
Improving p5py

A GSOC 2020 proposal

Introduction

Motivation
p5py is a native python library that provides a python interface to the Processing

language. While Python Mode does exist in the Processing Development Environment, it

was built with Jython, which has seen some difficulties in supporting python 3. With

python 2 being already deprecated by the Python Foundation, now is a great time to

improve p5py as a potential replacement for Python Mode.

Building a native python library has several advantages, including but not limited to:

1.​ Easily interface with other existing python libraries (e.g. numpy, scipy, pytorch)
2.​ Succinct, expressive, and beginner-friendly syntax

However, many features are in the Processing Language but are missing in p5py.

Furthermore, the p5py API is slightly different from that of Processing. This proposal

(and consequently the GSOC project) aims to address those problems.

Base Goals
1.​ Standardize p5py API so it’s as close as possible to that of the Processing

Language (Java Mode) while being reasonably pythonic (e.g. supporting some
python-only features and syntax)

2.​ Explore moving tessellation of shapes to OpenGL for improved performance
3.​ Improve 3D support

Stretch Goals
1.​ Investigate the performance and development-difficulty tradeoff between

OpenGL and Vulkan.
2.​ Add support for live coding of sketches through the python REPL.
3.​ Investigate porting popular Processing libraries to p5py. For instance, adding

video and audio support.
4.​ Write a preprocessor that converts Processing (Java) code to p5py, giving the

user warning on not-yet-implemented APIs and automatically converting
camelCase to snake_case.

5.​ Improve automated testing
6.​ Adapt bezier_vertex, quadratic_vertex, curve_vertex for 3D.

Design

Below, I will talk about the details as well as the design choices I made for each Base

Goal.

Standardize the p5py API
Most of the p5py’s design-level API changes from the Processing Language can be

found here, and I agree with the majority of them. Nevertheless, below are a few items

that I think could be changed to improve usability. If you want to discuss them and/or

propose additional changes, feel free to leave a comment!

●​ PShape function signatures

“With the exception of the point() functions, all drawing functions that allow the user to

pass in coordinates using tuples.” -- p5py documentation

If I were to implement a new drawing language from scratch, I would have preferred to

have every shape function signature to only accept vectors or vector-like objects.

However, given that p5py is the Python counterpart of the Processing language, I think

the benefits of interoperability and consistency outweigh the benefits of syntactic

https://p5.readthedocs.io/en/latest/guides/for-processing-users.html

cleanness. Furthermore, the current design is not particularly consistent in that some

arguments are expecting vector-like objects while other arguments are not, leading to

potential confusion. For example:

1.​ As mentioned in the documentation, point does not use vector-like arguments
2.​ In 'CORNER' mode, rect expects the location to be a vector-like object while width

and height to be scalars, leading to functions calls like rect((0, 0), 100, 45)

Ideally, we could support both types of calls if python had function signature

overloading. Given that this isn’t the case, we could still achieve similar results by

checking the type of the argument being passed in (A discussion of the topic can be

found at #130). If argument-checking turns out to be too slow, I propose that we should

at least refactor the function signatures for shapes to match the API of the Processing

Language.

The benefits of this approach include that new users will be able to copy-and-paste

code from the original Processing Language, change camelCase to snake_case, and run

their code. Furthermore, existing users of the original Processing Language will face

fewer difficulties when they switch to p5py. Last but not least, using scalars everywhere

is also consistent with the Processing Language’s Python Mode.

●​ push_matrix and pop_matrix

Currently, push_matrix is implemented as a context-manager that automatically pops the

transformation matrix at the end of a with block. While this is very pythonic and

introduces great readability in most cases, this could lead to code that’s too far indented

to the right when multiple with blocks are nested. Furthermore, this introduces

additional work when the user attempts to adapt their code from the Processing

Language to p5py. Therefore, I propose retaining push_matrix's ability of being a context

manager while making it usable as a normal function, much like python’s built-in open

function. In addition, I will implement a pop_matrix function corresponding to the

popMatrix function in Processing.

https://stackoverflow.com/questions/6434482/python-function-overloading
https://github.com/p5py/p5/issues/130

Concretely, users will have the option to choose from

with push_matrix():

 do_transformation()

and

push_matrix()

do_transformation()

pop_matrix()

Implementation Note: Although matrices are stored naturally in the context manager’s

“stack” in the current implementation, we may have to introduce a global stack data

structure that stores transformation matrices to support the latter push-pop syntax.

