АННОТАЦИЯ К ПРОГРАММЕ АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Рабочие программы базового и углублённого уровней по алгебре и началам математического анализа для среднего общего образования разработаны на основе Фундаментального ядра содержания общего образования и в соответствии с требованиями ФГОС к структуре и результатам освоения основных образовательных программ среднего общего образования. В них соблюдается преемственность с примерной рабочей программой основного общего образования.

Практическая значимость школьного курса алгебры и начал математического анализа обусловлена тем, что его объектами являются фундаментальные структуры и количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Курс алгебры и начал математического анализа является одним из опорных курсов старшей школы: он обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления учащихся при изучении алгебры и начал математического анализа способствует усвоению предметов гуманитарного цикла. Практические умения и навыки математического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении математических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры и начал математического анализа в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности, воображения, математика развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение курса алгебры и начал математического анализа существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При обучении алгебре и началам математического анализа формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры и начал математического анализа является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в математике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым курс алгебры и начал математического анализа занимает ведущее место в формировании научно-теоретического

мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию математических форм, математика тем самым вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает их пространственные представления.

В соответствии с принятой Концепцией развития математического образования в Российской Федерации математическое образование должно решать, в частности, следующие ключевые задачи:

- предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе;
- обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др.;
- предусматривает в основном общем и среднем общем образовании подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования.

Соответственно выделяются три направления требований к результатам математического образования:

- 1. Практико-ориентированное математическое образование (математика для жизни).
- 2. Математика для использования в профессии, не связанной с математикой.
- 3. Творческое направление, на которое нацелены обучающиеся, планирующие заниматься творческой и исследовательской работой в области математики, физики, экономики и других областях.

В соответствии с требованиями в программах выделены два уровня: базовый и углублённый.

Цели освоения программы базового уровня — обеспечение возможности использования математических знаний и умений в повседневной жизни и возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики.

Программа углублённого уровня предназначена для профильного изучения математики. При выполнении этой программы предъявляются требования, соответствующие направлению «математика для профессиональной деятельности». Вместе с тем выпускник получает возможность изучить математику на гораздо более высоком уровне, что создаст фундамент для дальнейшего серьёзного изучения математики в вузе.

Рабочая программа составлена на основе:

- Федеральный государственный образовательный стандарт среднего общего образования (утв. приказом Министерства образования и науки РФ от 17 мая 2012 г. N 413):
- основной образовательной программы среднего общего образования (10-11 классы) на 2018-2020 уч. г;
- УМК: Алгебра и начала математического анализа. 10-11 классы.: учеб. для общеобразоват. организаций: базовый и углубленный уровень / Ш..А. Алимов, Ю.М. Колягин, М.В. Колягин, М.В. Ткачёва и др. М.: Просвещение, 2018.
- УМК: Геометрия. 10-11 классы.: учеб. для общеобразоват. организаций: базовый и углубленный уровень / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Коломцев и др. М.: Просвещение, 2016.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Математическое образование играет важную роль и в практической, и в духовной жизни общества. Практическая сторона связана с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, духовная сторона — с интеллектуальным развитием человека, формированием характера и общей культуры.

Без конкретных знаний по алгебре и началам математического анализа затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Изучение данного курса завершает формирование *ценностно-смысловых установок и ориентаций* учащихся в отношении математических знаний и проблем их использования в рамках среднего общего образования. Курс способствует формированию умения видеть и понимать их значимость для каждого человека независимо от его профессиональной деятельности; умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определённой системой ценностей.

Без базовой математической подготовки невозможно представить образование современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. Реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и по алгебре и началам математического анализа.

Для жизни в современном обществе важным является формирование математического стиля мышления. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Алгебре и началам математического анализа принадлежит ведущая роль в формировании алгоритмического мышления, воспитании умений действовать по заданному алгоритму. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение алгебре и началам математического анализа даёт возможность развивать у учащихся точную, лаконичную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства, т. е. способствует формированию *коммуникативной культуры*, в том числе умению ясно, логично, точно и последовательно излагать свою точку зрения, использовать языковые средства, адекватные обсуждаемой проблеме.

Дальнейшее развитие приобретут и *познавательные действия*. Учащиеся глубже осознают основные особенности математики как формы человеческого познания, научного метода познания природы, а также возможные сферы и границы её применения.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимыми компонентами общей культуры являются знакомство с методами познания действительности, представление о методах математики, их отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения прикладных задач. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений.

В результате целенаправленной учебной деятельности, осуществляемой в формах учебного исследования, учебного проекта, получит дальнейшее развитие способность к информационно-поисковой деятельности: самостоятельному отбору источников

информации в соответствии с поставленными целями и задачами. Учащиеся научатся систематизировать информацию по заданным признакам, критически оценивать и интерпретировать информацию. Изучение курса будет способствовать развитию *ИКТ-компетентности* учащихся.

