
Service Worker CSRF Discussion
October 6, 2021
https://github.com/w3c/ServiceWorker/issues/1604

Attendees
● Ben Kelly (google)
● Anne (Mozilla)
● Jake (Google)
● Artur Janc (Google)
● Andrew Sutherland (Mozilla)
● <add yourself>

Notes
● Ben:

○ In no SW case, doc sends request to server.
○ With SW in middle in can do all sorts
○ Eg from cache, multiple fetches in one etc etc
○ The request client issue: request has a client, which is an env settings object or

global
○ This sets origin header and other sec headers
○ Servers may depend on these for CSRF reasons
○ What happens if a SW is in the middle?
○ Fallback is fine
○ Passthrough or other fetches, the request client becomes SW
○ Now it looks like the req is same origin
○ The SW cannot tell if the request is from another origin
○ Chrome side: We need to change something here
○ Easiest thing to do is, when we create a new req without modifying, preserve

original client.
○ Some problems doing this in Chromium due to site isolation
○ It prevents using the client from another origin for security
○ We'd probably have to reject further requests once the navigation is satisfied

● Andrew
○ Would that be an issue for cache update cases?

● Ben
○ It'd be difficult with stale while revalidate, because they'd go to the server after

completing the response.
● Andrew

○ Would waitUntil be enough?
● Ben

https://github.com/w3c/ServiceWorker/issues/1604


○ That would depend on what security team think.
○ I don't know where the line is.
○ We're going to get to a point where the request no longer works.
○ Eg getting it out of the cache.

● Anne
○ Client can only be used in the initial phase of fetch
○ That's when fetch gets the data from the client
○ I'm not sure if this works
○ By the time we're in the SW, you've gone in-parallel, so you're not in the right

place to get detail from the client
○ This would also change what CSP applies
○ Since they're of a particular client
○ Not of the service worker

● Artur
○ The policy of the SW is in charge, not of the request client.

● Anne
○ But fetch looks up the policy from the client
○ You end up looking at the document not the client

● Ben
○ Instead of propagating client, we could propagate details

● Anne
○ Yeah, when we discussed this earlier, I figured we'd have another field for this

stuff
● Jake

○ That's how referrer currently works
○ Does that survive going through the sw cache?

● Ben
○ Implementation dependent

● Anne
○ Problem is we didn't consider some of this in the cache

● Ben
○ In gecko we tried to preserve a lot, in Chromium it's just headers

● Anne
○ That might be ok

● Ben
○ I think there's a potential to re-use the request

● Jake
○ Eg when updating everything in the cache

● Ben
○ Would folks expect Origin etc to be preserved

● Jake
○ I don't think we'd preserve the security stuff in that case

● Anne
○ They might want to do that, eg have different entries for cross-site things



○ But that would require different matching
● Ben

○ Outside of SW, vary on origin is useful for this, but we don't expose that in SW
○ So we'd have to build something new into the matching algo
○ Now CORS is done in network process
○ I don't think we'd go back to adding it earlier
○ We could pretend it's already there based on request metadata, for the sake of

matching.
● Anne

○ Should avoid 'as if' language
● Ben

○ Seems we have agreement we need to propagate some origin information
● Anne

○ What about A embeds B, and B redirects to A again
○ The origin could be null because it crosses the origin boundary twice
○ If you go A -> B -> C (origins) then C doesn't see A or B in the Origin header

● Lukasz
○ I thought it was A

● Anne
○ I thought we have things in CORS for this
○ Else you get the same kind of CSRF issue we're trying to prevent here

● Artur
○ If there's a redirect, it changes sec-fetch-site
○ If I had to guess, what Anne says is correct

● Ben
○ SW navigations use manual mode

● Anne
○ Is tainting taken into account?

● Ben
○ I have a slide for this later
○ Thinking about it from SameSite
○ I feel we have consensus here that we need to pass through origin as a field on

request
○ Sec-fetch-mode is supposed to be preserved, sec-fetch-mode is not

● Artur
○ It has a property that you can launder requests through a SW and evade server

side logic. Final site has logic to prevent something loaded as script.
○ Evil.com can have a SW that does a pass-through, and the dest changes to

empty, so the response is allowed.
○ If we also propagated that field, it would help

● Anne
○ The problem is that the CSP from the worker applies differently.
○ Could allow laundering as an image but pass as script
○ Eg via synthetic response



○ They're a little far-fetched, but it would be a big change to switch
○ We decided it wasn't what we wanted
○ Didn't think through all the consequences

● Jake
○ Service worker can always create a new request.