Explore moving tessellation to OpenGL

Current triangulation implementation in p5py

The existing implementation uses the triangle python module to triangulate shapes

before sending them to the GPU. The triangle module is in turn a wrapper around the

Triangle C library written by Jonathan Shewchuk that implements the Delaunay

triangulation algorithm.

This site notes that the Triangle Library by Prof. Shewchuck has several deficiencies. In

particular,

1.​ “It does not like duplicate vertices or duplicate edges. ‘Duplicate’ in this case is
relative to numeric precision: For a building 10-100 meters in size, two vertices
within 8cm of each other, defining a very short edge, can cause Triangle to
crash.”

http://www.cs.cmu.edu/~quake/triangle.html
https://people.eecs.berkeley.edu/~jrs/
http://vterrain.org/Implementation/Libs/triangulate.html

2.​ “It does not like it when a hole (inner ring) in the polygon has a vertex in the same
location as one in the outer ring (crash).”​ --- vterrain.org

So let’s use OpenGL?

From first glance, using OpenGL is as simple as using the following API:

gluTessBeginPolygon(tess, user_data);
 gluTessBeginContour(tess);
 gluTessVertex(tess, coords, vertex_data);
 ...
 gluTessVertex(tess, coords_n, vertex_data);
 gluTessEndContour(tess);
gluTessEndPolygon(tess);

(Code example adapted from songho.ca)

However, further searches indicated that this API is not part of OpenGL core, but part of

GLU (OpenGL Utility Library). According to GLFW

“GLU has been deprecated and should not be used in new code.”

Doing a quick search in the source of python glfw bindings, I couldn’t find the

tessellation APIs listed. Therefore, it isn’t immediately clear as to how to use the

tessellation API from GLFW.

Another option is to use the newer tessellation API in OpenGL 4.0, which is significantly

more verbose than the old GLU API because it can also perform subdivision operations.

Note that this API is also not present in the python glfw bindings.

Triangulation in p5.js and Processing

Maybe we can reference the triangulation implementations in other branches of the

processing language? Here’s what I found:

For Processing (OpenGL backend), GLU was referenced through the JOGL binding,

evidenced by source files PGraphicsOpenGL.java#L10985 and PJOGL.java#L605. Given

http://www.songho.ca/opengl/gl_tessellation.html
https://www.glfw.org/docs/3.3/build_guide.html
https://github.com/FlorianRhiem/pyGLFW/blob/master/glfw/GLFW.py
https://www.khronos.org/opengl/wiki/Tessellation
https://github.com/processing/processing/blob/4bb41d9851f24584c064d75e759e6ac3b0f65928/core/src/processing/opengl/PGraphicsOpenGL.java#L10985
https://github.com/processing/processing/blob/4bb41d9851f24584c064d75e759e6ac3b0f65928/core/src/processing/opengl/PJOGL.java#L605

that we don’t have JOGL on Python and GLFW doesn’t support GLU, we might have to

look for other options.

For p5.js, tessellation support was achieved via libtess.js, which uses the GLU

tessellation algorithm but rewritten in JavaScript (reference).

PyOpenGL

Seeing how prevalent the GLU tessellation algorithm is, I started looking for Python

libraries that implemented it. Turns out, I didn’t find an implementation but a wrapper

inside PyOpenGL.

Since we already have vispy.gloo for making OpenGL calls, I’m a little hesitant to

introduce another library that has more or less the same functionality. It’s good to know

that this is another option though.

Vispy

I asked the question of how to use GLU bindings on the vispy Gitter chat after not

finding anything related to GLU on their documentation. I will update this document

when I receive a response.

