1.2 Ordering Rational Numbers

Recall: Rational Numbers can be expressed as a fraction

- 7, -3, 4.5, 1 ½ , and 1/3 are all ______
- Why are π (pi) and $\sqrt{2}$ not rational numbers? Enter them into your calculator and press "="
 - o Answer: Because....

Skill 1) Be able to Order Rational Numbers from Smallest to Largest

Which rational number is greater?

$$\frac{7}{16}$$
 or $\frac{5}{8}$?

Method 1: Using a _____ denominator

□ put a **D next** to the denominator of each fraction above

☐ The two denominators are _____ and _____

What number is a multiple of both?

The multiples of 16 are _____ The multiples of 8 are _____

Therefore, the **common denominator between both is** _____

8 needs to multiplied by ____ to become 16, so to be proportional we need to do the same to the numerator.

$$\frac{5}{8}$$
 * $\frac{10}{16}$

Now that the denominators are the same we can compare the two rational numbers. Reminder (when using > or <, the bigger number always gets "eaten"

Method 2: Turn Fractions into Decimals

Recall: Each decimal place represents 10 units of the number to the left of it.

Ex. In 62 ... there are _____ tens and _____ ones.

Ex. 6.3 has 6 one's and _____ tenths. They're called tenths becuase if there were 10 "0.1's", that would be the same as

Therefore 0.1 could be represented as a fraction of $\frac{1}{10}$ and 6.3 could be represented as $\frac{1}{10}$

<u>Try</u>: What fractions would 32.349 be represented as?

To turn Fractions into Decimals – Divide the top by the bottom (you are really dividing the numerator and denominator by the denominator to make it "out of 1"

$$\frac{7}{16} = \frac{7}{16} \div \frac{16}{16} = \frac{5}{8} \div \frac{5}{8} = \frac{5}{8} \div \frac{5}{8} = \frac{5}{16} \div \frac{5}{16} = \frac$$

$$\frac{5}{8} = \frac{5}{8} \div \cdots = \frac{1}{1}$$
 or just _____

Skill: Identify a Rational Number that Exists Between two other Rational Numbers

Ex. Identify a Fraction between -0.5 and -0.6

Strategy – Use a Number Line.

1) -0.5 and -0.6 are different in the ______'s decimal place, so we'll make a number line that goes up by increments of _____

- 2) Label the two numbers on the number line with an arrow for each
- 3) Determine the number that would be IN BETWEEN each of those numbers. Our number line goes up by _____ each time but the difference between our two rational numbers is SMALLER than that

We'll have to use the next decimal place (______). A decimal number between -0.5 and -0.6 is ______

If we convert this to a fraction, we get ______ Therefore, a Fraction between -0.5 and -0.6 =

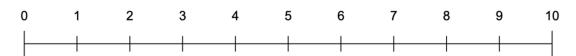
Skill: Estimate the Square Root of a Rational Number:

Recall: $2 \times 2 =$ _____ . Therefore $\sqrt{4}$ = ____ because ____ x ___ = 9 Use your calculator: $\sqrt{30.25}$ = _____ because ____ x ___ = ____

Ex. Estimate $\sqrt{0.42}$ 2 Recall – Estimate = make the best possible guess without a calculator.

Step 1: Use the square root of a perfect square.

We know that 0.4 = $\frac{100}{100}$ therefore, $\sqrt{0.42} = \frac{\sqrt{100}}{\sqrt{100}}$


100 is a perfect square 2 - X = 100 So... $\sqrt{100} = 100$ $\sqrt{100} = 100$

Step 2: Determine the two closest greatest squares to the number in the square.

The closest perfect square that is GREATER than 42 is _____ $\sqrt{}$ = _____

The closest square that is LESS than 42 is _____ $\sqrt{}$ = _____

Step 3: Place the square root of the numerator on a **number line that includes the** two other **roots determined above and the denominator (10)**

We can see that $\sqrt{42}$ is about halfway between $\sqrt{}$ and $\sqrt{}$ Therefore, we can estimate $\sqrt{0.42}$ ~ _____