Получит дальнейшее развитие способность к *самоорганизации* и *саморегуляции*. Учащиеся получат опыт успешной, целенаправленной и результативной учебно-предпрофессиональной деятельности; освоят на практическом уровне умение планировать свою деятельность и управлять ею во времени; использовать ресурсные возможности для достижения целей; осуществлять выбор конструктивных стратегий в трудных ситуациях; самостоятельно реализовывать, контролировать и осуществлять коррекцию учебной и познавательной деятельности на основе предварительного планирования и обратной связи, получаемой от педагогов.

Содержательной основой и главным средством формирования и развития всех указанных способностей служит целенаправленный отбор учебного материала, который ведётся на основе принципов *научности* и *фундаментальности*, *историзма*, *доступности* и *непрерывности*, *щелостности* и *системности* математического образования, его *связи с техникой*, *технологией*, *жизнью*.

Содержание курса алгебры и начал математического анализа формируется на основе Фундаментального ядра школьного математического образования. Оно представлено в виле совокупности содержательных линий, раскрывающих наполнение Фундаментального ядра школьного математического образования применительно к старшей школе. Программа регламентирует объём материала, обязательного для изучения, но не задаёт распределения его по классам. Поэтому содержание данного курса включает «Математический следующие разделы: «Алгебра», анализ», «Вероятность статистика».

Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач окружающей реальности. Продолжается изучение многочленов с целыми коэффициентами, методов нахождения их рациональных корней. Происходит развитие и завершение базовых знаний о числе. Основное назначение этих вопросов связано с повышением общей математической подготовки учащихся, освоением простых и эффективных приёмов решения алгебраических задач.

представлен «Математический анализ» тремя «Элементарные функции», «Производная» и «Интеграл». Содержание этого раздела нацелено на получение школьниками конкретных знаний о функции как важнейшей модели описания и исследования разнообразных реальных процессов. Изучение степенных, показательных, логарифмических и тригонометрических функций продолжает знакомство учащихся с основными элементарными функциями, начатое в основной школе. Помимо овладения непосредственными умениями решать соответствующие уравнения и неравенства, у учащихся формируется запас геометрических представлений, лежащих в основе объяснения правомерности стандартных и эвристических приёмов решения задач. Темы «Производная» и «Интеграл» содержат традиционно трудные вопросы для школьников, даже для тех, кто выбрал изучение математики на углублённом уровне, поэтому их изложение предполагает опору на геометрическую наглядность и на естественную интуицию учащихся более, чем на строгие определения. Тем не менее, знакомство с этим материалом даёт представление учащимся об общих идеях и методах математической науки.

При изучении раздела «Вероятность и статистика» рассматриваются различные математические модели, позволяющие измерять и сравнивать вероятности различных событий, делать выводы и прогнозы. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей. К этому разделу относятся

также сведения из логики, комбинаторики и теории графов, значительно варьирующиеся в зависимости от типа программы.

МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

На сегодняшний день, в соответствии с Базисным учебным планом, на изучение математики на базовом уровне в 10, 11 классах отводится 4 часов в неделю, соответственно - 136 часов в год. При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре, математическому анализу, геометрии. Алгебра 2,5 часа в неделю, 85 часов в год, геометрия 1,5 часа в неделю 51 час в год.

Согласно учебному плану школы для изучения математики на углубленном уровне в 10, 11 классах отводится 6 часов в неделю, соответственно - 204 часа в год. При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре, математическому анализу, геометрии. Алгебра 4 часа в неделю, геометрия 2 часа в неделю.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АЛГЕБРЫ И НАЧАЛ МАТЕМАТИЧЕСКОГО АНАЛИЗА

Личностные результаты:

- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию;
- готовность и способность обучающихся к саморазвитию и самовоспитанию;
- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств);
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.
- уважение ко всем формам собственности, готовность к защите своей собственности,
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;

- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Метапредметные результаты:

В соответствии с ФГОС СОО выделяются три группы метапредметных универсальных учебных действий: регулятивные, познавательные, коммуникативные:

Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

Познавательные универсальные учебные действия

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности.

Коммуникативные универсальные учебные действия

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);

- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений

Предметные результаты:

Базовый уровень

Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики выпускник **научится**

Элементы теории множеств и математической логики

- Оперировать понятиями: конечное множество, бесконечное множество, числовые множества на координатной прямой, элемент множества, подмножество, пересечение и объединение множеств, отрезок, интервал;
- находить пересечение и объединение двух множеств, представленных графически на числовой прямой;
- строить на числовой прямой подмножество числового множества, заданное простейшими условиями;
- оперировать понятиями: утверждение (высказывание), отрицание утверждения, истинные и ложные утверждения, следствие, частный случай общего утверждения, контрпример;
- распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров.

В повседневной жизни и при изучении других учебных предметов:

• использовать числовые множества на координатной прямой.

