
CSE 344 | 21au | Introduction to Data Management

Homework 5 | Database Application
and Transaction Management
Updates made to the assignment after its release are highlighted in red.

Objectives: To gain experience with database application development and, in particular,
transaction management. To learn how to use SQL from within Java via JDBC.

Due dates:

●​ Milestone 1: Mon, Nov 8, 2021 10:00pm
●​ Milestone 2: Mon, Nov 15, 2021 10:00pm Thu, Nov 18 2021 10:00 pm

Resources
For this assignment, you will need:

●​ SQL Server through SQL Azure
●​ Maven

○​ If using OSX, we recommend using Homebrew and installing with brew
install maven

○​ If on Windows, you may find this installation guide helpful (must be logged in
using @cs account)

●​ Prepared Statements Java Doc
●​ Prepared Statements Example (must be logged in using @cs account)
●​ Starter code (.zip format)

Introduction

Setup

Homework Requirements
Data Model
Functional Specification
Testing
Transaction management

https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://azure.microsoft.com/en-us/services/sql-database/
https://maven.apache.org/
https://docs.google.com/document/d/1j1xtV0Wmpij7YZ0CbpYGAIDkKWD3vQtmwAFDEYPMcUk/edit?usp=sharing
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/PreparedStatement.html
https://drive.google.com/file/d/1eilqD9xCEmX-Q_1d9eo_RHtC1gcqDrSs/view?usp=sharing
https://drive.google.com/file/d/1F-riVUwwkMd_mdGggFqDgas-2jgchJBE/view?usp=sharing

CSE 344 | 21au | Introduction to Data Management

Milestone 1:
Database design
Java customer application

Step 1: Implement clearTables()
Step 2: Implement create, login, and search
Step 3: Write test cases
M1 Submission

Milestone 2:
Step 4: Implement book, pay, reservations, and cancel (extra credit). Add transactions!
Step 5: Write More (transaction) Test Cases
Document Your Design
M2 Submission

Overall Grading

Introduction
Congratulations, you are opening your own flight booking service!

In this homework, you have two main tasks:

●​ Design a database of your customers and the flights they book
●​ Complete a working prototype of your flight booking application that connects to the

database (in Azure) then allows customers to use a CLI (command line interface) to
search, book, cancel, etc. flights

You will also be writing a few test cases and explaining your design in a short writeup. We have
already provided code for a UI (FlightService.java) and partial backend (Query.java). For this
homework, your task is to implement the rest of the backend. In real life, you would develop a
web-based interface instead of a CLI, but we use a CLI to simplify this homework.

For this lab, you can use any of the classes from the Java 11 standard JDK.

✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨
WARNING: This homework requires writing a non-trivial amount of Java code and test
cases; our solution is about 800 lines including the starter code. It will take
SIGNIFICANTLY more time than your previous 344 assignments. START EARLY!!!

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

CSE 344 | 21au | Introduction to Data Management

Milestone 1 makes good progress towards the goal but is less than half of the work. We
highly recommend getting milestone 1 done early and starting milestone 2 before M1 is
due. Don't put off milestone 2!

✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨

Setup
1.​ Download the starter code​

2.​ Connect your application to your database​

You will need to access your Flights database from HW3. Alternatively, you may create a
new database and use the HW3 specification for importing Flights data​

3.​ Configure your JDBC Connection​
This allows Query.java to connect to your SQLServer on Azure.​
​
In the top level directory, create a file named dbconn.properties and copy-and-paste
the following into it:

Database connection settings​
​
TODO: Enter the server URL.​
flightapp.server_url = SERVER_URL​
​
TODO: Enter your database name.​
flightapp.database_name = DATABASE_NAME​
​
TODO: Enter the admin username of your server.​
flightapp.username = USERNAME​
​
TODO: Add your admin password.​
flightapp.password = PASSWORD

Next, populate the .properties file with your server’s details:

