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1 Goal  
The code provided in DesignProblem01 simulates the 2D dynamics of a simplified 
powered descent vehicle for delivering a payload on Martian surface. The descent and 
landing phase of such a vehicle involves using onboard thrusters to reduce velocity and 
establish an upright position to hover above the ground, followed by employing a crane 
mechanism to safely deploy the payload onto the ground.  

Our idealized delivery vehicle has two thrusters that can apply thrust to control the 
motion in three degrees of freedom: horizontal motion, vertical motion, and rotation. It 
also has sensors—e.g., an inertial measurement unit (IMU), a radar, and/or an optical 
flow sensor—that can be used to estimate the vehicle’s altitude and horizontal position, 
horizontal and vertical velocities, orientation, and angular velocity. The powered descent 
starts at some initial altitude and orientation. The goal is to achieve a particular state that 
is ideal for satisfying the mission requirements.  

2 Model  
A free body diagram of the forces acting on the vehicle are given in the problem 
statement. The sky crane—which we are not attempting to control—has a maximum 
reach of 40 meters. Activating the sky crane mechanism when the vehicle is not 
stationary or too close to the ground could lead to instabilities in the system and damage 
the payload. We assume that the ground is flat, and the ground frame of reference is 
outlined in the problem statement.  

3 Requirements  

3.1 System Equations of Motion  
Equations of motion as derived from the model (with respect to ground frame of 
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Expressing these equations as a system of first order ODEs:  
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3.2 State 
Variables and 
Desired State �  
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Based on the mission requirements, the desired states are defined as:  
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Note: xe was not directly specified so I chose 250 as my equilibrium x-position.  

3.3 Linearization  
In order to express my model in standard state-space form, I needed to linearize the 

system: s˙ = As + Bu  

y = Cs + Du where,  
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3.4 Zero Input System  
For zero input on the linearized model, the equation ˙s = As+Bu becomes ˙s = As. 
Further more, A has 6 eigenvalues all equaling 0, meaning the system is not 
asymptotically stable. All eigenvalues need to be negative for the system to be 
asymptotically stable.  

 
Figure 1: It can be observed from this plot that when zero input is applied to the 
linearized model, the system is not asymptotically stable, namely z (in yellow) and x (in 
blue).  



 
Figure 2: It can be observed from this plot that when zero input is applied to the 
non-linear model, the system is still not asymptotically stable, namely z (in red) and x (in 
blue).  
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3.5 State Feedback System  
For a state feedback system, the equation ˙s = As + Bu becomes ˙s = (A − BK)s when 
the controller u = −Ks is implemented, where  

K=  
 −124 −1412 124 627 12820 

2103 −145 −1739 129 637 
18074 9877 
   

Note: this is just one 
possible choice for K  

Using this K, the eigenvalues of (A − BK) are all negative, meaning this system is asymp 
totically stable.  



 
Figure 3: When a controller that applies state feedback is applied to the linearized 
model, the resulting system is indeed asymptotically stable. All values (x=blue, ˙x=red, 

z=yellow, z˙=purple, θ=green, 
˙θ=light blue) converge to zero.  

 
Figure 4: When the same controller that applies state feedback is applied to the 
non-linear model, the resulting system is not asymptotically stable.  
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3.6 Comparing Linearized Model and Nonlinear Simulation  
For the zero input plots, the linearized model shows that z decreases linearly, i.e. ˙z is 
constant. However, in the nonlinear simulation, ˙z decreases over time, meaning z 
decreases non-linearly. This suggests that the linear model with zero input doesn’t 
properly account for gravity, while the nonlinear simulation does. Also, the linearized 
model plot shows that x decreases non-linearly while in the nonlinear simulation ˙x stays 
constant at its initial value.  



For the state feedback plots, the linearized model shows that all values converge to 0. 

However, in the nonlinear simulation plots, no values converge to 0, besides 
˙θ. This 

difference is largely due to the fact that there is a maximum thrust value inputted into 
the simulation. Once the controller wants to use more than this maximum thrust value, 
the system will still use the maximum thrust value. As the vehicle gets further away from 
its equilibrium point, it wants to use more thrust but can’t. This cycle continues and the 
vehicle will never reach the desired equilibrium.  
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