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Summary 

Wildlife conservation is in a race against human expansion worldwide. The expansion of 

settlements and agricultural lands coupled with a three percent population growth annually in 

sub-Saharan Africa makes it difficult to protect wildlife and its habitat. The proximity of humans 

and wildlife has the potential for conflicts through competition for resources and space. For the 

humans that live and work in close proximity to wildlife, wildlife activity can lead to loss of 

income, property, and sometimes human lives. At the same time, wildlife corridors are 

diminishing rapidly in many parts of Africa due to the competition.  

Better survey systems that capture human and wildlife distributions on the ground provide a 

guide to conservation practitioners, policy-makers, and local residents contributing to wildlife 

conservation policies that can mitigate such potential conflicts. However, creating an early 

warning system requires frequent monitoring and tracking of human, wildlife, and livestock 

activities and movements. Currently it has been done through aerial surveys. The surveys 

typically happen on three to five year intervals due to high logistical costs and the difficulty in 

fielding logistics, flight crew, fieldwork, and analysis teams in remote locations. New survey 

methods with automated camera systems speed up detection and decrease implementation 

costs, but produce tens of thousands of images and require intensive labor efforts to sort 

through images. 

Tanzania Conservation Resource Center (TZCRC), working with partners Development Seed 

and the Tanzania Wildlife Research Institute (TAWIRI), collectively developed an innovative 

AI-assisted methodology to increase the speed of spotting and counting wildlife, human 

activities, and livestock after aerial surveys. This report outlines our methodology to conduct an 

AI-assisted survey and subsequent analysis to produce maps of wildlife and human distributions 

together with a proximity map of potential conflict areas between wildlife and the 

human-associated activity across survey areas. 

This project utilized two different types of image capture from aerial censuses: traditional Rear 

Seat Observer (RSO) censuses (using human-eye detection) and photographic aerial surveys 

(PAS)1,2. We relied on images that were captured during RSO censuses for machine learning 

model development. The Tanzania Wildlife Research Institute provided annotators (wildlife 

domain experts) at a small annotation lab in Arusha, northern Tanzania, to process a database 
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of images from RSO survey counts in Tanzania collected by TAWIRI in the past decade. Labels 

were annotated by a group of volunteers. Around 7,000 RSO images were labelled. 

At the end of the project, we present two AI-assisted systems: 1) an image classifier, AIAIA 

Classifier, that filters images containing objects of interest from tens of thousands of aerial 

images using automated camera systems and 2) a set of three object detection models, AIAIA 

Detectors, which locate, classify and count objects of interest within those images. The 

detected objects were assigned to image IDs that have their unique geolocation recorded during 

the aerial surveys. These geocoded detections were then used to generate maps of the 

distribution of wildlife, human activities, and livestock, with a visualisation of mapped proximity 

highlighting potential conflict areas. Explore the map here. 

 

Specifically, the image classifier, AIAIA Classifier, filters an image containing our objects of 

interest, either human activities, wildlife, or livestock. Each object detector model, AIAIA 

Detectors, separately locates either wildlife and livestock at the species level or human activity. 

The models were containerized and registered to Azure Container Registry. The model training 

sessions were deployed with Kubeflow on Azure Kubernetes Service with GPU instances. The 

sessions were also tracked by TFJob for hyperparameter tuning and search experiments. Such 

model training is monitored by Tensorboard so we can watch model performance over validation 

dataset. The best performing models were selected and containerized as TFServing images, 

including the classifier and detectors (called “aiaia-fastrrcnn”) that hosted on Development 

Seed’ DockerHub for our scalable model inferences, see TFSeriving images here. Our AIAIA 

classifier processed 12,000 image chips (400x400 pixels) per minute, and we were able to 
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process 5.5 million images under 8 hours. The AIAIA detectors each processed 172 images per 

minute on a K80 GPU machine.  

Our AI-assisted Aerial Imagery Analysis (AIAIA) introduces a workflow that: 1) can speed up the 

processing of wildlife counts and mapping human influences in wildlife conservation areas up to 

60%; 2) it has the potential to reduce the implementation costs of counting by up to 20%, which 

will enable more frequent monitoring. Once the training data quality, and model performance of 

AI assisted workflow mature and stabilise, we foresee the hours spent on getting accurate 

human-wildlife proximity maps would only take 19% of current human manual workflow, and 

potentially reduce cost of identifying and counting objects over 81,000 aerial images from 

$20,000 to less than $5,000 (See the following graph).  

 

 

While it is promising to use AI-assisted imagery analysis, however, AI-assisted workflow is still 

not perfect. The quality of outputs heavily depends on the quality of the training dataset we 

supply to the models. In our case, the annotation task was relatively new to all the volunteer 

annotators, and our aerial images were challenging to annotate for a variety of reasons, e.g. the 

objects of interest are small, hard to identify because the lighting, angle of the shots, the body 

size and colors of objects. We observed the following quality issues in the training data: 

-​ Missing labels. Some wildlife, livestock, or human activities were not annotated in 

images, particularly when the condition of the image was blurry, situated in a complex 

landscape, or contained many objects 

-​ Label duplication. Some objects were annotated twice or more, leading to further class 

imbalance as well as less accurate validation and test metrics due to an increase in false 

negatives from missed detection of the duplicate label.  
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-​ Mislabeled. Particularly for the wildlife categories and livestock, many instances were 

mislabeled as different classes.  

Each of these problem types varied in degree depending on the difficulty of the class that was 

being annotated. These issues were overall consistently present in the training and test 

datasets. This made the AIAIA Detectors more difficult to accurately train and caused the 

evaluation metrics to be less robust, since many ground truth labels were incorrect. We discuss 

these issues in detail in the main report, see section “Results and Discussion”.  

Even with training data quality issues, our classifier model achieved a > 0.84 F1 score with the 

test dataset. The best performing classes for the wildlife, livestock and human activities 

detectors were buffalo (.48 F1 ), cow (.29 F1 ), and building (.49 F1), with each class having 

higher precision than recall. Other categories had high performance in terms of precision 

(meaning less false positives), while recall (the ratio of true positives to all groundtruth) suffered, 

including the following: elephant (.59 precision, .17 recall), smaller ungulate (.85 precision, .24 

recall), and shoats (.69 precision, .14 recall). This high precision shows that our model is 

capable of correct, high confidence predictions and the recall metrics show that it has trouble 

with separating all ground truth from the background. Low recall scores generally imply poor 

training dataset quality. We expect that addressing training data quality issues and either 

discarding classes with low amounts of samples or increasing the amount of samples will 

substantially improve both recall and precision for our object detection models. 