○​ SERVER_URL will be of the form
[sqlserver_name].database.windows.net. The server name can be
found in the table of Azure resources when you first log in

○​ DATABASE_NAME is the SQLServer name, and is found in the table of Azure
resources when you first log in

○​ The USERNAME and PASSWORD are the same credentials you use to login to
your database/server when you open the query editor in the Azure console

https://drive.google.com/file/d/1F-riVUwwkMd_mdGggFqDgas-2jgchJBE/view?usp=sharing

CSE 344 | 21au | Introduction to Data Management

■​ If the connection isn't working for some reason, try using the fully qualified
username: flightapp.username = USER_NAME@DATABASE_NAME

Your dbconn.properties file should look something like this:

4.​ Build the application​
Package the application files and any dependencies into a single .jar file:

$ mvn clean compile assembly:single

Run the main method from FlightService.java, the interface logic for what you will
implement in Query.java:

$ java -jar target/FlightApp-1.0-jar-with-dependencies.jar

If you want to run directly without first creating a jar, you can run:

$ mvn compile exec:java

If either of those starts the UI below, you are good to go!

*** Please enter one of the following commands ***​
> create <username> <password> <initial amount>​
> login <username> <password>​
> search <origin city> <destination city> <direct> <day> <num
itineraries>​
> book <itinerary id>​
> pay <reservation id>​
> reservations​
> cancel <reservation id>​
> quit

CSE 344 | 21au | Introduction to Data Management

Homework Requirements

Data Model
The flight service system consists of the following logical entities. These entities are not
necessarily database tables; it is up to you to decide what entities to store persistently and to
create a physical schema design that has the ability to run the operations below.

●​ Flights / Carriers / Months / Weekdays: modeled the same way as HW3.​
For this application, we have very limited functionality so you shouldn't need to modify
the schema from HW3 nor add any new table to reason about the HW3 dataset.​

●​ Users: A user has a username (varchar), password (varbinary), and balance (int) in their
account. All usernames should be unique in the system. Each user can have any
number of reservations.​
​
Usernames are case insensitive (this is the default for SQL Server). However, since we
are salting and hashing our passwords through the Java application, passwords are
case sensitive. You can assume that all usernames and passwords have at most 20
characters.​

●​ Itineraries: An itinerary is either a direct flight (consisting of one flight: origin -->
destination) or a one-hop flight (consisting of two flights: origin --> stopover city, stopover
city --> destination). Itineraries are returned by the search command.​

●​ Reservations: A booking for an itinerary, which may consist of one (direct) or two
(one-hop) flights. Each reservation can either be paid or unpaid, cancelled or not, and
has a unique ID.

You create these and any other tables (and indexes) that are needed for this assignment in
createTables.sql, which is discussed in more detail below.

Functional Specification

The flight service system is implemented in Query.java The methods you need to provide are
indicated in the starter code, which you will fill out as you develop your implementation. Refer to
Query.java for the complete specification, including what conditions to handle and what error
messages to return, etc.

●​ create takes in a new username, password, and initial account balance as input. It
creates a new user account with the initial balance. Create() should return an error if it is
passed an initial balance that is a negative dollar amount, or if the username already
exists.​
​

CSE 344 | 21au | Introduction to Data Management

When validating Usernames, please ensure that they are not case-sensitive. In other
words, "UserId1", "USERID1", and "userid1" all map to the same User ID. You can
assume that all usernames and passwords have at most 20 characters.​
​
We will store the salted password hash and the salt itself to avoid storing passwords in
plain text. Use the following code snippet to as a template for computing the hash given
a password string:​

