
Iceberg V4 Adaptive Metadata Tree

Amogh Jahagirdar amoghj@apache.org
Ryan Blue blue@apache.org
Anoop Johnson anoop@apache.org
Daniel Weeks dweeks@apache.org

⚠ This document has been merged into this proposal .
Please refer to this other proposal and comment on that.

Background
The existing metadata structure in Iceberg consists of a manifest list as an intermediate layer
between the snapshot entry and manifest files. This manifest list provides structure and
information about the contained manifests, improving scan planning by enabling pruning based
on partition summaries (lower/upper bounds, contains null/nan). Over time, additional relevant
fields have been added to track information such as sequence numbers and row IDs.

mailto:dweeks@apache.org
https://docs.google.com/document/d/1k4x8utgh41Sn1tr98eynDKCWq035SV_f75rtNHcerVw/edit?tab=t.0#heading=h.unn922df0zzw

There are a few challenges with the current metadata tree structure:

1.​ High write latency since every write would need to produce new data files, new manifest,
a new manifest list containing the new manifest and produce a root level metadata file
which is atomically updated in the catalog. All of this is currently done serially. The high
write latency is most noticeable for single file commits and small tables.

2.​ High metadata storage footprint: the manifest lists and manifests are immutable and
rewritten when modified, and need to be retained during the time travel window.

3.​ High maintenance overhead: small writes produce small manifest files that need to be
compacted.

4.​ Column upper and lower bounds currently only exist at the manifest level, but do not
exist at higher levels in the tree for pruning.

Goals
1.)​ Reduce metadata write latency for small commits by introducing an adaptive metadata

tree structure which enables fast single file commits and a simple structure for small

tables, while being able to adapt and scale simply as the table grows so that Iceberg’s
planning performance is still retained at scale.

2.)​ Enable effective pruning at all levels in the tree by including aggregate column statistics
at all levels, considering new data types such as geospatial.

3.)​ Reduce the need to compact manifests
4.)​ Further improve planning performance by reading fewer small manifests and avoid 2

phase planning between data files and deletion vector files

Proposed Structure

Key Decisions and other Considerations
The following are key structural changes being proposed for the adaptive metadata tree in V4:

1.​ A single manifest structure will be used throughout the tree. There is a single root
manifest and there can be leaf manifests. Manifests can contain a limited set of contents
depending on if it's a root or a leaf manifest (this set will be elaborated below). This will
be a 2 level tree structure.

2.​ Leaf Manifest Deletion Vectors (DVs) will be added to reduce metadata write
amplification involved in rewriting manifests; these leaf manifest DVs can only exist in
root manifests and they express which positions in a leaf manifest are deleted. The leaf
manifest DVs may be stored inline or in a separate file.

3.​ Remove partition struct metadata for manifests and data files in favor of columnar stats
in manifest entries.

Each of these points are elaborated below.

Single Manifest Structure
A single manifest structure will be used in the proposed metadata tree structure where there are
2 levels, and there can be a single root manifest and leaf manifest. We still maintain separate
manifests for data files and DVs at the leaf level; the rationale of this organization is explained
later on. In this model, there’s no completely separate “manifest list” structure; the root manifest
is logically acting as that.

Manifest Type Allowed Content

Root ●​ Leaf Manifests
●​ Leaf Manifest DVs
●​ Data Files
●​ DVs on Data Files
●​ Equality Deletes

Leaf data manifest ●​ Data Files

Leaf delete manifest ●​ DVs
●​ Equality Deletes

Why a common manifest structure throughout the tree?
The primary advantage of having a common manifest structure is around simply code reuse at
different levels of the tree. Implementations of the Iceberg V4 spec don’t need to have
completely separate manifest list readers vs manifest readers/writers. There is the additional

complexity of managing the fact that certain types of content are allowed at different levels in the
tree, but writers can be differentiated between root/leaf and that additional complexity should not
be nearly as much as the separation of manifest and manifest list that exist today.

Why limit tree depth to 2?

The reason we propose not to have unbounded hierarchies is to prevent writers from doing
things that seem performant for writers in the short term but lead to complicated reads and
maintenance.

