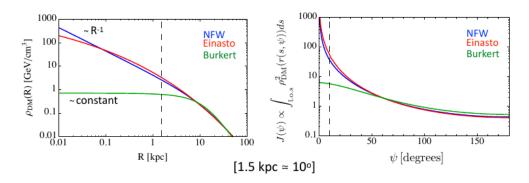
Introduction to the topic of the hands-on session

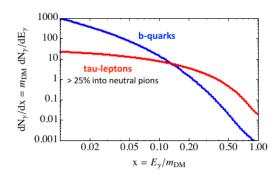
From F. Calore's lecture, you know that WIMPs can annihilate/decay into Standard Model particles, including photons.


The WIMP gamma-ray flux

E.g. gamma-ray differential flux from spatial distribution ho_{DM}

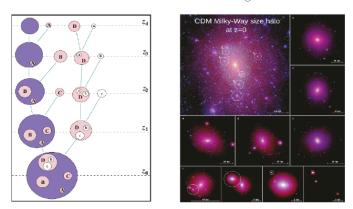
$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma}, s, \Delta\Omega) \propto \frac{\langle \sigma v \rangle}{2m_{\rm DM}^2} \sum_{i} B_{i} \frac{dN_{\gamma}^{i}}{dE_{\gamma}} \frac{1}{4\pi} \int_{0}^{\Delta\Omega} d\Omega \int_{\rm l.o.s} \rho_{\rm DM}^{2}(s) ds$$

Dark matter density profiles:


Spatial distribution of the signal:

Spectra of prompt "secondary" photons

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},s,\Delta\Omega) = \frac{\langle \sigma v \rangle}{2m_{\rm DM}^2} \sum_{i} B_{i} \frac{dN_{\gamma}^{i}}{dE_{\gamma}} \frac{1}{4\pi} \int_{0}^{\Delta\Omega} d\Omega \int_{\rm l.o.s} \rho_{\rm DM}^{2}(s) ds$$


100% Branching ratio (independent on PP model)

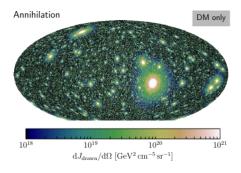
$$x \equiv \frac{E_X}{m_\chi}$$

$$\frac{dN_X}{dx} \equiv m_\chi \, \frac{dN_X}{dE}$$

Dark matter subhalos

Cosmological simulations: dark matter structures form hierarchically: halos contain large number of smaller substructures down to $10^{4-6}~{\rm M}_{\odot}$

[Zavala,Frenk,Galaxies'19, Aquarius project]


Galactic/Milky Way-sized halo: more massive subhalos form dwarfs galaxies; a larger population of dark subhalos lacking bayonic matter with $dN/dM \sim M^{-1.9}$ is predicted

Wide research area both with numerical simulations and semianalytical models [review: Sanchez-Conde&Doro,Galaxies'19]

Dark matter subhalos: signatures

If particle dark matter at GeV-TeV scale (e.g. WIMPs) annihilates/decays in dark subhalos: they could shine as gamma-ray emitters in the sky:

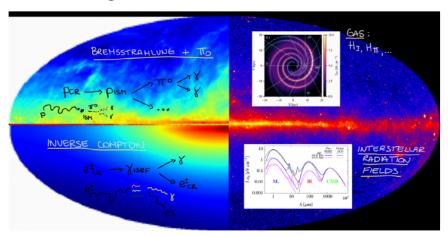
$$\mathcal{J}_{\mathrm{sub}} \propto \int \mathrm{dark\ matter\ density}^2$$

[Hutten+Galaxies'19]

The gamma-ray sky seen by Fermi-Large Area Telescope

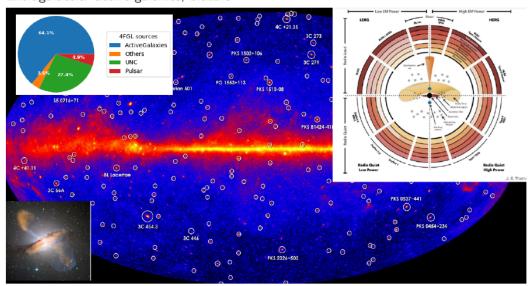
Gamma-ray telescope, full sky survey, from 20 MeV to more than 300 GeV 12+years of publicy available data (NASA/DOE)