// Generate a random cryptographic salt​
SecureRandom random = new SecureRandom();​
byte[] salt = new byte[16];​
random.nextBytes(salt);​
​
// Specify the hash parameters​
KeySpec spec = new PBEKeySpec(password.toCharArray(), salt,
HASH_STRENGTH, KEY_LENGTH);​
​
// Generate the hash​
SecretKeyFactory factory = null;​
byte[] hash = null; ​
try {​
 factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");​
 hash = factory.generateSecret(spec).getEncoded();​
} catch (NoSuchAlgorithmException | InvalidKeySpecException ex)
{​
 throw new IllegalStateException();​
}

●​ login accepts a username and password; it checks that the user exists in the database
and that the password matches. To compute the hash, adapt the above code. Within a
single session (that is, a single instance of your program), only one user should be
logged in; make sure you log the User out when the program terminates. To keep things
simple, you can track the login status of a User using a local variable in your program;
notably, you should not track a user's login status inside the database. If a second login
attempt is made within the current session, please return "User already logged in".​
​
A good practice is for every test case to begin with a login request. ​

●​ search takes as input an origin city (string), a destination city (string), a flag for only
direct flights or not (0 or 1), the date (int), and the maximum number of itineraries to be
returned (int). For the date, we only need the day of the month, since our dataset comes
from July 2015.​
​
Return only flights that are not canceled, ignoring the capacity and number of seats
available. Assuming the user requests n itineraries to be returned, there are a number of
possibilities:

CSE 344 | 21au | Introduction to Data Management

○​ when direct=1: return up to n direct itineraries
○​ when direct=0: return up to n direct itineraries. If there are only k direct itineraries

(where k < n), then return the k direct itineraries and up to (n-k) of the shortest
indirect itineraries along with the flight times.

For itineraries that have one or more stops (an “indirect itinerary”), different carriers can
be used for each leg. The first and second flight only must be on the same date (eg, if
flight1 runs on July 3 and flight2 runs on July 4th, then you can't put these two flights in
the same itinerary).

Sort your results on total actual_time (ascending). If a tie occurs, break that tie by the fid
value. For indirect itineraries, use the first then the second fid for tie-breaking.​
​
Below is an example of a single direct flight from Seattle to Boston; actual itinerary
numbers and flights might differ. Notice that only the day is printed out since we assume
all flights happen in July 2015:

Itinerary 0: 1 flight(s), 297 minutes​
ID: 60454 Day: 1 Carrier: AS Number: 24 Origin: Seattle WA Dest:
Boston MA Duration: 297 Capacity: 14 Price: 140

​

Below is an example of two indirect itineraries from Seattle to Boston:

Itinerary 0: 2 flight(s), 317 minutes​
ID: 704749 Day: 10 Carrier: AS Number: 16 Origin: Seattle WA
Dest: Orlando FL Duration: 159 Capacity: 10 Price: 494​
ID: 726309 Day: 10 Carrier: B6 Number: 152 Origin: Orlando FL
Dest: Boston MA Duration: 158 Capacity: 0 Price: 104​
Itinerary 1: 2 flight(s), 317 minutes​
ID: 704749 Day: 10 Carrier: AS Number: 16 Origin: Seattle WA
Dest: Orlando FL Duration: 159 Capacity: 10 Price: 494​
ID: 726464 Day: 10 Carrier: B6 Number: 452 Origin: Orlando FL
Dest: Boston MA Duration: 158 Capacity: 7 Price: 760

Notice that for indirect itineraries, the results are printed in the order of the flights taken
(ie, starting with the flight leaving the origin and ending with the flight arriving at the
destination).​
​
The returned itineraries IDs should start from 0 and increase by 1 up to n as shown
above. All flights in an indirect itinerary should be under the same itinerary ID. In other
words, the user should only need to book once with the itinerary ID, regardless of
whether they are flying a direct or indirect itinerary.

If no itineraries match the search query, the system should return an informative error
message; see Query.java for the actual text. ​

CSE 344 | 21au | Introduction to Data Management

​
The user need not be logged in to search for flights.