● Anne
○ Say it has a non-strict image policy, but that could be sent back as a document

● Andrew
○ There's no way to force the information propagation

● Anne
○ If you couple the destination with the response then it isn't a problem

● Ben
○ Could we track the initial destination in another header, or extra value

● Andrew
○ What's the SW calling to get that

● Ben
○ It wouldn't help if just creating a new request
○ Seems like we don't have consensus on destination

● Artur
○ Let's move forward, but come back to it later

● Ben
○ Next: setting site for cookies for SW
○ If you current frame is different to parent you get a null site for cookies [not sure I

captured this correctly]
○ Chromium is looking at partitioning SWs
○ If we do that we can set site for cookies better
○ The SW will have a storage key, and we can use that
○ We want to add a bit to that, if there's a cross-site frame in the ancestor chain
○ With this bit it would be considered third party

● Anne
○ So you have can have two frames that have sync access to each other but

different storage?
● Ben

○ It's weird but don't know how else to do it
○ If we want to have clickjacking protection we need different site for cookies

● Andrew
○ So your SWs will be more than double-keyed?

● Ben
○ We're thinking about it

● Anne
○ The bit is "is there an intermediate origin"

● Ben
○ There are other proposals, eg anon iframe, include a nonce
○ We have storage keys with nonces in them for that



○ Do you have plans to partition SWs?
● Andrew

○ Yep, double keying
● Ben

○ Dunno if you'd consider including this extra bit
● Anne

○ We might
○ We have extra rules around cookies
○ But they don't apply with a SW
○ No committal

● Ben
○ Should I file an issue

● Anne
○ Yeah

● Ben
○ It might land on my plate. Eg integrating SW with storage spec.

● Andrew
○ It'd be nice to be able to reason about it via a spec.

● Ben
○ It's on our roadmap.
○ Unclear yet if it's spec or monkeypatching

● Anne
○ There's some consensus on partitioning, but details aren't clear
○ We already partition network
○ We can spec that UAs "are allowed to…" if there isn't total agreement

● Ben
○ For networking HTTP cache partitioning, they have a "is this is subframe" bit,

they don't check cross-site.
○ I prefer the more specific bit.
○ We might improve that.

● Andrew
○ For storage, our storage access stuff will only apply to cookies

● Anne
○ Well, we haven't quite decided that yet, but it's the plan

● Ben
○ If you do a cross-site redirect you don't get strict cookies
○ And manual redirect mode breaks this
○ We probably lose tainting information
○ Need to track it through an internal flag
○ Might just need to write some tests and see what happens
○ Because the spec says to use the same origin

● Anne
○ At a high level it feels this should use the same originating origin as sec-fetch etc,

so it should cater for tainting.



○ If we do that it should all work out (at a high level)
○ In general we want redirects to taint
○ If A embeds img from B which redirect to img from A we taint it
○ We want that

● Ben
○ I think that makes sense
○ The last thing I had, is the SW can't check where the request came from
○ Doesn't know if it's safe to put in cache storage
○ I think we talked about exposing something similar to sec-fetch-site
○ This would be in lieu of things like origin header etc

● Anne
○ Seems reasonable

● Ben
○ Don't think this would change eg matching in cache algo

● Anne
○ I think the cache API should just store headers and URL
○ Need to file an issue for that
○ Matching matters, but not total replication

● Andrew
○ Would this apply if we had serialisation of request/response?

● Anne
○ I think that would be a different discussion

● Ben
○ It seems weird to me that we lose information, eg cookie information
○ Going back to this getter, if we have that, why don't we just have the header?

● Anne
○ We don't have the header at that point due to CORS. Eg who set the header?

● Ben
○ We could just expose sec-fetch-site

● Anne
○ Same problem - CORS checks
○ End up removing it for CORS, then adding it back?
○ We make copies of the request before serialising headers (might be impl detail)
○ If we get a redirect we adjust headers and serialise them again

● Ben
○ The SW is a proxy, so they expect the headers to be there
○ We can start with the getter then look later

● Anne
○ There is a tension there
○ Would we expose all the headers there?
○ Should the host header be there?

● Ben
○ Happy to start with the getter

● Anne



○ If we want to expose headers there, we should do it in a principled way (not like
client hints)

○ We need info for why certain headers are there, and others aren't
○ It might be solvable, but might be hacky/weird
○ As these things maybe changed later, eg redirects

● Ben
○ We could talk more about destination?

● Artur
○ We could expose some stuff to SW
○ If we look at server side stuff to prevent CSRF, they look at lots of metadata
○ We could look at feature parity in the SW
○ We could look at exposing original destination… it's a bit of a can of worms, eg

sec-fetch-original-dest
○ But this all vaguely makes sense to me

● Anne
○ Isn't destination already exposed? There's already a destination field

● Ben
○ Yes

● Artur
○ Ah, I might have been trying a couple of years back

● Ben
○ I think there's a conceptual issue. We want origin A to make a request on behalf

of origin B, but we don't communicate that.
○ Seems like a weakness.
○ If there a proxying method we could copy here?

● Anne
○ There's two sources of authority. There's A which makes the action happen, and

B which forwards the action (the SW).
○ It sounds like we want to forward the origin from A, which is getting weird.

● Ben
○ I wonder if CSP can specify the proxying
○ "I don't want A to do a POST on behalf of B"

● Anne
○ We need to figure out which fields are right to copy from client vs SW

Locking down doc to avoid any spam.