The future AI-assisted workflow will highly benefit from having a human-in-the-loop approach to 

improve training data quality by helping annotators to only annotate images with objects in them, 

annotate difficult classes, and fix incorrect groundtruth. We proposed the future AI-assisted 

workflow should bring humans into the loop in a three phase workflow: 1) training dataset visual 

inspection and validation before the AIAIA Classifier model training; 2) AIAIA Classifier model 

output inspection before the filtered images are passed to the AIAIA object detectors; 3) manual 

output inspection, validation, evaluation and correction before the detected, identified and 

counted objects are aggregated for the minimum viable product (MVP) visualization to produce 

proximity and risk maps. Improving training data quality is critical for our AI-assisted workflow.  

 

 
Background 
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Mapping human and wildlife distributions for 
conservation 

Conservation of wildlife is in a race against human expansion worldwide. With around 3% 

population growth annually in sub-Saharan Africa3, protecting wildlife and its habitats gets 

more and more difficult as humans move closer to wildlife areas through expansion of 

settlements, agricultural lands as well as raising livestock as main livelihood sources4.  

Fundamentally, human-wildlife conflicts  (HWC) are caused by competition for food and 

space. For the humans that live and work in close proximity to wildlife, wildlife activity can 

lead to loss of income, property, and sometimes human lives. This results in incidents 

where wildlife species of conservation interest are threatened or killed to prevent further 

conflicts5. An early warning system that can flag potential conflict on the ground will provide 

a significant guide to conservation practitioners, policy-makers, and local residents from 

designing policy intervention to loss prevention, and eventually minimise conflict. However, 

creating these HWP layers and warnings requires frequent monitoring and tracking of 

human, wildlife, and livestock activities and movements on the ground or from the air. Both 

camera trapping on the ground and aerial surveys from the air pose tremendous logistical 

challenges and costs. Both types of surveys produce image datasets which are prohibitively 

large to manually annotate, count, and record objects of interest. Instead, machine learning 

models can assist human annotators by generating high confidence predictions of images 

that contain objects of interest. This method may be more cost-effective for quickly locating 

human, wildlife, and livestock activities. In this study, funded by Microsoft AI for Earth and 

Global Wildlife Conservation, we proposed an AI-assisted aerial image analysis (AIAIA) 

approach to mapping human and wildlife distributions and potential conflicts in Tanzania. 

We built an end-to-end AIAIA workflow that combines an AIAIA classifier and AIAIA object 

detectors to assist and guide human annotators to quickly and efficiently review images 

from aerial surveys. The binary AIAIA classifier acts as a filter that only keeps images that 

are likely to contain human activities, livestock, or wildlife. The three AIAIA object detectors 

for human activities, livestock, and wildlife detect, locate, classify, and count individual 

objects by subclass. These detections are used to create the Human-wildlife proximity 

(HWP) MVP visualization.  
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There is a subtle but important difference between HWC and human-wildlife proximity 

(HWP). HWC refers to direct conflicts between humans and wildlife, which require 

mitigation from conservation communities and policy makers. However, HWP reflects areas 

that could give rise to HWC in the long term, and HWP can be done through spatial analysis 

without loss assessment. 

 

Figure :1 The human-wildlife proximity (in red) in Tanzania is computed and generated when wildlife v.s. 
livestock and (or) human activities. In our current survey area, such proximity is mainly caused by 

livestock especially outside of Tarangire National Park, Tanzania. 

 

Aerial Surveys in Wildlife Conservation 

 

Traditional aerial wildlife surveys typically use human observers in a low-flying airplane, 

counting wildlife by eye. These surveys track changes in wildlife populations (e.g. due to 

poaching) or responses to environmental changes (e.g. changes in the population of 

migratory wildebeest in the Serengeti from changing rainfall). Traditional aerial surveys are 

used in at least 25 countries in Africa, as well as Australia, Mongolia, Kazakhstan, and the 

USA. Surveys often only occur on 3-5 year intervals due to high logistical costs and the 

difficulty in fielding logistics, flight crew, fieldwork, and analysis teams in remote locations. 
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Wildlife surveys provide valuable data about other targets such as human land use 

(livestock enclosures, thatched huts, etc.) and habitation that are often overlooked once a 

survey is complete. Combining land use and wildlife distribution maps allows managers to 

produce risk maps on potential human-wildlife-conflict that will benefit wildlife 

conservation in the long run. New survey methods using automated cameras show great 

promise, but the quantity of images to analyse leads to prohibitive cost and time increases. 

 

Figure 2: Sample aerial survey data collection 

Aerial censuses of wildlife have been conducted since the 1950s in Africa, and since the late 

70s, the dominant method used has been “Systematic Reconnaissance Flights” (SRF), and it 

is broadly applied in wildlife conservation globally 8,9. The SRF sample count method is 

suitable for covering large areas to produce accurate maps and estimates. In these counts, 

one or more Cessna light aircraft, with crews of 4 people, fly straight sample lines across 

survey zones, taking days or weeks to cover partial areas of such enormous ecosystems. 

Two rear-seat observers (RSOs) on each aircraft count wildlife and other targets as the 

aircraft flies over points of interest.  

Even though the SRF sample count method is widely adopted in wildlife conservation, 

concerns still exist, such as whether well-trained RSOs suffer from fatigue, which limits 
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daily mission times, and RSOs can be highly variable in their performance. Fielding aircraft 

and crew is expensive and flying low-and-slow is dangerous work.  

AI-assisted Approaches in Wildlife Conservation 
 

The method of the aerial census is widely adopted and the standard in conservation track. 

This practice raises concerns, however, due to the difficulty of finding well-trained RSO’s 

and their ability to get fatigued on long missions. RSO’s performance is also less precise 

and reliable compared to human annotators who are trained to track and count wildlife 

from taken images.  

 

Using new technology like cheap digital imaging, photographic aerial survey (PAS), for data 

capture and unmanned aerial vehicles (UAVs) are promising solutions for reducing the 

financial and logistical cost of flights. However, both PAS and UAV surveys are designed to 

take continuous photographs along flight lines, which results in tens of thousands of 

images and requires intensive labor efforts to sort through images, driving up the cost. 

Results suggest that manual photo counts after the UAV, PAS and SRF surveys exceed the 

accuracy of RSOs from SRF. However, the analysis time increases from days to months due 

to the volume and difficulty of counting complex images - typically less than 2% of images 

have any desired targets in them. 