Update:

“Short answer is no. Long answer: I’m not familiar with the gluTess API specifically, but

I’m guessing this has to do with tessellation shaders, right? Currently VisPy does not

have any support for tessellation shaders but I think there are PRs trying to add it. In the

last year we added support for geometry shaders which really set up the interfaces for

adding additional shaders like the tessellation shaders, but so far these have not been

added.” ​ ​ ​ —@djhoese

Scipy

https://github.com/brendankenny/libtess.js/
https://github.com/processing/p5.js/blob/730f75738b0b7e0443340a6e7daf928402c47471/contributor_docs/project_wrapups/adilrabbani_gsoc_2018.md
http://pyopengl.sourceforge.net/documentation/manual-3.0/gluTessBeginPolygon.html

Scipy also has a function that performs the Delaunay triangulation algorithm. Instead of

wrapping around Prof. Shewchuck’s library, it wraps around Qhull

Conclusion

After looking at all the above options, it isn’t clear to me that using GLU/OpenGL is 100%

the superior option compared to the current implementation. Therefore, I plan to start

with this portion of the project by profiling the existing code to see how slow (or fast)

triangle is. If it is a bottleneck, I will attempt to replace triangle with other drop-in

options like scipy and repeat the profiling step. I could also modify the code to take care

of simple tessellations (e.g. tessellating a rect) by hand and only call a library when we

need to do something more advanced (e.g. filling bezier curves) if profiling results show

that the library wrappers present a significant overhead. If all those fail, or if we need

PyOpenGL for other functionality, I will then give GLU a try.

Update: we may have to switch out triangle if we want to properly support beginShape()

and endShape() in 3D even if profiling proves that performance is not an issue. See the

discussion below.

Improve 3D Support
Currently, the 0.6.0 update brought several 3D functions to p5py. As of now, rotation,

translation, and normal 2D drawing calls seem to work in P3D mode. However, when 3D

primitives are involved, an error is thrown (see #141).

Update: while looking at the code, I found a quick fix that makes 3D primitives work (see

#149).

3D Tessellation

As of now beginShape() and endShape() do not seem to work properly in p5py’s P3D. Take

the example script and convert it to python:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html
http://www.qhull.org/
https://github.com/p5py/p5/issues/141
https://github.com/p5py/p5/pull/149
https://processing.org/tutorials/p3d/

from p5 import *

def setup():

 no_loop()

def draw():

 size(640, 360);

 background(0);

 translate(width/2, height/2, 0);

 stroke(255);

 rotate_x(PI/2);

 rotate_z(-PI/6);

 no_fill();

 begin_shape();

 vertex(-100, -100, -100);

 vertex(100, -100, -100);

 vertex(0, 0, 100);

 vertex(100, -100, -100);

 vertex(100, 100, -100);

 vertex(0, 0, 100);

 vertex(100, 100, -100);

 vertex(-100, 100, -100);

 vertex(0, 0, 100);

 vertex(-100, 100, -100);

 vertex(-100, -100, -100);

 vertex(0, 0, 100);

 end_shape();

run(mode='P3D')

We expect the output to be

but instead get

From looking at the code, I noticed that all the vertices are being passed to the 2D class

PShape instead of the 3D class Geometry, regardless of the renderer that’s in use. (Also,

there seems to be an effort to ignore vertex calls in 3D mode but was not implemented

correctly). Since PShape uses a 2D triangulation library, it doesn’t know how to handle 3D

points properly, resulting in the square we see in the above image.

To solve this problem, I propose two options:

1.​ If we only want to support geometries “without holes” (i.e. POINTS,
LINES,LINE_STRIP,LINE_LOOP,TRIANGLES,TRIANGLE_STRIP, TRIANGLE_FAN) in 3D, we can
hand-code each case and store the correct primitives in a Geometry object.