●​ The primary issue with not bounding the levels is that writers could keep writing a top
level manifest which references the previous top level to keep having fast writes.
However, this quickly leads to a skewed tree structure, which at scale leads to tables
becoming unreadable without a flattening of manifests.

●​ With a skewed tree, parallelism on reading metadata is essentially eliminated; manifests
would have to be read in a hierarchical order. This would be a step backwards compared
to Iceberg’s planning capabilities today

●​ Lastly, the depth of the tree can be scaled up in the future if it really ends up being
required. With clear recursive implementations, we should be always able to increase
this, but for now it seems better to start with the 2-level tree.

Leaf Manifest DVs
In this new structure, we propose adding the concept of a leaf manifest DVs which expresses
positions in a leaf manifest which are deleted. We also propose that this is inlined in binary
format since these are fairly small structures. Due to the requirement that this is a 2-level
content metadata tree, only the root manifest can have these leaf manifest DVs. There can be
at most 1 leaf manifest DV for a given leaf manifest.

New data file/DV writes will target the root manifest. Beyond a threshold for a large write, entries
in root manifest would be flushed out to leaf manifests as part of the commit. The details of this
maintenance and the scaling dynamics are elaborated more in later sections since those are
inextricably linked to how we propose data and delete manifests should be laid out with affinity.

How do we track replaced or removed leaf entries with Leaf Manifest DVs?

Here we outline how inline leaf manifest DVs will be used in different write operations to track
removed entries in leaf manifests.

Replacing DVs and Data Files

Replacing DVs on data files would first involve determining which manifests contain those DVs
and which position in those manifests that need to be marked to be deleted. The same principle

applies for replacing data files. This reading of manifests is a cost that’s already incurred for
write operations in general so there’s no additional work being done here compared to the
current state.

Once the positions to replace in the affected manifests are determined:

1.​ The new data files and DVs will be written to the root manifest
2.​ Leaf manifest DVs containing the bitmap of the manifest positions which should be

marked as removed, would be produced and written to the root.

Removing Data Files

Removing a data file contained in a leaf manifest requires removing any corresponding DV to
prevent orphans. First, the position in the leaf data manifest to mark as removed will be
determined. Then if there’s a referenced DV file for the data file, then any associated delete
manifests will need to be read to determine which position in the delete manifest will be
removed. In this case, 2 leaf manifest DVs will be produced, 1 for the data manifest and 1 for
the delete manifest. These leaf manifest DVs will be merged with any existing leaf manifest DV
for those manifests and placed in the root manifest.

Why not have inline data DVs?
Data DVs are typically much larger than leaf manifest DVs. If the bitmap is dense, the data DVs
can reach several megabytes. Since this can cause metadata bloat and out of memory issues,
they are not supported.

Affinity between Data and Delete Manifests

Iceberg currently has separate manifests for data and row-level deletes. This is a flexible writing
pattern, but the downside is that readers need to join the data manifests against delete
manifests to match the data file with the DV. To reduce the cost of the join, we propose an
affinity between data and delete manifests: a delete manifest can be affiliated to exactly one
data manifest. A data manifest can have more than one affiliated delete manifest.

Flushing the data files or DVs from the root to leaf manifests will require leaf delete manifests to
be rewritten. To reduce the write amplification, we can maintain a small number of unaffiliated
delete manifests. These unaffiliated delete manifests can be read once and broadcast.

Pros:

●​ Single-pass planning: readers can do a parallel colocated join of data and delete
manifests.

●​ Statistics-based pruning works on delete manifests: we only need to open the delete
manifests of unpruned data manifests.

●​ Low write amplification: we only need to update delete manifests while updating DVs.

Cons:

●​ Large-scale deletions with low data locality (e.g. MERGE using a UUID field) can
produce large unaffiliated delete manifests or rewrite of a large number of affiliated
delete manifests.

A variant of this approach is to do physical colocation of the data files and the DVs as separate
rows in the same leaf manifest file. The advantage is fewer manifest files and simplified
planning, as leaf manifests are self-contained. We discarded it because of the high write
amplification to replace DVs, as the data files and the statistics need to be rewritten as well.

How does planning work?

1.​ Read the root manifest to determine any leaf manifests to read as well as any applicable
data/delete files in the root manifest.

2.​ Load leaf manifest DVs for the leaf manifests to read
3.​ Leaf data manifests along with their associated delete manifests, along with any

additional unaffiliated delete manifests will be read, filtering out any manifest entries
referenced in the leaf manifest DVs or any manifest entries marked as deleted. Note that
for any leaf data and delete manifests with affinity, both manifests can be read in parallel.

Alternate approach: No affinity between data and delete manifests (Existing behavior)
Pros:

●​ Lowest write amplification.

Cons:

●​ Expensive join operation during reads.
●​ No statistics-based pruning for delete manifests.

Alternate approach: Unified Manifests: Manifest entry contains Data File, DV Pair

In this approach, we do not have the separation between data and delete manifests. Each
manifest entry has the data file and its DV.

Pros:

●​ Fast single-pass planning.

Cons:

●​ Read amplification: changing a DV requires reading the associated statistics for the data
files so that they can be copied.

●​ Write amplification: changing a DV requires copying the data files and associated
statistics.

Metadata Tree Maintenance

The data files and DVs in the root manifest will be flushed to new leaf manifests. The flushing
will be based on configurable thresholds on the maximum number of data files and DVs that can
be present in the root node: we propose separate thresholds for data files and DVs, as the
storage footprint is different. Ideally the time to do I/O on the root node should be close to the
round trip latency of cloud storage systems. Past this point, the CoW at the root level will be so
expensive relative to the size of the write and compromise any future small writes; it makes
sense to flush to a leaf manifest at this point.

If there are many small leaf manifests, periodic metadata maintenance can coalesce them to
optimize scan performance.

Proposed V4 Manifest Entry Fields

Field
ID

Name Type Required or Optional Description

0 status int with
meaning: 0:
EXISTING 1:
ADDED 2: DELETE

required Carried over from current format:
Used to track additions and
deletions of any manifest entries
including leaf manifests in the
root. Deleted entries are required
when the snapshot has a
non-null parent-id. Deletes are
not used in scans.

1 snapshot_id long optional Carried over from current format:
Snapshot ID where the file was
added, or deleted if status is 2.
Inherited when null.

134 content_type int required int with meaning:
0: DATA
1: DELETION VECTOR
2: EQUALITY DELETE
3: DATA_MANIFEST
4: DELETE_MANIFEST

Type of content stored by the data
file: data, equality deletes, or
position deletes (all v1 files are
data files). Content types 3, 4
manifest can only be defined in the
root manifest.

146 dv_content binary optional Serialized roaring bitmap of
positions in a manifest which are
deleted. Can only be defined for
content 3 or 4 in the root manifest,

else must be null.

2 content_entry Content entry
struct outlined
below

required File location with stats, etc.
Details here.

3 sequence_number long optional Carried over from current format:
Data sequence number of the
file. Inherited when null and
status is 1 (added)

Proposed V4 Manifest Key Value Metadata

Name Type Required or Optional Description

format-version string required Iceberg Table format version used
when writing the manifest

content string required Content being tracked by manifest.
Must be data, delete, or root

Note, as seen in the table we are proposing to remove the serialized schema and spec from
key/value metadata in V4 since those fields can add significant overhead without much value
considering we can always determine those from their corresponding IDs.

Proposed V4 Content Entry Struct Fields

Field ID Name Type Required or Optional Description

143 referenced_file string optional Location of data file that a DV
references if content_type is 1.

Location of affiliated data manifest
if content_type is 4 or null if
delete manifest is unaffiliated.

147 partition_spec_id int optional ID of partition spec used to write
manifest or data/delete files.

100 location string required Location of the file.