Shifting to PAS will require an order-of-magnitude improvement in photographic review 

times - an AI-assisted approach can provide this improvement. The potential improvement 

in the reliability of results (improved consistency together with human RSOs) and the 

reduced costs will make a photographic, AI-assisted aerial census very attractive in the 

immediate future. Machines will review the massive amounts of photographs and direct 

our mappers and analysts to areas where they provide the most value to sort images, track 

and count wildlife, and identify other objects of interest as they appear in images. Our 

end-to-end workflow from training dataset creation, deep learning models trained with the 

cloud computers, model iteration, model output validation, model inference, PostgreSQL 

database design, and data exportation to create an early warning of potential 

human-wildlife conflicts and proximity maps.  
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Image Capture and Labeling from Aerial Censuses 

Aerial Imagery Capture 
 
Aerial surveys of large mammals in Africa are normally done from light aircraft (Cessna 
172/182/206 type) at an altitude above ground level (AGL) of 90-110m (300 to 350 feet). 

There are two types of images that are available from aerial surveys for this project: 

Rear Seat Observer - RSO 

During the survey the RSO’s window-mounted 
cameras are used to verify herd size and ID - they 
are triggered by the human observer when he/she 
sees a target of interest (all elephants, and larger 
herds of any species). The aircraft flies straight lines 
(transects) back and forth over the target area. 

●​ These images are of lower quality as they 
are taken through the Plexiglas. 

●​ Most images are 24 megapixels (MP), taken 
at 35° down-angle from horizontal. 

●​ Very target-rich set of images which will produce many examples for training. This is 
because a human has triggered the camera on a target. 

●​ Around 20,000 images are currently available and being reviewed by the annotation lab. 
●​ GPS metadata is often not available (camera clocks not synchronized perfectly with 

GPS). 
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Figure 3:  The aircraft flies straight lines (transects) back and forth over the target area during the 
aerial surveys. 

 

Photographic Aerial Survey 

The traditional human-eye detection is still the main method in use, but studies testing 
high-resolution photographic systems will hopefully become a replacement (Photographic Aerial 
Survey (PAS). The new system uses cameras on the wing struts which take constant images 
along flight paths. 

●​ These images have no intervening Plexiglas and are much higher quality. 
●​ Taken at 45° down-angle, and with a lens that mimics the same sample field of view as 

the human eye. 
●​ 24MP and optimized for image sharpness. 

 
13 



 
 

●​ Very low rate of 'positives' - perhaps 2% of images will have any wildlife or livestock 
present. 

●​ Around 500,000 images are available and more are being collected every year. 
●​ GPS metadata present for all images. 
●​ Overlapping images are taken at 2-second intervals. 

 

  

A. the survey aircraft  B. Camera mounted on the aircraft. 
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C. The “Lanner” aerial photography 
system10 using off-the-shelf components 
and providing an add-on, high-quality 
photography option to regular survey 
flights. 

D. A group of elephants was captured by 
the camera system. We drew boxes over 
the elephant individuals and labeled 
them (in red text). The photo currently is 
in a dimension of 6016 x 4000 pixels per 
image.  

Figure 4: The current photographic aerial survey in Tanzania.   

Training Data Labelling 

A high-quality training dataset is a key asset for 

obtaining a well-performing machine learning 

model. We created label data with the Computer 

Vision Annotation Tool (CVAT11) 

TAWIRI Annotation Team  

The TZCRC assisted in setting up an annotation lab 

space in Arusha, northern Tanzania, to process a 

database of images from RSO survey counts in 

Tanzania collected by TAWIRI in the past decade. 

●​ Annotators were provided by TAWIRI - mostly 

MWEKA (wildlife college) and university 

students and graduates looking for experience in conservation biology. The Covid-19 

crisis meant that setting up a lab with 8-10 annotators as initially planned was 

impossible, and only 6 people were able to work with the suggested distancing 

layout.  

●​ Annotators were mostly domain experts on Tanzanian wildlife and/or human 

activity assessment. The ability to recognize large plains species was a prerequisite, 

and supplemental training was provided on how to identify the smaller and less 

common game (kudu, bushbuck). The entire TAWIRI lab team was added to a Slack 

channel so that people could ask questions and check species identifications - this 

proved to be invaluable for training data quality assessment. 
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●​ A CVAT (Computer Vision Annotation Tool) server was set up at the lab and a lab 

manager was trained in managing the system. Annotators were trained in the use of 

CVAT, and the lab manager exported each task as it was finished. 

Training Data Creation 

We showcased a simplified version of the training dataset creation workflow using CVAT in 

Figure 5. A group of volunteers in Tanzania imported the full-size aerial images to CVAT, 

each with 6016 x 4000 pixels and a spatial resolution of 2-4 cm per pixel. The CVAT 

annotation tool used applied to draw bounding boxes around objects of interest and a 

label class was added per box. Once the task was finished, we exported the labeled 

bounding boxes XML files for further visual inspection, training data quality analysis, and 

converted them into machine learning ready datasets, i.e. in TFRecords format. TFrecords is 

a data format that stores a sequence of binary records for Tensorflow to read image and 

label data efficiently during the model training (TFRecord and tf.train.Example).  

  

Figure 5: Training dataset annotation workflow using CVAT. Aerial imagery was annotated by a group of 
volunteers in Tanzania. The annotators created 30 classes of labels that covered wildlife, livestock, and 
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human activities. The final labeled data is tiled/chipped and converted into TFRecords format as machine 
learning ready data for the coming model training.  

Two iterations of training datasets were created during the summer and fall of 2020 by 

TZCRC Annotation Lab. The first iteration of the training dataset (created in the summer) 

was used to train a single 30-class object detection model. Because the training dataset was 

not of high quality, and the amount of labels was not sufficient for some rare classes, the 

first iteration of the object detection model could only detect the 9 classes that had the 

most training data and were easier to visually distinguish from the background. For the 

second training dataset , the volunteer annotators in the lab were able to create a higher 

quality training dataset, including: 

-​ Fewer missing labels 

-​ Fewer mis-labeled objects 

-​ Fewer label duplications 

-​ Fewer bounding boxes drawn around groups of objects and instead drawn around 

individuals 

-​ Bounding boxes drawn with more accurate boundaries around the objects instead 

of including extra background 

The training dataset quality issue is still present) and we will present current label quality 

issues and how to improve for the future iterations in the next section, “Training Data 

Quality”. 

