Transcription Answer Sheet

 How many possible triplet codes can be generated from these four base let 	 Hov 	w manv	possible tri	iplet codes	can be	generated	from th	hese fou	r base	letter	s?
---	-------------------------	--------	--------------	-------------	--------	-----------	---------	----------	--------	--------	----

- 2. Given that there are more possible combinations for amino acids than amino acids themselves, what does this imply about the number of codes for each amino acid?
- 3. Why can't DNA leave the nucleus?

- 4. Compare the foam DNA and mRNA pieces. Identify any similarities and differences in the bases that comprise each nucleic acid.
- 6. Complete the following chart by matching the correct RNA complementary base to the DNA base:

DNA Base	RNA Base
Т	
G	
А	
С	
А	

7. Fill in the correct base pairs in the template strand below and build the DNA template strand. Keep in mind that DNA is sythesized from its $5' \rightarrow 3'$ end.

8. Recalling the lesson on DNA structure, identify the type of bond that holds the two strands of DNA together.

10. Label the DNA **template strand** and **non-template strand** in the photo left.

- 12. What $3' \rightarrow 5'$ DNA code functions as the start signal or initiation codon?
- 13. What is the mRNA complementary codon?
- 14. Using your mRNA model, record the correct sequence of mRNA base pairs: