prompt Templates, 
Agent prompt 
customization. 3 

system_prompt 
in Query 
Engines. 

Botpress: Instructions in the 
visual builder. 4 

 

AutoGen: Role definitions in 
ConversableAgent. 17 

2. User Info Custom logic feeding 
user data into prompt 
templates. Can be 
managed within 
ConversationBufferMe
mory. 3 

Metadata 
filtering on 
indexes (e.g., 
user_id). 

No-Code Tools (Lindy): 
Context window setup with 
CRM integrations. 24 

3. Curated 
Knowledge 

DocumentLoaders, 
VectorStoreRetriever, 

DataReader (via 
LlamaHub), 

Haystack: Pipelines with 
Retriever and Reader nodes. 



Context create_retrieval_chain. 3 VectorStoreInd
ex, 
RetrieverQuery
Engine. This is 
LlamaIndex's 
core strength. 3 

13 

4. Task/Goal 
State Context 

Agents (e.g., ReAct, 
Self-Ask), Chains (e.g., 
SequentialChain), 
LangGraph for stateful 
graphs. 3 

QueryPlanTool 
for 
decomposition, 
SubQuestionQu
eryEngine. 

AutoGen: 
GroupChatManager 
orchestrating multiple agents. 
17 

CrewAI: Defining Tasks and 
Processes. 24 

5/6. Chat 
History & 
Summary 

Memory modules (e.g., 
ConversationBufferWin
dowMemory, 
ConversationSummary
Memory). 3 

ChatMemoryBu
ffer, 
CondenseQues
tionChatEngine. 

All Frameworks: Most 
frameworks provide some 
form of memory management 
as a core feature. 2 

7/8. Tools & 
Function 
Results 

Tools / Toolkits, 
AgentExecutor for the 
ReAct loop, 
create_tool_calling_age
nt. 2 

FunctionTool, 
QueryEngineTo
ol. 

Haystack: Integration with 
external APIs via custom 
nodes. 5 

 

AutoGen: register_function. 5 

9. Few-Shot 
Examples 

FewShotPromptTemplat
e, providing examples 
directly in the prompt. 6 

Examples 
provided in the 
prompt 
template for a 
query engine. 

Prompt Engineering: This is 
a general technique 
applicable across all 
frameworks. 6 

10. Dynamic 
Output 
Formatting 

OutputParser classes 
(e.g., 
PydanticOutputParser, 
JsonOutputParser), 
with_structured_output 
function. 1 

OutputParser 
modules, 
response 
synthesis 
customization. 

All Frameworks: Most 
frameworks that support 
function/tool calling also 
support structured output 
specifications like JSON 
Schema. 

3.3 [TODO: MCP section] 

3.4 Summary: CWA's Unique Position in the AI Stack 

The comparative analysis reveals that CWA occupies a unique and unoccupied niche in the modern 
AI stack. It is not another RAG technique, nor is it another implementation framework. It is the 
architectural layer of abstraction that sits above them, providing structure, guidance, and a 
common language for building complex systems. It answers the question of not "what can I build?" 



but "how should I build it?" 

 

Table 4: High-Level Comparative Analysis of CWA, RAG, and Agent Frameworks 

This table provides a final, executive-level summary of the key distinctions, crystallizing the unique 
value proposition of each technology. 

Feature Context Window 
Architecture (CWA) 

Retrieval-Augmented 
Generation (RAG) 

Agent Frameworks 
(e.g., LangChain) 

Primary Purpose To provide a 
standardized, 
conceptual blueprint 
for organizing LLM 
context. 

To ground LLM 
responses in external, 
factual knowledge to 
reduce hallucination. 
8 

To provide a toolkit of 
reusable components 
for implementing LLM 
applications. 2 

Scope Encompasses the 
entire prompt 
payload, including 
identity, knowledge, 
memory, task, and 
tools. 

Focused specifically 
on the retrieval and 
injection of external 
data. 11 

Covers 
implementation 
concerns like model 
I/O, data connections, 
chaining, agents, and 
memory. 17 

Level of Abstraction Conceptual / 
Architectural Pattern. 

Implementation 
Pattern / Technique. 

Implementation / 
Software Toolkit. 

Key Artifact The Structured 
Prompt Payload—a 
well-organized set of 
contextual 
information. 

The Retrieved 
Context—the 
specific snippets of 
information pulled 
from a knowledge 
base. 

The Runnable 
Application/Agent—
the final, executable 
code. 

Relationship CWA orchestrates 
RAG as one of its 
layers and guides the 
use of Agent 
Frameworks. 

RAG is implemented 
as CWA Layer 3 and 
is a technique often 
facilitated by Agent 
Frameworks. 

Agent Frameworks 
are used to 
implement the logic 
defined by the CWA 
blueprint. 

 

Section 4: Evangelizing CWA: A Pathway to Enterprise Adoption and 
Community Growth 
A powerful architectural pattern provides little value if it is not adopted. The final stage of this 
strategic initiative is to move from definition to evangelism. The goal is to establish the Context 



Window Architecture not just as an internal concept, but as a widely recognized and utilized 
standard for professional AI development. This requires a deliberate, phased approach that begins 
with internal standardization, expands to customer and partner enablement, and culminates in 
broader community engagement. 

 

4.1 CWA as an Enterprise Best Practice 

For any enterprise, the primary concerns for production systems are not just capability, but also 
reliability, security, and maintainability. CWA is designed to directly address these enterprise-grade 
requirements, making it a powerful candidate for an internal best practice. 