During the second iteration, 30 classes of labels were still created. From the lessons 

learned during the first iteration, we discarded some labels from the model training 

process if sample counts were less than 100 from the aerial surveys, e.g. crane, ostrich, stork 

and lion. In the wildlife category, we grouped the species based on their body sizes and skin 

colors (a ‘visual guild’) to improve their representation during the model training, as follows: 

-​ A ”light colored large” class now includes classes eland, hartebeest, kudu, roan, and 

oryx.  

-​ A “dark colored large” class includes wildebeest, topi, waterbuck and sable.  

-​ “Smaller ungulates” include gazelle, impala and antelope.  
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Figure 5. Class labels per each category from wildlife, livestock to human activities that are labeled for the 
machine learning models.  

At the end of second iteration training dataset creation, we ended up having three 

categories of training data for further AIAIAI Classifier and Detector model training: wildlife, 

livestock, and human activities (Figure 5).  
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Training Labels for Wildlife 

We had nine classes under the wildlife category, and the top three classes by number of 

bounding box labels were: 

-​ Buffalo, 2022 labels (bounding boxes). 

-​ Elephant, 3937 labels. 

-​ Smaller ungulates, 1812 labels. 

Training Labels for Livestock 

The major three classes of livestock present in the aerial surveys used for training dataset 

labeling were: 

-​ Cow, 14825 labels. 

-​ Shoats, 7201 labels. 

-​ Donkey, 219 labels. 

Training Labels for Human Activities 

The five classes of human activities present in the aerial surveys used for training dataset 

labeling were: 

-​ Building, 4139 labels. 

-​ Human, 2230 labels. 

-​ Boma, 1276 labels.  

 

In total, we have 45,155 labels (bounding boxes) for three categories (wildlife, livestock and 

human activities), which belongs to 12,500 unique image chips (each was 400 x 400 pixels). We 

randomly selected 7000 image chips that contain objects/bounding boxes, and labeled these as 

1 and also included 7000 background chips drawn randomly from the pools that without any 

objects, labeling these as 0 for the model training process. For image classification, a total of 

14,000 image chips were then sampled and split by 70, 20, and 10 percent as train, validation 

and test TFRecords respectively. We generated separate TFRecords for the three separate AIAIA 

detectors for wildlife, livestock and human activities. The TFRecords for object detection were 

created based on labels/bounding boxes presented in Figure 5. 

Training Data Quality 
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A lot of challenges were encountered during labeling aerial images compared to, for 

example, images from camera traps - images from aerial surveys contain relatively small 

objects of interest, and backgrounds and lighting varies dramatically.  

Aerial images were captured in the air, 90-110m (300 to 350 feet) above ground. An aerial 

image contains 6016 x 4000 pixels, though only a very small portion of the image actually 

contains objects of interest. We tiled each of these larger images into 150 chips (400 x 400 

pixel per chip). 4 out of 150 chips (about 2.7%) have objects present. A lot of livestock 

appear in herds in the images, as do some wildlife species, e.g. elephants, buffaloes, 

wildebeest, and antelope. Without zooming in really closely to the objects, and without 

pre-existing knowledge of wildlife and livestock appearance and habitat, it’s very difficult to 

label the object correctly. 

Below is an example image that was captured during the aerial survey. The objects appear 

at the bottom of the image near the plane shadow. There are cows and a human in the 

aerial image and the object sizes are all small. All the animals were labeled correctly as 

cows, but each cow object exhibits varying properties, including different: color, shading, 

and body angles. These issues can be challenging for computer vision/deep learning 

models to handle. Furthermore, the training labels of some of these aerial images, in total 6 

image chips (in 400 x 400 pixels) highlight the quality issues we see through the rest of the 

training dataset and in prior iterations of the training dataset.  
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Missing labels 

Missing labels can impact both the classifier and detector model performances. The 

classifier model could end up having negative samples, image chips actually contain objects 

but because of the missing labels the chips are considered “Not-Object”. A neural network 

will be trained to recognize object’s patterns, spatial features, colors as well as the 

background. Missing labels will pollute the training data by suggesting image patterns 

associated with a class shouldn’t be associated with a class.  
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Mislabeled classes 

Mislabeling includes the classes which were not labeled correctly, including whenor 

multiple objects are mixed under one class. This creates a lot of  added noise during model 

training.  
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Label duplication 

Label duplication is present for both the  livestock and small to midsize wildlife. During the 

model training, the model ends up making more predictions for over-labeled classes.  

During model evaluation, these duplicate labels must be assumed to be correct for the 

purposes of calculating metrics, since there is no efficient way to filter them out without 

manual editing.  

   

   

 

 

AI-assisted Aerial Image Analysis (AIAIA) 

AIAIA Workflows 

Two AI-assisted workflows were built in this study, an AIAIA Classifier and three AIAIA 
Detectors. The AIAIA classifier was applied to filter an image containing our “objects of 
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interest”, either human and settlements, wildlife, livestock or the combinations of them. 
AIAIA Detectors were built on top of Object detection models (TensorFlow Object Detection 
API) were applied to detect wildlife species, humans and settlements, livestock species, and 
their counts, separately. The end-to-end workflow, including a classifier and three 
detectors, aims to reduce the costs of conducting game counts and human influence in 
wildlife conservation by 50%, enabling more frequent monitoring. 

The AIAIA Classifier and Detectors were deployed on top of Kubeflow and Kubernetes that 
allow machine learning and cloud engineers to run model training and experimentations 
quickly and efficiently with TFJobs (Figure 6). Each model training and model experiment 
was recorded with TFJob YAML files, so it’s traceable. Once the best performing model is 
identified either for the classifier or detector with the model evaluation metrics. For the 
AIAIA Classifier, we used F1, precision and recall scores as well as an ROC curve from model 
evaluation over test dataset. To evaluate metrics for the detectors, we compute confusion 
matrices, F1 scores, mean average precision and recall scores.  

 

Figure 6. Two AIAIA workflows were developed in the study. The AIAIA Classifier, a binary image classifier, 
acts as the filter to keep only image chips that contain “object of interests”. The AIAIA Detectors (wildlife, 
human-activities and livestock detectors) detect and count these objects of interest in images. Detected 

objects and counts were served to our MVP for flagging potential human-wildlife conflicts on the ground 
for wildlife conservation communities and policy-makers. 
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Model Training and Experiment with Kubeflow on Azure 

 

Kubeflow and Kubernetes have become standard toolkits in industry, allowing data 
scientists to train, deploy, and package machine learning models in a portable, scalable and 
efficient way. These tools are powerful and flexible enough to accommodate the 
complexities of applying models to geospatial aerial imagery. With these tools, the models 
can be deployed to any cloud computing environments, including Microsoft Azure or 
Google Cloud Platform (GCP). Kubeflow was originally developed by Google. We found 
Kubeflow documentation on GCP is more up-to-date than Azure’s, therefore, it requires 
more hacky ways to deploy Kubeflow and TFJob to Azure. As follow up work, we will work to 
make these same workflows available on Azure. 