101 file_format string optional File format. Must be defined if
location is defined

103 record_count long required Number of records in this file, or
the cardinality of a DV

104 file_size_in_bytes long optional Total file size in bytes. Must be
defined if location is defined

10000 (individual
fields in column_stats
struct will have their
own IDs)

column_stats struct optional Stats struct
 Column Stats Improvements

516 min_sequence_number long optional Carry over from current format:
The minimum data sequence
number of all live data or delete
files in the manifest; use 0 when
reading v1 manifest lists. Must be
set if content_type is 3 or 4, else
null

521 manifest_stats struct optional Manifest stats struct containing
added_files_count (504),
existing_files_count (505),
deleted_files_count (506),
added_rows_count (512),
existing_rows_count (513),
deleted_rows_count (514)

Can only be set if content_type is
3 or 4

131 key_metadata binary optional Implementation-specific key
metadata for encryption

132 split_offsets list<133:
long>

optional Split offsets for the data file. For
example, all row group offsets in a
Parquet file. Must be sorted
ascending

135 equality_ids list<136:
int>

optional Field ids used to determine row
equality in equality delete files.
Required when content=2 and
should be null otherwise. Fields
with ids listed in this column must
be present in the delete file

140 sort_order_id int optional ID representing sort order for this
file

142 first_row_id long optional The _row_id for the first row in the
data file if content is 0. If content is
3, this is the starting _row_id to
assign to rows added by ADDED
data files. See First Row ID
Inheritance

https://docs.google.com/document/d/1uvbrwwAJW2TgsnoaIcwAFpjbhHkBUL5wY_24nKgtt9I/edit?tab=t.0
https://iceberg.apache.org/spec/#first-row-id-inheritance
https://iceberg.apache.org/spec/#first-row-id-inheritance

144 content_offset long optional The offset in the file where the
content starts. Only applicable for
DVs

145 content_size_in_bytes long optional The length of a referenced content
stored in the file; required if
content_offset is present.

How existing manifest List Fields map to Proposed V4 fields

Manifest list field v4 field Rationale or description

manifest_path location Shared with data_file.file_path

manifest_length file_size_in_bytes Shared with data_file.file_size_in_bytes

partition_spec_id manifest_entry.content_entry.partition_spec_id Moved to content_entry field; when filtering
based on predicates we will need to use the
partition spec when evaluating if a given
entry needs to be read or not since we will
be storing partition transform results as
derived values in stats. E.g. if a filter on ts =
“07-06-2025T12:00:00.000UTC” is specified,
and there are some entries referencing a
partition spec with a days(ts) transform, we
will need the spec ID to resolve the
transform, apply it on the predicate and see
if the entry might match.

content manifest_entry.content Content can be data files, DVs, eq deletes,
manifest references, or manifest DV
references. Manifest and manifest DV
references are only allowed in the root
manifest. DVs/eq deletes can exist in root
manifest or delete manifests. Data files can
exist in root manifest or data manifests.

sequence_number manifest_entry.sequence_number Shared with sequence_number

added_snapshot_id manifest_entry.snapshot_id Shared with snapshot_id

min_sequence_number manifest_entry.min_sequence_number Moved to manifest_entry since manifest
entries can refer to other manifests in the
root

added_files_count manifest_entry.added_files_count Moved to manifest_entry since manifest

entries can refer to other manifests in the
root

existing_files_count manifest_entry.existing_files_count Moved to manifest_entry since manifest
entries can refer to other manifests in the
root

deleted_files_count manifest_entry.deleted_files_count Moved to manifest_entry since manifest
entries can refer to other manifests in the
root

added_rows_count manifest_entry.added_rows_count Moved to manifest_entry since manifest
entries can refer to other manifests in the
root

existing_rows_count manifest_entry.existing_rows_count Moved to manifest_entry since manifest
entries can refer to other manifests in the
root

deleted_rows_count manifest_entry.deleted_rows_count Moved to manifest_entry since manifest
entries can refer to other manifests in the
root

partitions REMOVED Relocated info to column stats. General data
filtering will be performed rather than specific
partition filters
lower_bound -> lower_bound
upper_bound -> upper_bound
contains_null -> null_count
contains_nan -> nan_count

key_metadata key_metadata Shared with data_file.key_metadata

first_row_id manifest_entry.first_row_id First row ID is now set on manifest entry so it
can be shared across entries for data files
and entries which are data manifests