An approach for searching for n indirect itineraries:

-​ Query1: Select n direct flights, sort by duration, fid
-​ If query1 returns k flights (and k < n), do query2: select (n-k) indirect flight, sort by

total_duration, fid1, fid2.
-​ Using Java code, combine the result of query1 and query2 in java; sort the

combination by duration, fid1, fid2. Note that the results from query 1 do not
have fid2; you may have to use some ✨programming magic✨ :)

-​ How to sort? Comparator/Comparable is the go-to option. You may need
to create a class to sort itineraries (or not, it is your program after all).​

●​ book lets a user reserve an itinerary using its itinerary number (as returned by a
previous search). The user must be logged in to book an itinerary, and they must enter a
valid itinerary id returned from the most recent search performed within the same login
session. Once the user logs out (by quitting the application), logs in (if they previously
were not logged in), or performs another search within the same login session, then all
previously returned itineraries are invalidated and cannot be booked.​
​
A user cannot book a flight if the flight's maximum capacity would be exceeded; each
flight’s capacity is stored in the FLIGHTS table as in HW3, and you should have records
as to how many seats remain on each flight based on the reservations.​
​
If the booking is successful, assign a new reservation ID to the booked itinerary. Recall
that each reservation can contain up to 2 flights (in the case of indirect flights).​

●​ pay allows a user to pay for an existing-but-unpaid reservation. It should first verify the
user has enough money to pay for all the flights in the given reservation; if so, it updates
the reservation to be paid.​

●​ reservations lists the currently logged-in user’s reservations. The user must be logged
in to view reservations. The itineraries should be displayed using a similar format as that
used to display the search results, and they should be shown in increasing order of
reservation ID under that username. Cancelled reservations, if implemented, should not
be displayed.​
​
As noted above, each reservation must have a numeric identifier which is different for
each itinerary in the entire system. These identifiers should start from 1 and increase by
1 after each successful reservation. There are several ways to implement this:

○​ Define a "ID" table that stores the next value to use, and update it each time a
new reservation is made successfully.

○​ Declare a column as having SQLServer’s built-in Identity type, which tells
SQLServer to automatically generate a unique value every time a new row is
inserted. Since you do not specify a value for that column in your INSERT
statement, your program won't know what its value is without running a simple

CSE 344 | 21au | Introduction to Data Management

SELECT id FROM table WHERE ... statement to retrieve it.​

●​ cancel (extra credit) lets a user cancel an existing uncanceled reservation. The user
must be logged in to cancel reservations and must provide a valid reservation ID. Make
sure you make all relevant changes to your tables (eg, if a reservation is already paid,
the customer should be refunded).​

●​ quit leaves the interactive system and logs out the current user (if logged in).

Refer to the Javadoc in Query.java for full specification and the expected responses of the
commands above.

❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗

CAUTION: Make sure your code produces its output in the exact same format as
described! (see test cases and Javadoc for what to expect). By this point, you should
know what happens when the autograder doesn’t see the output it’s expecting.

❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗

Testing
To test that your application works correctly, we have provided an automated testing harness
using the JUnit framework. Our test harness will compile your code and run all the test cases in
the provided cases/ folder. Automated testing is extremely helpful and, when used properly,
should speed up your development: as you develop a new capability, develop a test to verify
that the capability works; this allows you to know exactly where a newly-introduced bug can be
found.

To run the test harness, execute in the project directory:

$ mvn test

If you want to run a single test file or run files from a different directory (recursively), you can run
the following command:

$ mvn test -Dtest.cases="folder_name_or_file_name_here"

CSE 344 | 21au | Introduction to Data Management

We have organized our testing code into test cases. For every test case, it will either print pass
or fail; for all failed cases, it will print out what the implementation returned, and you can
compare it against the expected output. Each test case file is of the following format:

[command 1]​
[command 2]​
...​
*​
[expected output line 1]​
[expected output line 2]​
...​
*​
everything following '#' is a comment on the same line

While we've provided test cases for most of the methods, the testing we provide is incomplete. It
is up to you to implement your solutions so that they completely adhere to the specification;
“but it passed all the provided tests!” is no guarantee that your code will get full points.