 

Figure 7. The model training and experimentations are conceptualized in the diagram shown above. 
Model scripts were containerized and registered on Azure (or GCP). We then deployed Kubeflow to the 

cloud environment. Once Kubeflow is running on AKS (or GKE), TFJob model experiments were deployed to 
start the model training with GPU machines. In general we use K80, p100 and T4 machine types. Model 
evaluation on the validation set selects the best performing trained models from multiple experiments. 

 
Training models on Microsoft Azure will require a few steps:: 

-​ Install and setup Kubernetes CLI, kubeclt , on your local machine. 1

-​ Install Azure CLI and log in with your credentials. The Microsoft AI for Earth program 
provided Azure cloud credits for this project. 

1 "Install and Set Up kubectl | Kubernetes." 27 Nov. 2020, 
https://kubernetes.io/docs/tasks/tools/install-kubectl/. Accessed 27 Jan. 2021. 

 
26 

https://kubernetes.io/docs/tasks/tools/install-kubectl/


 
 

-​ Create a resource group and Azure Kubernetes Services (AKS) setup on Azure. Our 
Kubeflow model training and experiments were deployed to AKS. AKS provides 
continuous integration and continuous delivery (CI/CD), as well as enterprise-grade 
security and governance on Azure . A GPU node pool can be added to the AKS for 2

both AIAIA Classifier and Detectors model training.  
-​ Azure Container Registry (ACR) must be set up. Model training scripts can be 

conterized and pushed to ACR for AKS to access later on when the model is 
deployed and ready to be trained with the AKS GPU node pool; 

-​ Kubeflow setup and deploy.  

 

Figure 8: Kubeflow deployment to Azure AKS.  

-​ Store and host training dataset, pretrained model weights, and model configure files 
on Azure Blob Storage 

-​ Setup TFJob yaml file for model deployment.  

2 "Azure Kubernetes Service (AKS) | Microsoft Azure." 
https://azure.microsoft.com/en-us/services/kubernetes-service/. Accessed 27 Jan. 2021. 
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Figure 9: TFJob yaml file is structured as above. The container is built on top of “tensorflow” deployed to 
“kubeflow” with an model containerized training pipeline called 

“geoyiacr.azurecr.io//aiaia:v1.1-tf1.15-gpu”. 

Methods 

AIAIA Classifier 

The backbone of the AIAIA Classifier is one of top state of the art convolutional neural 

networks (CNN), Xception (Chollet 2016)  (Figure 10). Xception is a CNN architecture and 3

pre-trained models on top of ImageNet. It’s a high performing and efficient network 

compared to other pre-trained networks. The model script is written in Keras, a high-level 

python package that uses Google's Tensorflow library as a backend.  

3 "Xception: Deep Learning with Depthwise Separable ...." https://arxiv.org/abs/1610.02357. Accessed 
27 Jan. 2021. 
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Figure 10. Current well-known CNN model architectures and pretrained model in deep learning. Xception 
model is one of the most performing and lightweight models 

AIAIA Classifier takes binary classes, yes and no (or 1 and 0), image chips as training dataset 

in TFRecords  format. Image chip “Yes” or “Object” either has wildlife, human activities or 4

livestock or their combinations. “No” or “Not-object” chips are the “empty” image without 

any interesting objects. The TFRecords have 7000 “Object” and 7000 “Not-object” image 

chips, that have been split into 70:20:10 proportions as “train”, “validation” and “test” 

dataset. The models were trained with Sigmoid Focal Loss .Focal loss is extremely useful for 5

classification when there is heavy class imbalance. In our case, there were many more 

pixels that did not belong to objects than those that did. There was also substantial class 

imbalance between object classes in all three object detection models. .  

5 "tfa.losses.sigmoid_focal_crossentropy | TensorFlow Addons." 
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/sigmoid_focal_crossentrop
y. Accessed 27 Jan. 2021. 

4 "TFRecord and tf.train.Example | TensorFlow Core." 19 Sep. 2020, 
https://www.tensorflow.org/tutorials/load_data/tfrecord. Accessed 27 Jan. 2021. 
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The AIAIA Classifier model scripts were containerized and registried on Azure ARC (GCR). 

We then deployed Kubeflow to the cloud environment, once it’s up running on AKS (or 

GKE), TFJob model experiments ( can be deployed to GPU machines on AKS to start the 

model training (Figure 9). Model evaluation is performed to select the best performing 

trained models from multiple experiments. 

AIAIA Detectors 

We usedTensorFlow’s Object Detection API to train object detection models for this task. 

Object detection models take an image as input and generate bounding boxes, predicted 

classes, and confidence scores for each prediction. Using the TFRecords training data, we 

trained a model of wildlife, human activities and livestock on GCP and Azure with Kubeflow 

(Figure 7). The Kubeflow is a tool that makes ML workflows on Kubernetes to be deployed 

easier, simpler, portable and scalable. 

 

The final AIAIA Detectors are designed to predict: 1) Nine different classes of wildlife 

species and their counts; 2) Five classes of human activities and their counts; 3) three 

classes of livestock and their counts in Tanzania. For training classes and its count, see 

Figure 5.  

The backbone model of the detector we used is Faster RCNN ResNet101  that pre-trained 6

with Snapshot Serengeti Dataset . Snapshot Serengeti Dataset contains approximately 7

2.56 million sequences of camera trap images, totaling 7.1 million images from Snapshot 

Serengeti project . The model was scripted and trained with the Tensorflow 1.15 Object 8

Detection API. Before we adopted Faster RCNN ResNet 101, we tried SSD MobileNet, 

ResNet 50 and ResNet 101. These models did not converge. Model training sessions were 

observed using TensorBoard (Figure 11).  

8 "Snapshot Serengeti — Zooniverse." https://www.snapshotserengeti.org/. Accessed 28 Jan. 2021. 

7 "Snapshot Serengeti - LILA BC." 24 Jun. 2019, http://lila.science/datasets/snapshot-serengeti. 
Accessed 28 Jan. 2021. 

