
SNACS 2021 Code Review
Best Practices

General PSA’s
● If code implemented in NetworkX try SNAP
● Use LIACS computers for very large graphs

Code practice
● Use clear, modular functions to reuse code (52+27)
● Clean code
● Try to keep functions short and clear (e.g. by dividing them up)
● write informative docstrings about inputs, outputs and what the function does
● Write clear, and self-explanatory variable names.
● Write meaningful error messages (e.g. use catch/except + raise exception)
● Write comments so that your teammates can easily understand the code
● Generally write readable code that can be expanded upon by other users, without

them having to study your code for a very long time. (52+27)
● When not using Python, still mind your indentation. (52+27)
● If possible sort before a loop
● comment your code
● Keep your code DRY (Don’t Repeat Yourself)
● Avoid Deep Nesting.
● readability is more important than compact code (e.g. avoid long one-liners)
● Think of random seeds when you’re conducting experiments

Python tips
● Use multiprocessing, e.g. Pool to speed up code if your algorithm allows for it (1+2)
● Look at dataclasses or NamedTuple to prevent ‘magic’ indices throughout your code

(1+2)
● Use Python typehints (https://docs.python.org/3/library/typing.html)

Plotting
● use seaborn for nice plotting (e.g. set_style(“whitegrid”) )
● Don’t forget to put labels for axis!!!
● use bold face + larger lettering for axes for clarity
● xticks for changing tick labels/ frequency
● save plots as pdf for high res in latex documents
● make your colormaps color-blind friendly

Safety from frustration
● Use GitHub to collaborate on code (or something similar).
● Use Github to be able to revert to previous versions of the code! (3+41)
● use Google colab to easily program together.

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/typing.html


● Add comments in your code
● Use the VSCode Live Share feature to collaborate on any code (1+2)
● come up with a nice file structure to keep everything organised
● If you’re running an algorithm that’s taking 5+ hours or so, instead of completely

discarding it, maybe it’s possible to cap the time to 1 hour and if it takes longer you
stop running the algorithm and just use what you get from that hour.

● Don’t use jupyter notebook for heavy tasks (we encountered some problems)

VScode tips
● Use a formatter (e.g. ESlint)
● https://code.visualstudio.com/docs/getstarted/keybindings
● nice extensions:

○ remote ssh
○ bracket pair colorizer
○ indent-rainbow
○ live-share
○ Github Copilot

https://copilot.github.com/

