AgentSchedulingGroupHost per
Sitelnstance

domfarolino@
Bug: crbug.com/1149830

Background

Design: 1:1 with Sitelnstance
Parameterizing the flag
Changing the AgentSchedulingGroupHost Allocation Model
Checking & Adding Entries

Integrating With Shut Down Flow
Alternative Design: Ref Counting the AgentSchedulingGroupHost

Background

Currently AgentSchedulingGroupHost is owned by RenderProcessHostimpl's |user_data_|
map [cs]. The UserData owns a single AgentSchedulingGroupHost, therefore
AgentSchedulingGroupHost is 1:1 with RenderProcessHost, and multiple Sitelnstances may
share the same AgentSchedulingGroupHost on platforms where they share the same
RenderProcessHost (i.e., where Sitelsolation is not fully enabled).

Configuring AgentSchedulingGroupHost to be 1:1 with RenderProcessHostimpl is the best
way to isolate potential IPC & mojo ordering issues that are introduced by “MBI” mode,
which dissociates the AgentSchedulingGroupHost interface/legacy IPC channel from the
process-global legacy IPC channel.

https://bugs.chromium.org/p/chromium/issues/detail?id=1149830
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/renderer_host/agent_scheduling_group_host.cc;l=147-150;drc=f38b35b826dbcaceebe08d7b9af2c62546156e14

RenderProcessHostimpl

AgentSchedulingGroupHost

Sitelnstance Sitelnstance Sitelnstance Sitelnstance

This nicely ties the lifetime of an AgentSchedulingGroupHost to its associated
RenderProcessHostimpl. The AgentSchedulingGroupHost is destructed when the
RenderProcessHostimpl is destroyed (asynchronously [cs]), as this is when its
|user_data_| map is destroyed.

Design: 1:1 with Sitelnstance

This is currently being implemented in CL 2536756.

While the above (current) configuration is ideal for isolating potential scheduling issues, we
want to implement a mode where AgentSchedulingGroupHost is 1:1 with Sitelnstance, to
support more granular per-AgentCluster scheduling (especially where Site Isolation isn't
fully enabled). In order to do this, we'll need to allocate an AgentSchedulingGroupHost per
Sitelnstance, and associate each one of them with the process host.

Parameterizing the flag

Currently we have a flag [cs] that essentially amounts to turning on MBI mode when
enabled, or reverting back to the “legacy” pre-MBI mode when disabled. When enabled,
MBI mode simply disassociates the AgentSchedulingGroupHost interface from the
process-global legacy IPC channel. The AgentShedulingGroup communication is effectively
scheduled independently.

https://source.chromium.org/chromium/chromium/src/+/master:content/browser/renderer_host/render_process_host_impl.cc;l=3835;drc=a44fcb321ea308b8f8d2227190a99c6cca2b79e6
https://chromium-review.googlesource.com/c/chromium/src/+/2536756
https://source.chromium.org/chromium/chromium/src/+/master:content/public/common/content_features.h;l=89;drc=a156776c0dbb8024940debb4c69b78ca7be37916

MBI mode is still limited to one AgentSchedulingGroupHost per RenderProcessHostimpl, so
we'll need to parameterize the flag to allow the following configurations:

1. Disabled: Legacy

2. Enabled: AgentSchedulingGroupHost-per-RenderProcessHostimpl

3. Enabled: AgentSchedulingGroupHost-per-Sitelnstance [NEW]

Changing the AgentSchedulingGroupHost Allocation Model

Currently RenderProcessHost owns an AgentSchedulingGroupHost indirectly, via
base::SupportsUserData. The AgentSekedutrgGroupHostUserData [cs] is a class holding a
single std: :unique_ptr<AgentSchedulingGrouphost>. This pointer is populated once per
RenderProcessHostimpl the first time a Sitelnstance calls

AgentSchedulingGroupHost: :Get (). The AgentSchedulingGroupHost then simply
early-returned for all subsequent calls:

AgentSchedulingGroupHost* AgentSchedulingGroupHost: :Get() {
if (RPHIUserData(kAgentSchedulingGroupHost))
return RPHIUserData(kAgentSchedulingGroupHost)->asgh();

// The user data doesn’t exist, so we have to:

// 1.) Create it

// 2.) Create a new AgentSchedulingGroupHost (user data will own it)
auto new_user_data = new ASGUserData(new AgentSchedulingGroupHost());
return new_user_data->asgh();

};

Instead of having AgentSchedulingGroupHostUserData hold a single

std: :unique_ptr<AgentSchedulingGrouphost>, | propose maintaining a
std::set<std: :unique_ptr<AgentSchedulingGroupHost>>, one host for each
Sitelnstance:

class AgentSchedulingGroupHostUserData : base::SupportsUserData::Data {
std: :set<std: :unique_ptr<AgentSchedulingGroupHost>> owned host _set ;
#if DCHECK_IS_ON()
std: :set<const SiteInstance*> host_set_;
#endif

};

Whenever an AgentSchedulingGroupHost is created, regardless of the MBI mode
parameter state, it always gets inserted into and owned by the |owned_host_set_|.

https://source.chromium.org/chromium/chromium/src/+/master:content/browser/renderer_host/agent_scheduling_group_host.cc;l=38;drc=57e1d8ff304b693524dc89cc98ab2ad4f7c5c72f

Therefore the lifetime of an AgentSchedulingGroupHost will still be tied to its
RenderProcessHost.

In AgentSchedulingGroup-per-RenderProcessHost mode, this makes things simple since
we still have a single AgentSchedulingGroupHost owned by the RenderProcessHost, that
outlives all associated Sitelnstances, and goes away when the RenderProcessHost is
destroyed.

In AgentSchedulingGroup-per-Sitelnstace mode, this creates a “leak” when a
Sitelnstance goes away before the RenderProcessHost. This is because the
AgentSchedulingGroupHost will still be kept alive by the RenderProcessHost, and therefore
the renderer-side AgentSchedulingGroup will still be alive, though never used from then
on. kouhei@ is investigating the non-trivial AgentSchedulingGroup shutdown sequence to
avoid this leak, and properly kill the renderer-side objects. Note that experimenting in
Canary/Dev is absolutely blocked on finishing the AgentSchedulingGroup shutdown flow
and getting rid of this “leak”. See the Integrating With Shut Down Flow section for details on
this.

When the MBI mode parameter is in the AgentSchedulingGroup-per-Sitelnstance state and
DCHECK_IS_ON(), we'll also maintain the |host_set_| data structure solely to maintain
invariants. The section below covers this.

Checking & Adding Entries

Before this change, we queried the AgentSchedulingGroupHostUserData [cs] to see if the
one AgentSchedulingGroupHost associated with the RenderProcessHost was available. If
so, we return it. If not, we create it once.

After this change in MBI AgentSchedulingGroup-per-Sitelnstance mode, whenever
Sitelnstance queries AgentShedulingGroupHost::Get() to get a new
AgentSchedulingGroupHost, we perform the following steps:

1. If DCHECK is on: DCHECK that no entry for the given Sitelnstance already exists in the

|host_set_|
a. Thisis important, because a Sitelnstance should never request multiple
AgentSchedulingGroupHosts from the same RenderProcessHost. The |host_map_| protects
this invariant

2. Create a new AgentSchedulingGroupHost
3. Insertitinto the |owned_host_set_ | as usual
4. If DCHECK is on: Insert the requesting Sitelnstance into the |host_set_|

https://source.chromium.org/chromium/chromium/src/+/master:content/browser/renderer_host/agent_scheduling_group_host.cc;l=38;drc=57e1d8ff304b693524dc89cc98ab2ad4f7c5c72f

5. Return the AgentSchedulingGroupHost to the requesting Sitelnstance

RenderProcessHostimpl

AgentScheduling AgentScheduling AgentScheduling

GroupHost GroupHost GroupHost
Rl A »
P : \ \
| 3
/ I N
Sitelnstance Sitelnstance Sitelnstance

This provides us with a way to know when to create new AgentSchedulingGroupHosts (and
thus remotely AgentSchedulingGroups) based on the Sitelnstance. Removing
AgentSchedulingGroupHosts from the UserData and destroying them at the right time
depend on the full shutdown flow being investigated by kouhei@. See the section below.