6 "models/tf1_detection_zoo.md at master · tensorflow/models · GitHub." 
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_
zoo.md. Accessed 28 Jan. 2021. 
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Figure 11. Tensorboard model evaluation tracking. The are 9 pairs of images shown above on 
Tensorboard. Ground truth image sits on the right and detection on the left for each pair during Faster 
RCNN ResNet101 training. From the Tensorboard by comparing the ground truth (right) and prediction 

(left) you will see missing labels on ground truth can lead to missing predictions.  

 

 

Results and Discussion 

AIAIA Classifier 

Model performance 
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Figure 12. The model evaluation metrics for AIAIA Classifier that include model loss, F1, recall, and 
precision scores. F1, recall, and precision scores are above 0.84 . 

 

The AIAIA Classifier model is trained for 6000 steps that lasted about 15 hours 15mins on a 

single NVIDIA K80 GPU. other default evaluation metrics from Tensorflow and Keras. Model 

performance stabilized after 4000 steps (10 hours) that we started to witness model 

F1-beta, recall and precision scores climbed up to 0.84 over validation dataset, while model 

convergence moved down to 0.35 (Figure 12 and also see the online Tensorboard ).  

The binary classification model training and experiment can be tracked through our online 

Tensorboard here. Tensorboard  is a visualization toolkit for Tensorflow models that 9

engineers or data scientists can track and visualize model evaluation metrics such a s loss, 

accuracy and other customized metrics. For instance, we design F1-beta, recall and 

precision scores as well as use Sigmoid Focal Loss instead of default metrics provided by 

TensorFlow and Keras. 

9 "TensorBoard | TensorFlow." https://www.tensorflow.org/tensorboard. Accessed 28 Jan. 2021. 
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A.​ True positive and negative score of 
the AIAIA Classifier. 

B.​ The ROC curve for the AIAIA binary 
classification 

 

Figure 13. Model evaluation for the AIAIA Classifier, a binary image classification to distinguish if an image 
chip contains objects of interest. 

 

Each aerial image (6016 x 4000 pixels) were gridded into 150 chips. The overall classifier 

model performance can be summarized as: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Classes Precision Recall F1 score 

Not-object (0) 0.79 0.93 0.9 

Object (1) 0.92 0.75 0.78 

 

Table 2. The overall model performance metrics for the AIAIA Classifier. 

In general 0.5 confidence score is used to determine a prediction is a true positive or false 

positive. With the overall model performance metrics (Table 2) and model evaluation 

(Figure 13), there are a few conclusions we can draw from our AIAIA Classifier metrics: 

●​ When the “Object” class confidence score threshold is set higher we can better 

distinguish between True Positive and True Negative (Figure 12. A); 

●​ When the confidence score of “Object” class is set to 1.0, we are only going to have 

0.7% of False Positive rate (Figure 12. B); 

●​ The recall for the “Object” class is much lower than the “Not-object” class, though 

the precision scores between them are reversed. This implies the model produced a 

lot more False Negatives (only ground truth without detection). This usually means 

the training data quality of the “Object” class is still pretty lower. 

Model Inference  
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Figure 13. chip-n-scale-queue-arranger helps you run containerized machine learning models over 
images at scale. It is a collection of AWS CloudFormation templates deployed by kes, lambda 

functions, and utility scripts for monitoring and managing the project. 

During the model inference, we scanned 5,506,337 image chips with an average speed of 

12,000 image chips per minute, and finished inference in 7.6 hours. The inference was run 

with Chip n Scale, Development Seed’s open-sourced model inference tool, Chip n Scale (Figure 

13.) . You can find the Lambda function here. At the end of the inference, 150, 141 image 10

chips were filtered as containing “objects of interest” from 5.5 millions image chips, which is 

only 2.7% of the original image size.  

Discussion and Conclusion 

In the past, a survey in Tsavo National Park in Kenya collected 81,000 images (12.15 million 

image chips in 400 x 400 pixel). It took 7 months to count and validate all the objects of 

interest with a team of 8 human annotators. A total 3600 hours were spent, which means 

human annotators can validate and count objects at a speed of 56 image chips per 

minute. However, the speed of model inference of the AIAIA Classifier is at 12, 000 image 

chips per minute . It means the AI-assisted image chips scan and filter the image chips and 11

have objects of interest fast and cost-efficiently, which will eventually be cost-saving in the 

long run.  

The AIAIA Classifier is not perfect, because of the training data quality issues we mentioned 

above. The classifier model performance is highly impacted by the missing labels that can 

designate an image chip as “Not-object” when it is actually “Object”. With improvements to 

the training label quality, the AIAIA classifier will be even more promising as a tool to 

quickly scan images after the aerial survey. 

 

AIAIA Detectors 

11 Relative speed for the classifier is thus 214x faster. However, given that humans in lab settings 
typically do around 6 hours of concentrated work in a day, but the computers can work 24, the 
actual rate is 4 x 214 = 856x faster for larger datasets. 

10 "developmentseed/chip-n-scale-queue-arranger: Chip 'n ... - GitHub." 
https://github.com/developmentseed/chip-n-scale-queue-arranger. Accessed 28 Jan. 2021. 
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Model performance 

Each AIAIA Detector was evaluated by sorting model results into four categories:  

1.​ True positives, where a wildlife object received the correct bounding box and class 

from the model 

2.​ Misidentifications, where the bounding box was correct but the class was incorrect 

3.​ “False Positives, detection only” where a detection was made without ground truth 

4.​  And “False Negative, groundtruth only” where no detection was made where a 

ground truthed object existed.  

The criteria for a detection to be a true positive or misidentification was that the 

intersection-over-union (IOU) of their bounding boxes had to be greater than or equal to .5. 

In cases where multiple detection bounding boxes overlap a ground truth box, the 

detection with the higher confidence score was chosen to be a true positive and the other 

was deemed either a false positive or other category if it overlapped a different ground 

truth box.  

Figure 14. The equation for Intersection-over-Union is on the right. IoU is used to decide if detections 
overlap groundtruth enough to be counted as a true positive or misidentification. In the image on the 
left, an elephant is counted as a true positive if the confidence threshold is above .5, since IoU is also 

greater than .5. 