Furthermore, you're required to write new test cases for each of the commands (except quit).
Separate each test case in its own file and name it <command name>_<some descriptive
name for the test case>.txt. It’s a good practice to develop test cases for all
erroneous conditions (e.g., booking on a full flight, logging in with a non-existent username) that
your code is built to handle, but you’ll also want test cases for successful conditions as well. Be
creative!

Transaction management
For the second milestone, you must use SQL transactions to guarantee ACID properties. We
have set the isolation level for your Connection, but you will need to define begin-transaction
and end-transaction statements and to insert them in appropriate places in Query.java. You
must use transactions correctly such that race conditions introduced by concurrent execution
cannot lead to an inconsistent state of the database. For example, multiple customers may try to
book the same flight at the same time; your properly designed transactions should prevent that.

Furthermore, you must ensure that the following functional constraints are always satisfied,
even if multiple instances of your application connect to the database at the same time:

C1: Each flight has a maximum capacity that must not be exceeded. Each flight’s
capacity is stored in the Flights table as in HW3, and you should have records as to how
many seats remain on each flight based on the reservations.

C2: A customer may have at most one reservation on any given day, but they can be on
more than 1 flight on the same day. For example, a customer can have one reservation

CSE 344 | 21au | Introduction to Data Management

on a given day that includes two flights, because the reservation is for an indirect
itinerary.

Do not include user interaction inside a SQL transaction; that is, don't begin a transaction then
wait for the user to decide what she wants to do (why?).

Recall that, by default, each SQL statement executes in its own transaction. As discussed in
lecture, to group multiple statements into a transaction, we use the following SQL statements:

BEGIN TRANSACTION​
....​
COMMIT or ROLLBACK

Executing transactions from Java has the same semantics: by default, each SQL statement will
be executed as its own transaction. To group multiple statements into a single transaction in
Java, you need to use setAutoCommit() and call either commit() or rollback():

// When you start the database up:​
Connection conn = [...]​
conn.setAutoCommit(true); // this is the default setting​
conn.setTransactionIsolation(
 Connection.TRANSACTION_SERIALIZABLE);​
​
// Before each collection of SQL statements which form a single​
// logical transaction. This informs JDBC that you are starting
// a multi-statement transaction:​
conn.setAutoCommit(false);​
​
// ... execute your updates and queries ...​

// Finally, decide what to do with your transaction and undo
// your transaction settings:​
conn.commit();​
// ~OR~​
conn.rollback();​
​
conn.setAutoCommit(true); // future SQL stmts will execute as
 // individual transactions

When auto-commit is set to true, each SQL statement executes in its own transaction; when
auto-commit is set to false, you can execute multiple SQL statements within a single
transaction. By default, any new connection to a DB auto-commit is set to true.

CSE 344 | 21au | Introduction to Data Management

Your executeQuery() calls will throw a SQLException if an error occurs (eg, multiple
customers try to book the same flight concurrently); ensure you handle it appropriately. For
example, assume that a SQLException is thrown when a booking attempt failed:

●​ If a seat is still available due to a temporary failure such as deadlock, the booking should
eventually go through (though you might need to retry).

●​ If no seat is available, the booking should be rolled back, etc.

The total amount of code to add transaction handling is quite small, but getting everything to
work harmoniously may take some time. Debugging transactions can be a pain, but print
statements are your friend!

Milestone 1:

Database design
Your first task is to design and add tables to your flights database based on the logical data
model described above. You can add other tables to your database as well.

Fill the provided createTables.sql file with CREATE TABLE, INSERT, and optionally any
CREATE INDEX statements needed to implement the logical data model. We will test your
implementation with a FLIGHTS table populated with HW2 data and then running your
createTables.sql, so ensure your file is runnable on SQL Azure through the Azure query
editor web interface. You do not need to include statements to create tables already in your db
(FLIGHTS, CARRIERS, WEEKDAYS, or MONTHS).

TIP: You may find it useful to write a separate .sql script file with DROP TABLE or DELETE
FROM statements; this may come in handy if you find a bug in your schema or data. Please do
not submit this.

Java customer application
Your second task is to start writing the Java application that your customers will use. To make
your life easier, we've broken down this process into 5 different steps across both milestones.
You only need to modify Query.java; do not modify FlightService.java.

We require that your application:

●​ Use unqualified table names in all of your SQL queries (e.g. SELECT * FROM
Flights instead of SELECT * FROM [dbo].[Flights]). Doing otherwise will
prevent the grading scripts from being able to run using your code.

●​ Use Prepared Statements when you execute queries that include user input.
○​ We have provided a helper method checkFlightCapacity() which uses a

prepared statement and demonstrates the way prepared statements should be

https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/PreparedStatement.html

CSE 344 | 21au | Introduction to Data Management

used (ie, creating a constant SQL string, preparing it using the
prepareStatements() method, and executing it).

●​ Write code that we can understand. For example, use descriptive variable names,
well-factored methods, and follow a consistent style (eg, the toString() method that
we provided in the Flight class).

Step 1: Implement clearTables()

Implement the clearTables() method in Query.java to clear the contents of any tables you
have created for this assignment (e.g., reservations). After calling this method, the database
should be in its initial state, ie, with the FLIGHTS table populated and createTables.sql
called. This method is used for running the test harness, where each test case assumes it has a
clean database.

Notably: do NOT drop any of your tables and do NOT modify the contents or drop the FLIGHTS
table. Any attempt to modify the Flights table will result in a huge loss in points.

clearTables() should not take more than a minute. Make sure your database schema is
designed with this in mind.​

Step 2: Implement create, login, and search

Implement the create, login and search commands in Query.java. Using mvn test, you
should now pass the provided test cases which only involve these three commands.
Specifically, you should pass:

mvn test -Dtest.cases="cases/no_transaction/search"​
mvn test -Dtest.cases="cases/no_transaction/login"​
mvn test -Dtest.cases="cases/no_transaction/create"

Or you can run all three cases using this a single command:

mvn test
-Dtest.cases="cases/no_transaction/search:cases/no_transaction/l
ogin:cases/no_transaction/create"

Step 3: Write test cases

Write at least 1 new test case for each of the three commands you just implemented. Follow the
same format as our provided test cases, and include your test files in the provided
cases/mycases/ folder alongside our provided tests.

CSE 344 | 21au | Introduction to Data Management

Using mvn test -Dtest.cases="cases/mycases" , you should now also pass your newly
created test cases.

M1 Submission

For this milestone, you should submit these 5 (or more) files to Gradescope:

●​ createTables.sql (your schema)
●​ Query.java with implemented create, login and search commands

○​ Recall that we will not implement transaction handling until M2!
●​ At least 3 new test cases (one for each command) in the cases/mycases/ folder, with

a descriptive name for each case

This milestone is worth 50 points, based on:

●​ Whether your commands pass the provided test cases
●​ Whether your new test cases pass
●​ Whether your new test cases catch errors not caught by the original test suite

Milestone 2:

Step 4: Implement book, pay, reservations, and cancel (extra credit). Add
transactions!

Implement the book, pay, and reservations commands in Query.java. For extra credit, you
may also attempt the cancel command.

While implementing and trying out these commands, you'll notice that there are problems when
multiple users try to use your service concurrently. To resolve this, you will need to implement
transactions to ensure concurrent commands do not conflict. Think carefully as to which
commands need transaction handling. Do the create, login and search commands need
transaction handling? Why or why not?

