CSE 414 Section 2 Worksheet Solutions

1. SQL to Relational Algebra. Write an expression in the form of a logical query plan (i.e., draw
a tree) that is equivalent to each of the SQL query below:

A. Select all clinics that do not have an assignment to a Model 1004 'Fridge'.
Schema: Clinic(cid, name, street, state) // cid is the Clinic ID
Equipment(eid, type, model) /1 eid is the Equipment ID
Assignment(cid, eid)
SELECT C.cid
FROM Clinic C
WHERE NOT EXISTS (SELECT * FROM Assignment A, Equipment E
WHERE C.cid = A.cid AND A.eid = E.eid

AND E.type = 'Fridge’ AND E.model = 1004);

\

A cid
|

OE type="Fridge’ and E.model=1004

A.eid=E.eid

/N

Clinic C Assignment A Equipment E

The selection could be pushed down into the join above E, as a query optimization.

B. Select the greatest difference in price between items exchanged between the same two people within
the same category, for each category among all categories that have more than 5 such exchanges.

Schema: Item(oid, category, price)
Gift(pid, rid, oid)
Gift.pid: presenter ID
Gift.rid: recipient ID
Gift.oid is a foreign key to Item.oid
SELECT Ol.category, max(abs(Ol.price - 0O2.price))
FROM Gift Gl, Gift G2, Item 0Ol, Item O2
WHERE Gl.pid = G2.rid AND G2.pid = Gl.rid
AND Ol.oid = Gl.oid AND 0O2.0id = G2.oid
AND Ol.category = 02.category GROUP BY Ol.category

HAVING count (*) > 5;

"cﬂ.m

Uﬂ"lt}E

'f.::a, count(*) -> cnt, max(abs(p3-p4)) ->m

Mnilﬂ=uid4 A cd=cd

pld rid2 M pldE rid

pl:lid?_,ridz,nidz Poid3,c3.p3 Poidd,ca.ps

Gift Gift Item ltemn

Solutions that use different join orders are possible.

2. Joins Examples

Given tables created with these commands:
CREATE TABLE A (a int);
CREATE TABLE B (b int);
INSERT INTO A VALUES (1), (2), (3), (4);
INSERT INTO B VALUES (3), (4), (5), (6);
What’s the output for each of the following:
(a) SELECT * FROM A INNER JOIN B ON A.a=B.b;

alb
313
414

(b) SELECT * FROM A LEFT OUTER JOIN B ON A.a=B.b;

alb
313
414
11
2|

(c) SELECT * FROM A RIGHT OUTER JOIN B ON A.a=B.b;

alb
5
|6
313
414

(d) SELECT * FROM A FULL OUTER JOIN B ON A.a=B.b;

alb
5
|6
11
21
313
414

Sidenote: sqlite3 supports neither RIGHT OUTER nor FULL OUTER.
Right outer can be implemented with SELECT * FROM B LEFT OUTER JOIN A ON A.a=B.b;

Full outer can be implemented with (SELECT * FROM A LEFT OUTER JOIN B ON A.a=B.b) UNION
(SELECT * FROM B LEFT OUTER JOIN A ON A>A=B.b);

3.SQL Practice

CREATE TABLE Movies (id int, name varchar(30), budget int, gross int, rating int, year int,
PRIMARY KEY (id));

CREATE TABLE Actors (id int, name varchar(30), age int, PRIMARY KEY (id));

CREATE TABLE Actsln (mid int, aid int, FOREIGN KEY (mid) REFERENCES Movies (id),
FOREIGN KEY (aid) REFERENCES Actors (id));

(a) What is the number of movies, and the average rating of all movie that the actor “Patrick
Stewart” has appeared in?

SELECT count(*), avg(rating) FROM Movies as M, Actsln as Al, Actors as A
WHERE M.id = ALLmid AND A.id = Al.aid AND A.name = “Patric Stewart™;

(b) What is the minimum age of an actor who has appeared in a movie where the gross of the
movie has been over $1,000,000,000?

SELECT min(age) FROM Movies as M, Actsln as Al, Actors as A
WHERE M.id = AL.Lmid AND Al.aid = A.id AND M.gross > 1,000,000,000;

(c) What is the total budget of all movies released in year 2017, where the oldest actor is less
than 307

SELECT sum(M.budget) FROM Movies as M, Actsln as Al, Actors as A
WHERE M.id = AL.Lmid AND Al.aid = A.id AND M.year = 2017
GROUP BY M.id

HAVING mac(A.age) < 30;

4. Self Join

Consider the following over simplified Employee table:
CREATE TABLE Employees (id int, bossOf int);

Suppose all employees have an id which is not null. How would we find all distinct pairs of
employees with the same boss?

SELECT El.id, E2.id FROM Employee AS E1, Employee AS E2
WHERE E1.bossOf = E2.bossOf AND E1.id > E2.id;

Sidenote: The predicate “E1.id > E2.id” could also be written as “E1l.id < E2.id”. We cannot use
plain inequality as the predicate condition because this would lead to duplicate pairs.