These results were compiled into two confusion matrices, one in units of proportion of 

predicted positives for each class, and another matrix in units of absolute counts. Each 
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matrix shows information about detections for each combination of model categories, 

including true positives, misidentifications, false negatives and false positives. True 

positives appear along the diagonal of each matrix. The bottom row of each matrix (“false 

negative, groundtruth only”) shows information about the number of detections where 

there was no corresponding ground truth of any class. The rightmost column of each 

matrix shows information about the number of groundtruth without corresponding 

detections of any class (“false positive, only detection”). Row values in the proportion matrix 

sum to 1, and the row values in this matrix should only be compared along one 

individual row at a time, not between rows since proportions are computed for classes 

with different sample sizes. 

Figure 15. Proportion Confusion Matrix for the AIAIA Wildlife Detector, with values normalized by row 

totals, and the Count Confusion Matrix, where a “1” indicates that 1 object was predicted in the row class 

and was annotated with a column class.. 

●​ The wildlife model performance at a .85 confidence threshold showed strong 

majorities of correct, positive predictions for the most represented four wildlife 

classes: 78% for buffalo, 59% for elephant, 85% for smaller ungulates and 71% for 

Zebra. 

●​ There was some confusion between the buffalo and elephant classes. 15% of 

predicted elephants were annotated as buffalo. 2% of predicted buffalo were 

annotated as “elephant”. 
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●​ Smaller Ungulates had the smallest proportion of predicted positives as false 

positives with no corresponding groundtruth, at 14%. 

●​ For the three most represented classes, there were more “false negative, 

groundtruth only” samples than true positives. 

●​ The elephant class had almost five times as many “false negative, groundtruth only” 

as there were true positives. Smaller ungulates had almost three times as many 

missed false negative detections relative to true positives.  

●​ Aside from these three well represented classes and the zebra class, there were no 

true positives. Most other samples from other classes fell under the “false negative, 

groundtruth only” column. 

 

Category Precision @ 0.5 IOU 
and .85 Confidence 
or Higher 

Recall @ 0.5 IOU 
and .85 Confidence 
or Higher 

F1 Score @ 0.5 IOU 
and .85 Confidence 
or Higher 

Buffalo .78 .35 .48 

Dark Coloured 
Large 

0 0 0 

Elephant .59 .17 .26 

Giraffe 0 0 0 

Hippopotamus 0 0 0 

Light Coloured 
Large 

0 0 0 

Smaller Ungulates .85 .24 .38 

Warthog 0 0 0 

Zebra .71 .05 .09 

Table 3. Metrics for the AIAIA Wildlife Detector 

●​ Of the top three classes, the Elephant and Smaller Ungulates classes had a notably 

lower recall compared to precision. The Buffalo class had more even performance in 

terms of false positives and false negatives. 
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●​ Giraffe, Light Coloured Large, Smaller Ungulates, and Warthog did not achieve any 

true positive detections and therefore received a score of zero for each of the 

metrics.  

●​ Dark coloured large received one true positive and most zebra ground truth went 

undetected, causing low scores for these classes . 

●​ Buffalo, Smaller Ungulates and Elephants were generally the best performing 

classes and were also the most represented in the test and training sets .  

 

Figure 16. Proportion Confusion Matrix for the AIAIA Livestock Detector, with values normalized by row 

totals, and the Count Confusion Matrix. 

●​ The livestock model performance showed a strong majority of positive predictions 

of the two dominant classes were correct, with 75% for cows and 69% for shoats. 

●​ There was some confusion between the cow and shoats classes. 12% of predicted 

cows were annotated as “shoat”. 7% of predicted shoats were annotated as “cow”. 

●​ Cows had the smallest proportion of predicted positives as false positives with no 

corresponding groundtruth, at 13%. 

●​ Performance for both shoats and cows experienced many more “False Negative, 

only groundtruth” than true positives.  

●​ For the cow class, there were 50 “False Positive, only detection” compared to 291 

true positives. The shoats class had a higher number of “False Positive, only 

detection” (41) relative to true positives (45) than the cow class.  
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Category Precision @ 0.5 IOU 
and .5 Confidence 
or Higher 

Recall @ 0.5 IOU 
and .5 Confidence 
or Higher 

F1 Score @ 0.5 IOU 
and .5 Confidence 
or Higher 

Cow .75 .18 .29 

Donkey 0 0 0 

Shoats .69 .14 .23 

Table 4. Metrics for the AIAIA Livestock Detector. 

●​ In our test set, the Donkey class did not achieve any true positive detections and 

therefore received a score of zero for each of the metrics.  

●​ The Cow and Shoats classes had a notably lower recall compared to precision, 

meaning there were a higher proportion of false negatives for these classes than 

false positives. 

●​ The cow class had substantially higher precision than shoats, which resulted in a 

higher F1 score. 

Figure 17. Proportion Confusion Matrix for the AIAIA Human Activities Detector, with values normalized by 

row totals, and the Count Confusion Matrix. 

●​ The human activities model performance showed varied performance across the 

most represented classes (boma, building, human). 
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●​ 54% of positive building predictions were correct for buildings, 45% for humans, and 

27% for boma. 

●​ Predicted boma was confused with ground truth building more often than boma 

was correctly predicted (40% vs 27%). However there were a lack of positive boma 

samples to make this statistic robust. 

●​ There were considerable false positives as a percentage of all positives for boma, 

building, human (>30%). 

●​ The counts for the human activities model showed higher “false negative, only 

groundtruth” for the boma, building, and human classes. 

●​ No charcoal mound or charcoal sack samples were correctly detected or 

misidentified, and there were few samples available in the training and test sets.  

 

Category Precision @ 0.5 IOU Recall @ 0.5 IOU F1 Score @ 0.5 IOU 

Boma .27 .04 .06 

Building .54 .45 .49 

Charcoal mound 0 0 0 

Charcoal sack 0 0 0 

Human .45 .12 .18 

Table 5. Metrics for the AIAIA Human Activities Object Detector.  

●​ The Boma, Human, and Building classes were the best performing classes and were 

also the most represented in the test and training sets for this model.  

●​ Of the top three classes, the Building class had a notably higher recall and F1 score 

compared to the Boma and Human classes. The Boma and Human classes both had 

very low Recall but comparable precision scores to the Building class. 

●​ In our test set, Charcoal mound and Charcoal sack did not achieve true positive 

detections and received a score of zero for each of the metrics.  