We’ve created a few test cases which might illustrate some of the issues:

mvn test -Dtest.cases="cases/no_transaction/search"​
mvn test -Dtest.cases="cases/no_transaction/pay"​
mvn test -Dtest.cases="cases/no_transaction/cancel"

As before, you can run entire an entire directory’s worth of tests:

mvn test -Dtest.cases="cases/no_transaction/"

CSE 344 | 21au | Introduction to Data Management

In contrast to M1, these commands will require the addition of transaction handling. Once you
have completed these commands with correct transactions, your program should pass all the
test cases when you execute mvn test.

Step 5: Write More (transaction) Test Cases

Write at least 1 test case for each of the 3 commands you just implemented (possibly 4
commands, if you implemented extra credit). Follow the same format as our provided test cases.

Next, write at least 1 parallel test case for each of the 7 commands. By parallel, we mean
concurrent users interfacing with your database, with each user in a seperate application
instance.

Remember that each test case file is in the following format:

[command 1]​
[command 2]​
...​
*​
[expected output line 1]​
[expected output line 2]​
...​
*​
everything following '#' is a comment on the same line

The * separates commands and their expected output. To test with multiple concurrent users,
add more [command...] * [expected output...] pairs to the file. For instance:

[command 1 for user1]​
[command 2 for user1]​
...​
*​
[expected output line 1 for user1]​
[expected output line 2 for user1]​
...​
*​
[command 1 for user2]​
[command 2 for user2]​
...​
*​
[expected output line 1 for user2]​
[expected output line 2 for user2]​
 ...​

CSE 344 | 21au | Introduction to Data Management

*

Each user will start concurrently. If there are multiple possible outputs due to transactional
behavior, separate each group of expected output with |. See
book_2UsersSameFlight.txt for an example.

As before, put your written test files in the cases/mycases/ folder. You should now pass ALL
the test cases in the cases/ folder when running mvn test -Dtest.cases="cases" - this
command recursively runs our provided test cases as well as your own.

✨🥂✨ Congratulations! ✨🥂✨ You have completed the entire flight booking application
and are ready to launch your new business :)

Document Your Design

Please describe and draw your database design as an ER diagram; it should include the tables
you added and the original 4 flights tables. Explain the design choices behind each new table
and how you decided what needed to be persisted on the database (vs what was not persisted).
Please be concise in your writeup; we expect this to be <1 page.

Save this file as writeup.pdf

M2 Submission

For this milestone, you should submit these 17 (or more) files to Gradescope:

●​ createTables.sql (your schema)
●​ Your fully-complete Query.java

○​ You will submit the same Query.java file regardless of whether you attempted the
extra credit

●​ At least 12 new test cases in the cases/mycases/ folder
○​ 6 must be serial tests, one for each command
○​ 6 must be parallel tests, one for each command
○​ If you attempted the extra credit, add 2 more test cases for the cancel method

(ie, 1 serial + 1 parallel)
●​ writeup.pdf

Overall Grading

Your grade for this homework will be worth 200 275 points, divided as:

CSE 344 | 21au | Introduction to Data Management

●​ Milestone 1 checkin (50 points)
●​ Database design + writeup (45 points)
●​ Java application (100 150 points)
●​ New test cases (20 30 points)
●​ Writeup (10 points)

Additionally, you may receive up to 25 20 points of extra credit for implementing the cancel
command.

We will be testing your implementations using the home VM.

	Homework 5 | Database Application and Transaction Management
	Resources
	Introduction
	

	Setup
	

	Homework Requirements
	Data Model
	Functional Specification
	Testing
	Transaction management

	Milestone 1:
	Database design
	Java customer application
	Step 1: Implement clearTables()
	Step 2: Implement create, login, and search
	Step 3: Write test cases
	M1 Submission

	Milestone 2:
	Step 4: Implement book, pay, reservations, and cancel (extra credit). Add transactions!
	

	Step 5: Write More (transaction) Test Cases
	Document Your Design
	M2 Submission

	Overall Grading