How existing manifest fields map to Proposed V4 fields

Manifest field v4 field Rationale or description

status manifest_entry.status

snapshot_id manifest_entry.snapshot_id

sequence_number manifest_entry.sequence_number (data sequence number)

file_sequence_number manifest_entry.file_sequence_number

manifest_entry.data_file manifest_entry.content_entry Renaming field to content_entry: since it’s
more general now. Can be data/delete files
or data/delete manifests or leaf manifest
DVs

data_file.content manifest_entry.content Moved to manifest_entry.content

data_file.file_path location Renamed, same ID

data_file.file_format file_format (Parquet, Avro, ORC, Puffin)

data_file.partition REMOVED Represented in column stats (need to
support translation for equality
deletes)Represented in column stats (need
to support translation for equality deletes)

 Partition_spec_id with new ID of 147 Added to reconstruct partition tuple

data_file.record_count record_count

data_file.file_size_in_bytes file_size_in_bytes

 metadata_size_in_bytes For estimating Puffin file overhead

data_file.column_sizes REMOVED Replaced by column stats (avg/max
uncompressed size)

data_file.value_counts REMOVED Replaced by column stats value_count

data_file.null_value_counts REMOVED Replaced by column stats null_count

data_file.nan_value_counts REMOVED Replaced by column stats nan_count
(optional)

data_file.lower_bounds REMOVED Replaced by column stats lower_bound

data_file.upper_bounds REMOVED Replaced by column stats upper_bound

data_file.key_metadata key_metadata

data_file.split_offsets split_offsets

data_file.sort_order_id sort_order_id

data_file.referenced_data_file dv.referenced_file

data_file.content_offset dv.content_offset Still needed for DVs

data_file.content_size_in_bytes dv.content_size_in_bytes Still needed for DVs

data_file.equality_ids equality_deletes.ids Carried over since we still need to be able to
express in metadata which field IDs are
stored in the delete file.

How do we remove partition stats and represent them in columnar stats?

Most partition transforms in Iceberg, such as time-based and identity transforms, are
monotonically increasing—as the underlying column value increases, so does the partition
value. This property enables effective pruning using lower and upper bound statistics for the
original field, instead of using lower and upper bounds for partition values. Pruning via column
stats can occur at the root of the tree, where these bounds represent aggregates over the
manifest’s contents, or at any layer, including data files and DVs. As a result, column
statistics-based pruning is now possible at the top level, with root manifests holding aggregated
lower and upper bounds for their referenced leaf manifests.

The notable exception to monotonically increasing transforms are bucket transformations.
Bucket transforms are non-monotonic since they are the result of a hash function modulo
buckets.

To handle non-monotonic functions, stats for derived values need to be stored to be able to
achieve the same level of pruning that exists in the current manifest list partitions field.

Another important point to preserve the pruning capabilities of identity based transforms on
strings/binary is that identity transform values stored in stats must not be truncated.

There are 2 high level approaches to representing partition values in the proposed columnar
stats representation. They can either be stored as separate top level derived column stats
structure or they can be stored as special fields within the column stats of the source column of
the transform.

Let’s take the example partition spec (identity(event_type), date(event_ts)):

a.) (Preferred) store new top level derived column stats structs for all partition transforms
except for identity transforms since identity transforms are just the columns themselves. Note, in
this model, the stats struct for data file/delete file entries may just keep the derived partition
value in the lower_bound since there’s no need to duplicate the same value in the upper_bound.
For manifests, both upper and lower bounds can be defined since a given manifest can
reference a range of partition values, and bounds can be used for pruning there.

None

As part of this approach, we propose using a global ID space for both field and partition field
IDs. This update not only streamlines the ID system but also gives us the chance to improve
metadata handling for expressions, particularly as it relates to virtual columns.

1 -> event_type field id
101 -> date(event_ts) expression field id for partition transform

1: {
 derived_value string; // for identity partitioning, never
truncated
 lower_bound string;
 upper_bound string; (upper_bound will be null for data/delete
file entries)
 value_count long;
 null_count long;
 average_uncompressed_length int;
 max_uncompressed_length int;
}

101: {
 lower_bound date;
 upper_bound date; (upper_bound will be null for data/delete
file entries)
 null_count long;
}

Pros:

●​ Given a global ID space across partition field IDs and schema field IDs, we can easily
look up the stats struct for any partition field or regular field.

●​ For data file stats, writers can just leave the upper bound as null for columns which have
an identity partition. If both lower and upper bounds are null, then the original column
must be null.