Model inference 

Once the model training session finished for each detector, we containerized the models as 

TFServing images and uploaded them to Development Seed’s DockerHub. These images 
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are open and available for anyone to download them. They will run anywhere Docker runs, 

which makes them usable across all cloud environments and any modern computer. The 

steps to download and use these TF Serving images are listed within the documentation on 

each DockerHub page, and each model has a GPU and a CPU version. However, Fast-RCNN 

ResNet 101 is a heavy backbone model. We recommend the GPU version of TFServing 

images for model inference.  
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Please note: because the TFServing images ran at a speed of 14 second/image on a single 

NVIDIA K80 GPU, we ended up running model inference on an equivalent GPU by loading 

the exported model’s frozen inference graph directly. The inference speed using the frozen 

graph was at 0.35 second/image or 172 images per min. Inference for three detectors was 

done parallely on three GPUs and finished within 15 hours, processing 150,141 images. 

 

 

Figure 18. Users can run model inference of the detectors with an exported ‘frozen inference graph’. For 

scripts and documentation please visit our github repository on TZCRC. 

Discussion and Conclusions  

Our results show that the AIAIA Detector had some success when it came to precision and 

less success when it came to recall. Lower recall scores imply poor training data 

quality. Buffalo, Smaller Ungulates, and Cows had precision scores greater than or equal 

to 75%, meaning that users of these models can have some confidence that a positive 

prediction for any of these classes is in fact the correct class. If it is not a correct class, in 

some cases the prediction is a similar looking class. Next, other classes that were well 

represented but had lower precision scores were the Shoats (69%), Elephant (59%), and 

Building (54%) classes. This means that users of these models should be more cautious 

when using these detections to distinguish true positives from false positives. Nevertheless, 
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these predictions still help to filter down potential locations where wildlife, human 

activities, and livestock coincide, allowing for an analysis of HWP. 

While users can gain useful, high confidence predictions from the model, these 

predictions will not consist of a full census of potentially detectable wildlife, human 

activities, or livestock. The model had more issues with false negatives than false 

positives, and we expect this is primarily due to training data error. Examples of this 

include duplicate ground truth labels, missing groundtruth, and cases where a single box 

was drawn around a crowd of objects. The ground truth shows as red color boxes and text 

and the predictions are in blue. 

These errors in the annotations both skewed the training of the model and skewed the 

evaluation process, since the model’s correct detections would not be evaluated properly 

with these incorrect labels. We also observed negatives due to very blurry images and 

images where the animals were far away. The objects in these images look very different 

from cleaner images. 
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We also manually observed actual false positives in our testing set, particularly in images 

with shadows and blurry images.  

 

 

These aspects of training image quality impacted both precision and recall. In many cases, 

image quality was poor enough such that subcategories of wildlife could not be 

distinguished and so they were potentially misannotated. Future iterations of this model 

could benefit from using coarser class hierarchies or simpler class hierarchies with fewer 

classes. Particularly for the wildlife model, classes like dark coloured large and light 

coloured large could be merged into the smaller ungulate class, since these two classes 

appeared to exhibit similar image features from manual inspection. Light coloured large 
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was also confused with smaller ungulates more often than there were correct predictions, 

and dark coloured large had no predictions (false or true) at all. A simpler class hierarchy 

would enable the AIAIA object detection models to train on a less complex classification 

problem by not attempting to separate classes with too few samples, inconsistent labels, 

and compromised image quality. It would also make the annotation task less intensive, 

leading to higher quality labels. Overall, improving the quality of annotations is the most 

important way to improve model performance and confidence in the assessment of model 

performance. 

One way to quickly improve training data quality is to use a human-in-the-loop approach, 

where a machine learning model assists a human annotator by filtering down the images 

they need to annotate and/or making predictions that a human annotator can verify and 

edit more quickly. For example, using this existing set of AIAIA object detection models, 

human annotators can work with a set of predictions made for some of the less common 

classes, like zebra, edit these predictions, and correct inaccurate predictions. Then, future 

models trained on this improved dataset will suffer less from class imbalance during 

training and testing. The AIAIA image classifier can also be used to preselect image chips 

with a higher likelihood of containing an object of interest so that annotators spend more 

useful time annotating images and less time sifting through images without objects of 

interest. 

Core Challenges and Setbacks 
This project faced a number of significant challenges, not only from the ongoing worldwide 

pandemic, but also some technical issues in implementation. The challenges cover issues 

from logistical problems resulting from the pandemic, data creation and sharing, data 

quality, training data class imbalance, model training and experiments, and model 

inference speed. Some were expected (logistical problems and the issue of small targets 

within large images), but the pandemic led to poor communications as people adapted to a 

work-from-home mentality, which caused difficulty delivering training data labels from 

TZCRC Annotation Lab. 

 

Logistical Problems from the COVID19 Global Pandemic 
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1.​ The lab setup was delayed as the lab was opened around the time that pandemic 

measures came into play; 

2.​ Supervision of the annotators was extremely difficult as the lab was opened around 

the time that pandemic measures came into play, and the local project manager was 

unable to spend significant time during the main part of the annotation work. 

 

Dataset Creation and Sharing 

1.​ Setting up a new labeling tool, CVAT, and adding labeling tasks for first time 

volunteers was a learning curve, along with the logistical problems caused by the 

pandemic. 

2.​ The objects that appear in aerial images are small. The complex image background, 

variable image lighting, shading, and imaging angles added complexity to labelling 

tasks even though the annotators are wildlife domain experts. 

3.​ Aerial surveys were cancelled or delayed by partner agencies. An expected pipeline 

of regular high-resolution images was not available for use during the project. 

4.​ As identified in the proposal stage, aerial imagery presents several challenges for ML 

development.  

a.​ Aerial survey photography must cover wide strips (around 150m), and even 

with relatively high-resolution cameras (25 MP) target animals are often 

20-40 pixels across, or less. 

b.​ Backgrounds vary dramatically depending on the habitat, time of day and 

even seasonal changes. 

c.​ The oblique imagery captured in PAS allows the observation of animals 

under canopy and for better ID of species - however, animal postures in 

oblique images vary considerably more than top-down images. 

5.​ Bandwidth limitations delayed in image delivery to Development Seed from 

Tanzania. Though the lab space at the Centre for Research Cooperation was 

supported by a local ISP, the daily and monthly data caps were rapidly exceeded. 

The available speed (10 megabit at best, typically much less) meant that images 

were not uploaded for weeks.  
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Model Output Validation 

1.​ Training data quality and error define the model performance and output quality. 

Currently model outputs from both the AIAIA Classifier and Detectors still need 

human validation.  

2.​ At least two to three iterations of human-in-the-loop feedback to correct training 

data error, classifier and detector outputs’ validation are expected in the following 

workflow, and each iteration should be followed by model retaining and evaluation 

until model performance is stabilized.  
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