2.​ If we want to support geometries “with holes” (e.g. a cone with its top cut off),
we may have to look for another triangulation/tessellation library that supports
3D.

https://github.com/p5py/p5/blob/66bf6c822e0d8269125bb2a2709b539915b7e8d4/p5/core/vertex.py#L321
https://github.com/p5py/p5/blob/66bf6c822e0d8269125bb2a2709b539915b7e8d4/p5/core/vertex.py#L188
http://www.cs.cmu.edu/~quake/triangle.html

Deciding which option to take and whether there are better options available probably

requires some community discussion.

Implement normal_material()

The is a function that exists in p5.js but not in Processing. It assigns a color to a pixel

solely based on the normal vector of the fragment being rendered. Useful for debugging,

so this will be one of the first shaders that I’ll implement.

Implement basic_material(r, g, b)

This is the default material when fill is called. Returns a uniform color.

An aside on lighting and materials API

The p5.js material API is not particularly flexible in that it forces the user to choose

between individual materials like ambientMaterial and specularMaterial when in reality all

of the materials can be united under the Blinn-Phong model.

The Processing Language offers better flexibility in offering individual ambient, emissive,

shininess, and specular calls. However, I think emissive is rather a misnomer because the

material itself does not act as a light but reflects light from light sources. Given that

emissive modifies the color of diffuse reflections in the Blinn-Phong model, I propose

renaming it to diffuse. Aside from this change, everything else carries over from the

Processing Language material API. Below is the API that I am proposing.

Implement ambient(r, g, b)

Sets the ambient light color reflected by the material. This is sometimes called the

ambient coefficient.

Implement diffuse(r, g, b)

Sets the diffuse light color reflected by the material.

https://cs184.eecs.berkeley.edu/sp20/lecture/6-31/rasterization-pipeline

Implement shininess(p)

Sets the amount of gloss of the material. It is the exponential above the cosine term in

Blinn-Phong

Implement specular(r, g, b)

Sets the specular light color reflected by the material.

Implement blinn_phong_material(r, g, b)

This is the material being applied whenever ambient, diffuse, shininess, or specular is

called.

Blinn-Phong shading can be decomposed into three parts: ambient, diffuse, and

specular.

The ambient component is essentially a constant term that is always present. We

calculate it by summing all the ambient lights in a scene and multiplying it with the

normalized ambient coefficient set by ambient.

The diffuse component takes the normal vector of a surface into account and varies

how much light is reflected depending on the angle that the surface makes with the

incoming light.

The specular component not only accounts for the direction of the light (like the diffuse

component) but also the direction of the viewer. If the viewer is not on the path of the

reflected light, the specular component falls off quickly, producing the glossy reflections

we see on some materials.

The color shown on the screen by the GPU is the sum of all three components. Here’s a

nice visualization of the different components.

Implement lights()

https://cs184.eecs.berkeley.edu/sp20/lecture/6-27/rasterization-pipeline
https://cs184.eecs.berkeley.edu/sp20/lecture/6-32/rasterization-pipeline

This is a wrapper for setting up default lights

def lights():

 ambient_light(128, 128, 128)

 directional_light(128, 128, 128, 0, 0, -1)

 light_falloff(1, 0, 0)

Implement ambient_light(r, g, b)

Adds an ambient light to the list of lights. Participates in ambient lighting calculations.

Implement directional_light(r, g, b, x, y, z)

Adds a directional light to the list of lights. Participates in diffuse & specular lighting

calculations.

Implement point_light(r, g, b, x, y, z)

Adds a point light to the list of lights. Participates in diffuse & specular lighting

calculations.

Implement light_falloff(constant, linear, quadratic)

Sets the falloff rates for point lights and ambient lights that have locations.

d = distance from light position to vertex position

falloff = 1 / (CONSTANT + d * LINEAR + (d*d) * QUADRATIC)

Note that like the Processing Language, directional lights are not affected because

directional lights don’t have a location associated with them, only a direction. This is in

turn because we only get parallel light rays that are like directional lights in nature when

the light source is very far away (e.g. the sun).

