Service Worker CSRF Discussion

October 6, 2021
https://qgithub.com/w3c/ServiceWorker/issues/1604

Attendees

Ben Kelly (google)

Anne (Mozilla)

Jake (Google)

Artur Janc (Google)

Andrew Sutherland (Mozilla)
<add yourself>

Notes

e Ben:
In no SW case, doc sends request to server.
With SW in middle in can do all sorts
Eg from cache, multiple fetches in one etc etc
The request client issue: request has a client, which is an env settings object or
global
This sets origin header and other sec headers
Servers may depend on these for CSRF reasons
What happens if a SW is in the middle?
Fallback is fine
Passthrough or other fetches, the request client becomes SW
Now it looks like the req is same origin
The SW cannot tell if the request is from another origin
Chrome side: We need to change something here
Easiest thing to do is, when we create a new req without modifying, preserve
original client.
o Some problems doing this in Chromium due to site isolation
o It prevents using the client from another origin for security
o We'd probably have to reject further requests once the navigation is satisfied
e Andrew
o Would that be an issue for cache update cases?
e Ben
o It'd be difficult with stale while revalidate, because they'd go to the server after
completing the response.
e Andrew
o Would waitUntil be enough?
e Ben

O O O O

O O O 0O 0 0O O O O


https://github.com/w3c/ServiceWorker/issues/1604

O O O O

e Anne

o O O O

e Artur

e Anne

e Ben

e Anne

e Jake

e Ben

e Anne

e Ben

e Anne

e Ben

e Jake

e Ben

e Jake

e Anne

That would depend on what security team think.

| don't know where the line is.

We're going to get to a point where the request no longer works.
Eg getting it out of the cache.

Client can only be used in the initial phase of fetch

That's when fetch gets the data from the client

I'm not sure if this works

By the time we're in the SW, you've gone in-parallel, so you're not in the right
place to get detail from the client

This would also change what CSP applies

Since they're of a particular client

Not of the service worker

The policy of the SW is in charge, not of the request client.

But fetch looks up the policy from the client
You end up looking at the document not the client

Instead of propagating client, we could propagate details

Yeah, when we discussed this earlier, | figured we'd have another field for this
stuff

That's how referrer currently works
Does that survive going through the sw cache?

Implementation dependent

Problem is we didn't consider some of this in the cache

In gecko we tried to preserve a lot, in Chromium it's just headers
That might be ok

| think there's a potential to re-use the request

Eg when updating everything in the cache

Would folks expect Origin etc to be preserved

| don't think we'd preserve the security stuff in that case

They might want to do that, eg have different entries for cross-site things



o But that would require different matching
Ben
Outside of SW, vary on origin is useful for this, but we don't expose that in SW
So we'd have to build something new into the matching algo
Now CORS is done in network process
| don't think we'd go back to adding it earlier
We could pretend it's already there based on request metadata, for the sake of
matching.
Anne

o Should avoid 'as if' language
Ben

o Seems we have agreement we need to propagate some origin information
Anne

o What about A embeds B, and B redirects to A again

o The origin could be null because it crosses the origin boundary twice

o Ifyougo A ->B ->C (origins) then C doesn't see A or B in the Origin header
Lukasz

o |thoughtitwas A
Anne

o | thought we have things in CORS for this

o Else you get the same kind of CSRF issue we're trying to prevent here

O O O O O

o If there's a redirect, it changes sec-fetch-site
o If I had to guess, what Anne says is correct

Ben

o SW navigations use manual mode
Anne

o Is tainting taken into account?
Ben

| have a slide for this later
Thinking about it from SameSite
| feel we have consensus here that we need to pass through origin as a field on
request

o Sec-fetch-mode is supposed to be preserved, sec-fetch-mode is not

Artur

o It has a property that you can launder requests through a SW and evade server
side logic. Final site has logic to prevent something loaded as script.

o Evil.com can have a SW that does a pass-through, and the dest changes to
empty, so the response is allowed.

o If we also propagated that field, it would help

o The problem is that the CSP from the worker applies differently.
o Could allow laundering as an image but pass as script
o Eg via synthetic response



o They're a little far-fetched, but it would be a big change to switch
o We decided it wasn't what we wanted
o Didn't think through all the consequences
Jake
o Service worker can always create a new request.
Anne
o Say it has a non-strict image policy, but that could be sent back as a document
Andrew
o There's no way to force the information propagation
Anne
o If you couple the destination with the response then it isn't a problem
Ben
o Could we track the initial destination in another header, or extra value
Andrew
o What's the SW calling to get that
Ben
o It wouldn't help if just creating a new request
o Seems like we don't have consensus on destination
Artur
o Let's move forward, but come back to it later
Ben
Next: setting site for cookies for SW
If you current frame is different to parent you get a null site for cookies [not sure |
captured this correctly]
Chromium is looking at partitioning SWs
If we do that we can set site for cookies better
The SW will have a storage key, and we can use that
We want to add a bit to that, if there's a cross-site frame in the ancestor chain
With this bit it would be considered third party

o O O O O

Anne

o So you have can have two frames that have sync access to each other but

different storage?