●​ Should just work for multi argument transforms since the ID is just a partition field
representing the output of the transform and the stats values are the transform value.

None

b.) Store the partition value as a field in the stats struct for all transforms which reference that
field. In this approach for data files only a singular partition value will be stored in a naming
scheme like partition_field_id_transform. Manifests would have lower/upper bounds for this
partition value.

1 -> event_type field id
2 -> event_ts field id

1: {
 lower_bound string; // if identity partitioned, this is used to
construct the partition tuple
 upper_bound string;
 value_count long;
 null_count long;
 average_uncompressed_length int; // generated for variable
length types
 max_uncompressed_length int;
}

2: {
 lower_bound timestamptz;
 upper_bound timestamptz;
 partition_1001_ts_day date; // defined for data files​
 partition_1001_ts_day_lower_bound date; // defined for
manifests
 partition_1001_ts_day_upper_bound date;
 value_count long;
 null_count long;
}

Pros:

●​ Encoding the partition field information in the source field’s stats means that we do not
need to worry about handling any collisions for IDs

Cons:

JSON

●​ It’s an open question if and how this model would work for multi-argument transforms
since in this approach the transformed value is associated with a single source field; this
representation is at odds with a multi-arg transform.

●​ Writing stats is a bit more complicated since we are differentiating between fields to write
for manifests vs data file stats

Why and how do we address having a global field ID space in V4?
Historically in the project, we’ve hit quite a few issues when it comes to partition field ID and
schema field ID overlap. Generally in implementations, partition fields start at 1000 and schema
fields start at 1. Combine this with the inherent assumption in many places where partition fields
and schema fields are different, after 1000 fields there are collisions.

It’s also important to consider ongoing work for V4 for addressing virtual columns and generated
expressions where additional expressions based on column inputs will also need to be stored in
metadata with IDs. Fundamentally, partition transforms are expressions on columns.

What we propose is introducing a new expressions field in table metadata, each with IDs that
are also part of the table field ID space. Partition specs will be made of transforms, where each
transform is associated with an expression. Having this shared field ID space will allow us to
consistently store stats for derived columns, including derived column for transforms or
any general virtual column function; the stats structs can now be keyed by these IDs.

Take the following example where the table is partitioned on day(ts) and bucket16(a, b).
Expressions will be defined for both of these transforms. The below example also demonstrates
how expressions could store

"schema": {{9,"ts", timestamp}, {11, "str", string}, {2, "a", int}, {3, "b",
int}}

Partition Spec Before V4
"partition-spec": [{"field-id": 1000, "source-id": 9, "transform":
"day", "name": "ts_day"}, {"field-id": 1001, "source-ids": [2, 3],
"transform": "bucket[16]", "name": "bucket_a_b"}

Partition Spec After V4
"partition-spec": [{"expr-id": 101}, {"expr-id": 104}]

"expressions": [

https://github.com/apache/iceberg/issues/9923#issuecomment-1987912598

JSON

 {"expr-id": 101, "expr": {"source-id": 9, "transform": "day", "name":
"ts_day"}, "partition-field-id": 1000},
 {"expr-id": 102, "expr": {"source-id": 11, "transform": "lower", "name":
"lower_str"}},
 {"expr-id": 104, "expr": {"source-ids": [2, 3], "transform": "bucket[16]",
"name": "bucket_a_b", "partition-field-id": 1001}}
]

On upgrade of a table from V3 to V4, new expressions for existing transforms for the current
partition specs must be defined (with IDs starting from max(schema field IDs + 1)); partition
specs will also be updated for each transform to have a link to its associated expression.

How do we match equality deletes to data files without partition tuples?
In the long run, if we have an effective way which allows us to remove equality deletes, then all
of the following is moot, but for now we will propose a solution under the assumption that we will
be preserving the ability to write equality deletes in V4.

Even though we propose to remove the explicitly materialized partition tuples, readers can still
derive the partition tuple from the partition spec and the columnar stats which contain the actual
values. The same indexing logic that exists today should work with modifications to derive the
partition struct from the spec + the stats stored in the equality delete.

