
APS Homework 3� Sorting

Problem 1� Target Sum

You are given a list of real numbers along with a target number x. You want to𝑛
determine whether there exist 2 distinct elements in your list that sum to x. A naive
approach would be to check every possible pair of elements to see if they sum to x, but we
can do better.

Problem 1a: In Big-O notation, what is the worst-case time complexity of the naive
algorithm, in which you check every possible pair of elements in the list?

Problem 1b: If you were to first sort the list, you can design a more efficient algorithm.
Describe an algorithm that, given a sorted list, can find a pair of elements that sum to x
more efficiently than the naive algorithm.

Problem 1c: In Big-O notation, what is the worst-case time complexity of the sorting step
that must precede your algorithm? What about your algorithm itself (after the list has been
sorted)?

Problem 2� Comparison of Time Complexities

For each of the functions f(n) in the table below (i.e., the rows), determine the largest
problem size n that can be solved in the specified time t (i.e., the columns), assuming the
algorithm takes exactly f(n) nanoseconds to run. Hint: Instead of computing them by hand,
it may be faster to write a program to compute them for you.

1 second 1 minute 1 hour 1 day 1 year 1 century

log2n

log10n

√n

n

n2

n3

n50

2n

n!