Ben

o It's weird but don't know how else to do it

o If we want to have clickjacking protection we need different site for cookies
Andrew

o So your SWs will be more than double-keyed?

Ben

o We're thinking about it
Anne

o The bit is "is there an intermediate origin"
Ben

There are other proposals, eg anon iframe, include a nonce
We have storage keys with nonces in them for that



o Do you have plans to partition SWs?
Andrew
o Yep, double keying
Ben
o Dunno if you'd consider including this extra bit
Anne
We might
We have extra rules around cookies
o But they don't apply with a SW
o No committal

o O

Ben

o Should I file an issue
Anne

o Yeah
Ben

o It might land on my plate. Eg integrating SW with storage spec.
Andrew

o It'd be nice to be able to reason about it via a spec.
Ben

o It's on our roadmap.

o Unclear yet if it's spec or monkeypatching

o There's some consensus on partitioning, but details aren't clear
o We already partition network
o We can spec that UAs "are allowed to..." if there isn't total agreement

o For networking HTTP cache partitioning, they have a "is this is subframe" bit,
they don't check cross-site.
o | prefer the more specific bit.
o We might improve that.
Andrew
o For storage, our storage access stuff will only apply to cookies
Anne
o Well, we haven't quite decided that yet, but it's the plan
Ben
If you do a cross-site redirect you don't get strict cookies
And manual redirect mode breaks this
We probably lose tainting information
Need to track it through an internal flag
Might just need to write some tests and see what happens
Because the spec says to use the same origin

O O O O O O

Anne
o At a high level it feels this should use the same originating origin as sec-fetch etc,
so it should cater for tainting.



o If we do that it should all work out (at a high level)
o In general we want redirects to taint
o If A embeds img from B which redirect to img from A we taint it
o We want that
Ben
o | think that makes sense
o The last thing | had, is the SW can't check where the request came from
o Doesn't know if it's safe to put in cache storage
o | think we talked about exposing something similar to sec-fetch-site
o This would be in lieu of things like origin header etc
Anne
o Seems reasonable
Ben
o Don't think this would change eg matching in cache algo
Anne

o | think the cache API should just store headers and URL
o Need to file an issue for that
o Matching matters, but not total replication
Andrew
o Would this apply if we had serialisation of request/response?
Anne
o | think that would be a different discussion
Ben
o It seems weird to me that we lose information, eg cookie information
o Going back to this getter, if we have that, why don't we just have the header?
Anne
o We don't have the header at that point due to CORS. Eg who set the header?
Ben
o We could just expose sec-fetch-site
Anne
Same problem - CORS checks
End up removing it for CORS, then adding it back?
o We make copies of the request before serialising headers (might be impl detail)
o If we get a redirect we adjust headers and serialise them again

o O

o The SW is a proxy, so they expect the headers to be there
o We can start with the getter then look later

o There is a tension there
o Would we expose all the headers there?

o Should the host header be there?

o Happy to start with the getter



e Ben
O
e Artur
(@]
(@]
(@]
(@]
(@]
e Anne
(@]
e Ben
(@]
e Artur
O
e Ben
(@]
(@]
O
e Anne
(@]
(@]
e Ben
(@]
(@]
e Anne

If we want to expose headers there, we should do it in a principled way (not like
client hints)

We need info for why certain headers are there, and others aren't

It might be solvable, but might be hacky/weird

As these things maybe changed later, eg redirects

We could talk more about destination?

We could expose some stuff to SW

If we look at server side stuff to prevent CSRF, they look at lots of metadata
We could look at feature parity in the SW

We could look at exposing original destination... it's a bit of a can of worms, eg
sec-fetch-original-dest

But this all vaguely makes sense to me

Isn't destination already exposed? There's already a destination field

Yes

Ah, | might have been trying a couple of years back

| think there's a conceptual issue. We want origin A to make a request on behalf
of origin B, but we don't communicate that.

Seems like a weakness.

If there a proxying method we could copy here?

There's two sources of authority. There's A which makes the action happen, and
B which forwards the action (the SW).

It sounds like we want to forward the origin from A, which is getting weird.

I wonder if CSP can specify the proxying
"l don't want A to do a POST on behalf of B"

We need to figure out which fields are right to copy from client vs SW

Locking down doc to avoid any spam.