Equality delete entry stats for the partition transform derived column will be guaranteed to have
a lower_bound for the partition value. For example, let’s take a table partitioned on
identity(event_type) and date(event_ts) and there is a file where the partition is ("commit",
06-20-2025T10:00:00.123).

 We can prove that given the equality delete stats for the transform columns and the spec itself,
we can reconstitute the partition struct back into ("commit", 06-20-2025T10:00:00.123).

Schema: <event_type 1: string, event_ts 2: timestamptz>
Partitioning: (identity(1), date(event_ts))

// Column stats for event_type

event_type {

 lower_bound string= "commit";
 ...
}

// Derived Column stats for date transform on event_ts​
date_event_ts {
 lower_bound date = 06-20-2025
 ...
}

If there’s an equality delete on some records where partition is equal to “commit” and the day
transform is 06-20-2025, presuming the sequence number is greater than a given data file(s),
we will be able to determine that the equality delete must be indeed be applied as we already
do.

V4 Upgrade Path
After upgrading to V4, older style manifest lists/manifests will co-exist with the new proposed
structure.
We should be able to support an upgrade which does not require rewriting older manifest
lists/manifests.
On upgrade, a new table metadata json would be written out including all the above proposed
changes for modeling partition transforms as expressions. On any subsequent write, a new root
manifest would be produced with whatever new data/delete files produced from the write and
the older style manifests would be referenced as leaf manifests. Over time, the older manifests
can age out and would be cleaned up as part of snapshot expiration. Users that want to eagerly
move older manifests into the newer structure to get the benefits could run a rewrite manifest
operation to produce columnar manifests with the new representation.

Questions
1.​ Do we need to allow non-inline leaf manifest DVs in the root manifest? Assuming 5%

density, a one-million entry bitmap would require a 100KB roaring bitmap. If we only
allow inline leaf manifest DVs these roaring bitmaps will need to be copied around for
every commit.

a.​ Related to this, are inline leaf manifestDVs going to be required to be
compressed? Will need to run some tests to figure out the metadata storage size
vs compression/decompression overhead tradeoffs.

Discarded Alternatives
1.)​ Buffering changes to the metadata.json itself. Instead of a root level manifest, writers

would write new file references to metadata.json in some field. This was discarded
because having potentially unbounded content in the metadata.json is risky for the
following reasons:

a.)​ Metadata.json would essentially grow as the table data grows. Of course this can
always be flushed and cleaned, but this is additional table maintenance burden
that we want to move away from

b.)​ Catalog load table latency would be variable depending on the size of the file
which we’ve generally strayed away from

​ All in all, it seems the best to keep the root level metadata.json independent of the
underlying table metadata/data size.

Next Steps
1.​ If there’s general agreement, start working on a prototype and collecting numbers

around when we should flush to leaf manifests so that we have a sane set of defaults
from the beginning.

Appendix

References
●​ Column Stats Improvements

https://docs.google.com/document/d/1uvbrwwAJW2TgsnoaIcwAFpjbhHkBUL5wY_24nKgtt9I/edit?tab=t.0

	Iceberg V4 Adaptive Metadata Tree
	Background
	Goals

	Proposed Structure
	Key Decisions and other Considerations
	Single Manifest Structure
	Why a common manifest structure throughout the tree?
	Why limit tree depth to 2?
	Leaf Manifest DVs
	How do we track replaced or removed leaf entries with Leaf Manifest DVs?
	Replacing DVs and Data Files
	Removing Data Files

	Why not have inline data DVs?

	Affinity between Data and Delete Manifests
	How does planning work?
	Alternate approach: No affinity between data and delete manifests (Existing behavior)
	Alternate approach: Unified Manifests: Manifest entry contains Data File, DV Pair

	Metadata Tree Maintenance
	Proposed V4 Manifest Entry Fields
	Proposed V4 Manifest Key Value Metadata
	Proposed V4 Content Entry Struct Fields
	How existing manifest List Fields map to Proposed V4 fields
	How existing manifest fields map to Proposed V4 fields

	How do we remove partition stats and represent them in columnar stats?
	Why and how do we address having a global field ID space in V4?
	How do we match equality deletes to data files without partition tuples?
	V4 Upgrade Path

	Questions
	Discarded Alternatives
	Next Steps
	Appendix
	References