After this change in MBI AgentSchedulingGroup-per-RenderProcessHost mode, multiple
Sitelnstances may query AgentSchedulingGroupHost::Get() to get an
AgentSchedulingGroupHost. This method will always return the same
AgentSchedulingGroupHost to all requesting Sitelnstances under the same
RenderProcessHost. The flow will look like this:

1. If there are no entries in the |owned_host_set_|, create a new

AgentSchedulingGroupHost and insert it into the set
2. DCHECK that there is at most one entry in the set
3. Return the single entry in the set

Basically not much has changed in this front.

Integrating With Shut Down Flow

As mentioned above, having the AgentSchedulingGroupHost lifetime tied to
RenderProcessHost maintains the simplicity that we currently have, but creates a “leak” for
when Sitelnstances are destroyed.

When a Sitelnstance gets destroyed, we must:
e Notify the renderer-side AgentSchedulingGroup object to delete itself, or else we
essentially leak the object, as it will never be used again.
e Remove the relevant entry from the AgentSchedulingGroupHostUserData data
structures when the host can safely be deleted.

A proper shut down flow will address both points above, but is very non-trivial. kouhei@
has been investigating this [design doc, prototype CL].

Experimenting with AgentSchedulingGroupHost-per-Sitelnstance on even Canary/Dev is
absolutely blocked on correctly solving the shutdown sequence that kouhei@ is exploring.
However we don't believe that it strictly blocks implementing
AgentSchedulingGroup-per-Sitelnstance in general, since all of the work is behind a flag.
Additionally, landing an implementation with this will help us:

e Setup a custom trybot with the MBI flag enabled in various configurations, so we

can quantify how many things are broken
e Locally test and investigate breakages on real-world sites and tests

Hence we propose to implement AgentSchedulingGroup-per-Sitelnstance while
maintaining the “too-long” lifetime logic. The implementation of a proper shutdown flow
will correct and solidify the lifetime problem, while not blocking the progress here.

Alternative Design: Ref Counting the
AgentSchedulingGroupHost

This approach has to do with making AgentSchedulingGroupHost a ref-counted class (via
base: :RefCounted); it came out of a quick discussion between domfarolino@ and talp@.
The idea is that the AgentSchedulingGroupHostUserData class would hold a map like so:

{SiteInstance* = scoped_refptr<AgentSchedulingGroupHost>}

Since we may have multiple Sitelnstances referencing the same
AgentSchedulingGroupHost, this allows us to populate a single UserData data structure
with as many Sitelntsance/AgentSchedulingGroupHost pairs as come up. However, after
conversation with kouhei@ about the shutdown flow, domfarolino@ is convinced that this
is not the right design to go with, at least at this time.

https://docs.google.com/document/d/1cN9PvaUayz7m4tDRI-DFa-9RDgJHw9zpIARZLD3WuI8/edit
https://docs.google.com/document/d/1cN9PvaUayz7m4tDRI-DFa-9RDgJHw9zpIARZLD3WuI8/edit

It attempts to solve two problems at once:
1. The entire shutdown flow, by tying the lifetime of AgentSchedulingGroupHost to
Sitelnstance
2. The ability to support AgentSchedulingGroup-per-Sitelnstance

For problem (1), after discussing with kouehi@, it seems reasonable to try and tie the
lifetime of AgentSchedulingGroupHost with the frames and R*Host objects that reference it
via IPC::Listener routes. Given this, it makes sense to solve the two problems separately.

	AgentSchedulingGroupHost per SiteInstance
	Background
	Design: 1:1 with SiteInstance
	Parameterizing the flag
	Changing the AgentSchedulingGroupHost Allocation Model
	Checking & Adding Entries

	Integrating With Shut Down Flow
	Alternative Design: Ref Counting the AgentSchedulingGroupHost