Does not implement light_specular(r, g, b)

The specular component should be defined by the color of the light (which is defined

when creating the light) and the material it hits. Therefore, I found it unnecessary to

include another function to override the specular color of a light specifically. This being

said, if there is a demand, this function can still be implemented without too much work.

Timeline

●​ Community Bounding Period​
Seek feedback and potentially more requests for API standardization​
Seek feedback for triangulation/tessellation libraries to use​
Seek feedback for whether to support drawing shapes with holes in 3D​
Seek feedback for the slightly revamped material and lighting API

●​ Week 1-2​
Refactor PShape function signatures​
Implement pop_matrix and make push_matrix individually callable.​
Implement other API standardization tasks if requested by the community in the
Community Bounding Period​
Update documentation and tests for the affected APIs.

●​ Week 3-4​
Write sample scenes for profiling and gather initial profiling results​
Replace triangle with scipy and measure performance improvements​
Replace triangle with GLUTess and measure performance improvements​
If this changes the API, update the documentation.​
Update tests.

●​ Week 5-6​
Make a decision on whether to support drawing shapes with holes in 3D, which
would impact which triangulation library that we will use.​
Finish integrating the triangulation library of choice.​
Adapt begin_shape, end_shape, and vertex for 3D​
Stretch goal: also adapt bezier_vertex, quadratic_vertex, curve_vertex for 3D.

●​ Week 7-8​
Implement normal_material​
Implement basic_material​
Start implementing blinn_phong_material and related methods ambient, diffuse,
shininess, specular.​
Start implementing light related methods: lights, ambient_light, point_light,
directional_light, light_falloff.

●​ Week 9-10​
Continue with the work in week 7-8​
Add documentation and tests for the newly added APIs

●​ Week 10-12​
Continue improving documentation and testing.​
Build the final version and publish on pypi.​
Flexible time reserved for schedule overruns.

About me

I am an undergraduate student studying computer science at UC Berkeley and a

software developer at Lawrence Berkeley Lab. At the lab, I work with the DESI team on

image processing and performance optimization. Most recently, we are working on

porting our Python code to CUDA so that it can run on the GPU.

I like computer graphics and maintain a blog that contains some of the previous

projects that I’ve done, including a path tracer, a CPU rasterizer, and a mesh editor. I first

encountered processing last semester when I took an intro to art class and was very

drawn to the idea of enabling everyone to express their creativity through code.

Therefore, I decided to apply to the processing foundation as soon as I saw it being

listed on GSOC 2020.

I have been part of the open-source community for many years, having both written my

own projects and submitted occasional patches to others. If you are interested, feel free

to check out my Github. In the process of writing this proposal, I happened to find a few

simple fixes for either the documentation and the code and submitted PRs #147, #148,

#149. At the time of writing they have not been merged, so please take a look and

maybe provide some feedback :) I look forward to having a fun and productive summer

working with you all!

https://desi.lbl.gov/
https://blog.ziyaointl.com/
https://github.com/ziyaointl
https://github.com/p5py/p5/pull/147
https://github.com/p5py/p5/pull/148
https://github.com/p5py/p5/pull/149

	Improving p5py
	A GSOC 2020 proposal
	Introduction
	Motivation
	Base Goals
	Stretch Goals

	Design
	Standardize the p5py API
	Explore moving tessellation to OpenGL
	Current triangulation implementation in p5py
	So let’s use OpenGL?
	Triangulation in p5.js and Processing
	PyOpenGL
	Vispy
	Scipy
	Conclusion

	Improve 3D Support
	3D Tessellation
	Implement normal_material()
	Implement basic_material(r, g, b)
	An aside on lighting and materials API
	Implement ambient(r, g, b)
	Implement diffuse(r, g, b)
	Implement shininess(p)
	Implement specular(r, g, b)
	Implement blinn_phong_material(r, g, b)
	Implement lights()
	Implement ambient_light(r, g, b)
	Implement directional_light(r, g, b, x, y, z)
	Implement point_light(r, g, b, x, y, z)
	Implement light_falloff(constant, linear, quadratic)
	Does not implement light_specular(r, g, b)

	Timeline
	About me

