
1 of 4

Java Inheritance

References
Inheritance

Inheritance UML
Superclass
Subclass

Polymorphism
instanceof keyword demo

Reflection
Reflection demo

References

●​ tutorialspoint: easy-to-understand
○​ Java Tutorial ← See section entitled Java Object Oriented

●​ Oracle Java doc: more technical, but more complete
○​ Interfaces & Inheritance

Inheritance

●​ Inheritance is the process of deriving one class from another.
○​ The derived class (subclass) gets all of the fields and methods of the other

base class (superclass).
○​ "The idea of inheritance is simple but powerful: When you want to create a new

class and there is already a class that includes some of the code that you want,
you can derive your new class from the existing class. In doing this, you can
reuse the fields and methods of the existing class without having to write (and
debug!) them yourself." (oracle).

Inheritance UML

●​ Inheritance is used to implement an IS-A relationship.
●​ For example, an Employee is a Person.
●​ In the UML diagram, use an arrow pointing from

subclass to superclass.
●​ You don't need to list inherited fields / methods in the

subclass.

http://www.tutorialspoint.com/java/index.htm
http://docs.oracle.com/javase/tutorial/java/IandI/index.html

2 of 4

Superclass

●​ For example, consider our class Person:

public class Person {

​ private String name;
​
​ // initialize to default value, e.g. "anonymous"
​ public Person(){}
​ // initialize to parameter
​ public Person(String n){ }

​ // return value of _name
​ public String getName(){ return name; }
​ // change value of _name
​ public void setName(String n){ name = n; }
}

Subclass

●​ We could create a subclass of person, for example, Employee
○​ by extending, we automatically get all the fields and methods above.
○​ we can add additional fields and methods.
○​ when we override the constructor, we can call the constructor of the superclass

using the super keyword.

public class Employee extends Person {

​ int employee_id;
​ String title;​

​ public Employee(int id) {
 employee_id = id;
​ ​ super();
​ }

​ public Employee(int id, String n) {
​ ​ employee_id = id;
​ ​ super(n);
​ }

 public int getId(){ return employee_id; }
}

3 of 4

Polymorphism

●​ Polymorphism is "the condition of occurring in several different forms."
○​ In programming, it usually means using a superclass reference to refer to a

subclass.
●​ For example, an Employee object can be stored in a Person collection.

○​ This is left as a programming exercise.
●​ You can determine if a superclass object is an instance of a particular subclass by using

the instanceof keyword.

instanceof keyword demo

Person p = new Employee(0, "Jane")
if(p instanceof Employee){
 System.out.println(p.getName() + " is employee #" + p.getId());
} else {
​ System.out.println(p.getName() + " is unemployed.");
}

Reflection

●​ "Reflection is commonly used by programs which require the ability to examine or modify
the runtime behavior of applications running in the Java virtual machine."

○​ Reflection is a way for to get information about an object at runtime.
○​ Reflection is an advanced topic, so we'll just scratch the surface:

●​ Java has an Object class and a Class class!
○​ Every Java class has the Object class at the top of the hierarchy.
○​ The Class class contains information about a class.

●​ It's best to see these methods in use:
○​ Object::getClass()​ ​ returns an object of type Class
○​ Class::getSuperclass()​ returns superclass of a Class
○​ Class::getDeclaredFields()​ gets all of the fields that are declared in that class

(i.e. doesn't get fields of superclasses)

4 of 4

Reflection demo

import java.lang.reflect.Field;

public class InheritanceDemo {

​ public static void main(String[] args){
​ ​
​ ​ String s = "asdf";
​ ​
​ ​ Class c = s.getClass();
​ ​ System.out.println("class:\n\t"+c);
​ ​
​ ​ Class sup = c.getSuperclass();
​ ​ System.out.println("super:\n\t"+sup);
​ ​
​ ​ System.out.println("fields:");
​ ​ Field[] fs = c.getDeclaredFields();
​ ​ for(int i=0; i<fs.length; i++){
​ ​ ​ System.out.println("\t"+fs[i]);
​ ​ }
​ }
}

Demo output
class:
​ class java.lang.String
super:
​ class java.lang.Object
fields:
​ private final char[] java.lang.String.value
​ private int java.lang.String.hash
​ private static final long java.lang.String.serialVersionUID
​ private static final java.io.ObjectStreamField[] java.lang.String.serialPersistentFields
​ public static final java.util.Comparator java.lang.String.CASE_INSENSITIVE_ORDER
​ private static final int java.lang.String.HASHING_SEED
​ private transient int java.lang.String.hash32

	Java Inheritance
	References
	Inheritance
	Inheritance UML

	
	Superclass
	Subclass

	Polymorphism
	instanceof keyword demo

	Reflection
	Reflection demo