FERNI BUBBLES

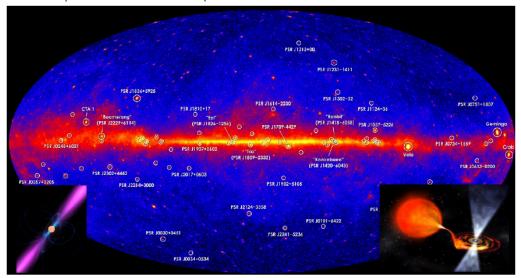

INVERSE CONDITION

Horsel Conditi

wrt: Galactic diffuse emission


Produced by charged cosmic rays:

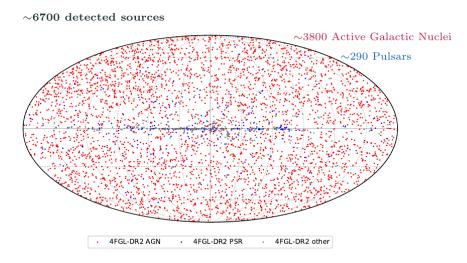
- ullet Inject primary cosmic rays at source (mainly protons, few e^\pm)
- Propagate them in the Galaxy (code exists, Galprop, Dragon)
- Interaction with gas and radiation fields



Final model: spatial + spectral template

Extragalactic: active galaxies, blazars

Galactic: pulsars and millisecond pulsars



Catalogs of gamma-ray sources

Observatories such Fermi-LAT build incremental catalogs of individual sources, collecting their main characteristics:

position, flux(E, t) + computed/fitted features

 $Last:\ 4FGL\text{-}DR3\ [Abdollahi\ et\ al,\ ApJS\ 260,\ 2022]$

Majority of gamma-ray emitters are Active Galactic Nuclei and Pulsars

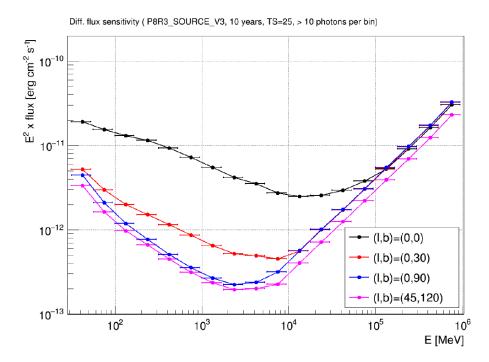


Figure 1: The Fermi-LAT point source sensitivity after 10 years of observations. Adapted from $\frac{1}{\text{Months}} = \frac{10 \text{ years of observations.}}{\text{Months}} =$

Turning on the machines, connect to internet, setup the folders

\Box	You should have a terminal open in the path: /nome/graspa/Astroparticle_exercise and a
	Firefox page open in the school page
	Go to the timetable with presentations in the school page, and click on 'Numerical Tutorial
	(slides)
	Type in the terminal 'conda activate fermipy'
	Type in the terminal 'jupyter notebook'; a browser should open.
	Click on the name of the notebook

A PDF of the output of the notebook will be posted online.

If you want to have the source code to execute with your laptop, write to: manconi@lapth.cnrs.fr

That's all set, have fun!

(old)	
	Turn on as written in the blackboard
	Connect to the internet: go to Activities and open a Firefox browser. Put the access code you
	should have collected
	Open a terminal
	Open to the Graspa page and download the .tgz file in the today's session
	Open a terminal, type: cd /home/graspa/Bureau
	Type: mkdir astroparticleTH/
	Move and untar the .tgz in this folder with 'tar -xvf namefile.tgz'
	File list should include: a .pv, a notebook file .ipvnb, and another .tgz file