5.02 Solving Right Triangles

Pieces of a Right Triangle Video Click Here

A right triangle has two _____ and a _____. However, if you look at the triangle from a specific angle, you can classify the legs according to their position.

Take a look at $\triangle DEF$ from $\angle D$.

Side DF is the _____ because it is across from the right angle.

Side EF is the _____ leg because it is directly opposite from ∠D.

Side DE is the _____ leg because it is next to $\angle D$.

If you focus on a different angle, the names of the _____ will change.

Take a look at $\triangle DEF$ from $\angle F$.

DE:____

 \overline{EF} :

 \overline{DF} :______

Trigonometric Functions Video Click Here

The **trigonometric functions** are functions of an angle. They are used to relate the

of a right triangle to the lengths of the _____ of a right

triangle.

Here are the three basic trigonometric functions shown as ratios:

*Always label the triangle with the hypotenuse, the opposite and adjacent sides to help you set up the ratio!

Sine

$$sin \theta = \frac{opposite}{hypotenuse}$$

Cosine

$$\cos \theta = \frac{adjacent}{hypotenuse}$$

$$cos B =$$

Tangent

$$tan \theta = \frac{opposite}{adjacent}$$

$$tan B =$$

Similar Triangles and Trigonometric Functions Video Click Here

In the image, two _____ triangles are shown with angle Θ marked by point C. The symbol Θ is the greek symbol for .

Let's set up the trigonometric ratios of Θ :

Small Triangle:

$$\sin \theta = \frac{opp}{hyp} = ----$$

$$\sin\theta = \frac{opp}{hyp} = \frac{6}{10} = ---$$

$$\cos \theta = \frac{adj}{hyp} = ----$$

$$\cos\theta = \frac{adj}{hyp} = \frac{8}{10} = ---$$

$$tan \theta = \frac{opp}{adj} = ----$$

$$tan \theta = \frac{opp}{adj} = \frac{6}{8} = ----$$

The trigonometric ratios for ______ triangles are the same!

Trigonometric Functions (SOH-CAH-TOA) Video Click Here

There are many ways to remember the trigonometric functions and one way is SOH-CAH-TOA.

SOH

CAH

TOA

Let's take a look at right triangle DEF from the perspective of \angle F.

$$sin F = \frac{opp}{hyp} = ----$$

$$\cos F = \frac{adj}{hyp} = ----$$

$$tan F = \frac{opp}{adj} = ----$$

Be very careful, though! If you focused on $\angle D$ instead of $\angle F$, the values for sine, cosine, and tangent would be different.

$$sin D = \frac{opp}{hyp} = ----$$

$$cos D = \frac{adj}{hyp} = ----$$

$$tan D = \frac{opp}{adj} = ----$$

Tangent and Slope Video Click Here

First look at tangent of angle A.

$$tan A = \frac{opposite}{adjacent} = ----$$
.

Now slope, to find the _____ of a line, you could use the formula:

$$m = \frac{rise}{run} = ---$$

Now put it all together and you get:

$$tan A = \frac{opposite}{adjacent} = ----- = \frac{rise}{run} = slope AB$$

$$tan A = slope AB$$

Complementary Angles in R	Right Triangles Video Click
Review: All the angles in a triangle add up to	
°.	
Two angles are if	θ
their sums are 90°.	90° – θ
In a right triangle, the two angles that are	$\frac{A}{a}$

Here

____the right angle will always add up to ____, therefore they are always

Special Relationships between Sine & Cosite Video Click Here

There is a special relationship that occurs between sine and cosine in a right triangle.

Let's look at the sine and cosine of these angles.

	∠C = 37	∠A =°
sin θ		
cos θ		

The sine and cosine of ______ angles will always be ______.

Trig Functions,	The Unit Circle	, and Special Right	Triangles	Video Click F	<u>lere</u>

We can use our special right triangles to help us find values on the coordinate plane.

The Unit Circle is a Circle with the center at the _____ and a radius of ____.

Example Video Click Here

We can use the properties of special right triangles to determine ______ of the trigonometric functions. *Note the calculator can help you with decimal answers, but not the exact values.

$$cos 60^{\circ} =$$

Angle Θ	0	30°	45°	60°	90°
cos 0	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin Θ	О	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Practice

Question 1 Video Click Here

Set up the three trigonometric ratios for the triangle for angle $\boldsymbol{\theta}$.

Question 2 Video Click Here	Question 3 Video Click Here
Fill in the blank below. If the $\sin 30^\circ = \frac{1}{2}$, then $\cos _$ ° =	If $0^{\circ} < x \le 90^{\circ}$ and $\sin(8x)^{\circ} = \cos(4x + 6)^{\circ}$, what is the value of x?
A house forms a right triangle with the grocery store and the park. A jogger knows the angle x and the distance y between the grocery store and the house. Write an equation to find the distance(z) from the Store to the Park. Store Park Park	Triangle XYZ is dilated by a scale factor of 2 to get triangle ACB. A) If $sin x = 8/10.6$, what are the lengths of CB and AB?
	B) Explain the special relationship between the trigonometric ratios of triangles XYZ and ACB.

Question 6 Video Click Here

Find the value of $\sin x^{\circ}$ and $\cos y^{\circ}$. What relationship do the ratios of $\sin x^{\circ}$ and $\cos y^{\circ}$ share?