●​ Reliability & Predictability: Ad-hoc prompt construction leads to unpredictable behavior. A 
structured, layered context, where each piece of information has a designated place and 
purpose, leads to far more consistent and reliable outputs from the LLM. This is crucial for user 
trust and system stability. 

●​ Debuggability & Maintenance: This is perhaps the most significant enterprise benefit. When 
a system built on a monolithic, unstructured prompt fails, debugging is a nightmare. With CWA, 
the process is structured. An engineer can isolate the problem by examining the layers. Is the 
persona wrong? Check Layer 1. Is the retrieved information incorrect? Investigate the RAG 
implementation in Layer 3. Did the API call fail? Analyze the inputs to Layer 7 and the outputs in 
Layer 8. This layered approach transforms debugging from an art into a systematic engineering 
process, drastically reducing maintenance costs and downtime.19 

●​ Security & Governance: CWA provides clear, auditable points of control for security and 
governance. Sensitive data filtering and access control policies can be enforced at the 
boundary of Layer 3 (Curated Knowledge Context). Ethical guidelines and safety constraints 
are explicitly defined in Layer 1 (Instructions). This modularity makes it easier to implement and 
verify compliance with enterprise security policies. 

●​ Team Scalability: As AI projects grow, they often involve multiple teams of developers, data 
scientists, and domain experts. CWA provides a shared vocabulary and a common mental 
model that allows these distributed teams to collaborate effectively. One team can be 
responsible for curating the knowledge base for Layer 3, while another focuses on building the 
agentic logic for Layer 4, all within a commonly understood architecture. 

 

Section 5: Conclusion: The Future of AI Application Development is 
Architected 
As Large Language Models transition from being a novel feature to the foundational engine of a 
new generation of software, the methodologies used to build with them must mature in lockstep. 
The era of informal, ad-hoc prompt engineering is giving way to a new era of disciplined, structured 
AI software engineering. The success of this transition hinges on the adoption of robust 



architectural patterns that can manage the inherent complexity and limitations of these powerful 
models. 

 

5.1 Recapitulation of the CWA Vision 

The Context Window Architecture (CWA) has been presented in this document as a direct response 
to this need. It is a conceptual reference architecture designed to bring structure, predictability, 
and maintainability to the development of sophisticated AI applications. By deconstructing the 
monolithic prompt into a logical stack of 11 distinct layers, CWA provides a formal blueprint for 
orchestrating the flow of information to an LLM. 

This layered approach is not merely an organizational convenience; it is a strategic design. It 
mitigates the "lost in the middle" problem by leveraging cognitive primacy and recency effects. It 
provides dedicated layers to solve the most critical challenges in AI development: grounding the 
model with factual knowledge (Layer 3), endowing it with task-oriented memory (Layers 4 and 5), 
and enabling it to act upon the world through tools (Layers 7 and 8). CWA establishes a clear 
separation of concerns, transforming the chaotic art of prompt construction into a systematic 
engineering discipline. 

Furthermore, this analysis has positioned CWA not as a replacement for existing technologies, but 
as a crucial, missing layer of abstraction. It is the architectural pattern that guides the 
implementation of techniques like Retrieval-Augmented Generation and provides a 
framework-agnostic blueprint for effectively utilizing toolkits like LangChain and LlamaIndex. It 
provides the "why" and "what" that should inform the "how." 

 

5.2 The Call to Action: Building on a Solid Foundation 

The path forward is clear. For architects, developers, and technical leaders, the call to action is to 
adopt the Context Window Architecture as a foundational mental model for all future AI 
development. It is time to move beyond treating the prompt as a single, opaque string and to begin 
architecting it with the same rigor we apply to any other critical component of our software 
systems. 

Adopting CWA means asking architectural questions first: What is the identity of our AI? What 
knowledge must it possess? What tasks must it complete? What tools does it need? By answering 
these questions and mapping them to the CWA layers, teams can build systems that are not only 
more powerful but also more robust, more debuggable, and more aligned with enterprise 
requirements. CWA is not a rigid set of rules that stifles creativity; it is a flexible and evolving 
blueprint that fosters innovation by providing a stable and understandable structure upon which to 
build. 



 

5.3 Final Thoughts: Towards a Common Language for AI Architecture 

Ultimately, the Context Window Architecture is a step towards a more mature, professional, and 
collaborative AI development ecosystem. Just as design patterns like MVC provided a common 
language that accelerated the growth and professionalization of web development, CWA can 
provide a shared vocabulary and a common set of architectural principles for the AI era. By 
embracing a structured, architected approach, we can move beyond the initial hype cycle and 
begin the crucial work of building the next generation of powerful, reliable, and trustworthy AI 
systems that will redefine industries and augment human potential for years to come. The future of 
AI is not just prompted; it is architected. 
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Notes from Feedback: 
 
[TODO] Addressing the Stochastic/Non-Deterministic Nature of LLMs 
 
[TODO] How does one “apply CWA”? 

-​ humans have different experience levels so how do new software developers/engineers to 
either a project or the field at large utilize CWA 

-​ CWA could be used more readily by senior engineers/architects and product managers as a 
way to inform their architecture documents and product requirements 

-​ architecture documents and product requirements based on CWA adherence could be used 
more readily by non-senior engineers/architects and product managers as references or 
within prompts directly 

-​ as a non-senior software engineer, architect, or product manager I want to use CWA as I work 
to deliver AI applications 

 
[TODO] Reference implementation 
 
[TODO] Prompt Caching considerations 
 
[TODO] Testing/Experiments 

-​ reinforce layer positioning? 
-​ would be great to get some ideas of tests/experiments if necessary due to the layer 

positioning being based on if the context window is full and needs to contain all the 
data each layer presents 
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