Числа и выражения

- Оперировать понятиями: натуральное и целое число, делимость чисел, обыкновенная дробь;
- десятичная дробь, рациональное число, иррациональное число, приближённое значение числа, часть, доля, отношение процент, масштаб;
- оперировать понятиями: логарифм числа, тригонометрическая окружность, градусная мера угла, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;
- выполнять арифметические действия с целыми и рациональными числами, сочетая устные и письменные приёмы, применяя при необходимости вычислительные устройства;
- сравнивать рациональные числа между собой; сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;
- выполнять несложные преобразования числовых выражений, содержащих степени чисел, корни из чисел, логарифмы чисел.
- пользоваться оценкой и прикидкой при практических расчётах;
- изображать точками на координатной прямой целые и рациональные числа; целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;
- выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;

- выражать в простейших случаях из равенства одну переменную через другие;
- вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
- изображать схематически угол, величина которого выражена в градусах или радианах;
- оценивать знаки синуса, косинуса, тангенса.

В повседневной жизни и при изучении других учебных предметов:

- выполнять действия с числовыми данными при решении задач практического характера, используя при необходимости справочные материалы и вычислительные устройства;
- соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;
- использовать методы округления и прикидки при решении практических задач повседневной жизни.

Уравнения и неравенства

- Решать линейные уравнения и неравенства, квадратные уравнения;
- решать логарифмические и показательные уравнения вида $\log a(bx+c) = d$, abx+c=d (где d можно представить в виде степени с основанием a) и неравенства вида $\log a \ x < d$, ax < d (где d можно представить в виде степени с основанием a);
- приводить несколько примеров корней тригонометрического уравнения вида $\sin x = a$, $\cos x = a$, $\tan x = a$, $\cot x = a$, \cot

В повседневной жизни и при изучении других учебных предметов:

• составлять и решать уравнения, системы уравнений *и неравенства* при решении несложных практических задач.

Функции

- Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание и убывание функции на числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период, чётная и нечётная функции;
- оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
- распознавать графики функций прямой и обратной пропорциональности, линейной, квадратичной, логарифмической, показательной и тригонометрических функций и соотносить их с формулами, которыми они заданы;
- находить по графику приближённо значения функции в заданных точках;
- определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т. п.);
- строить эскиз графика функции, удовлетворяющей приведённому набору условий (промежутки возрастания и убывания)

В повседневной жизни и при изучении других учебных предметов:

• определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства, асимптоты, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;

Элементы математического анализа

• Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;

- определять значение производной функции в точке по изображению касательной к графику, проведённой в этой точке;
- решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции с другой.

В повседневной жизни и при изучении других учебных предметов:

- пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т. п.) или скорости убывания (падения, снижения, уменьшения и т. п.) величин в реальных процессах;
- соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т. п.);
- использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса

Статистика и теория вероятностей, логика и комбинаторика

- Оперировать основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
- оперировать понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
- вычислять вероятности событий на основе подсчёта числа исходов.

В повседневной жизни и при изучении других предметов:

- оценивать, сравнивать в простых случаях вероятности событий в реальной жизни;
- читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков;
- выбирать подходящие методы представления и обработки данных.

Текстовые задачи

- Решать несложные текстовые задачи разных типов;
- анализировать условие задачи, строить для её решения математическую модель;
- понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;
- действовать по алгоритму, содержащемуся в условии задачи;
- использовать логические рассуждения при решении задачи;
- работать с избыточными условиями, выбирая из всей информации данные, необходимые для решения задачи;
- осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;
- анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
- решать задачи на расчёт стоимости покупок, услуг, поездок и т. п.;
- решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;
- решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;
- решать практические задачи, требующие использования отрицательных чисел: на определение температуры, положения на временной оси (до нашей эры и после), глубины/высоты, на движение денежных средств (приход/расход) и т. п.;
- использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т. п;

История и методы математики

- Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России;
- применять известные методы при решении стандартных математических задач;
- замечать и характеризовать математические закономерности в окружающей действительности;

Углублённый уровень

Для успешного продолжения образования по специальностям, связанным с прикладным использованием математики), выпускник **научится**

Элементы теории множеств и математической логики

- Свободно оперировать понятиями: множество, пустое, конечное и бесконечное множества, элемент множества, подмножество, пересечение, объединение и разность множеств;
- применять числовые множества на координатной прямой: отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
- находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
- знать определение понятия, знать и уметь доказывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач;
- задавать множества перечислением и характеристическим свойством;
- оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
- проводить доказательные рассуждения для обоснования истинности утверждений;.

В повседневной жизни и при изучении других предметов:

- использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
- проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов;

Числа и выражения

- Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, корень степени п, действительное число, множество иррациональное число, действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
- доказывать и использовать признаки делимости, суммы и произведения при выполнении
 вычислений и решении задач;
- выполнять округление рациональных и иррациональных чисел с заданной точностью;
- сравнивать действительные числа разными способами;

- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше второй;
- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;
- выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений;

В повседневной жизни и при изучении других предметов:

- выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближённых вычислений, используя разные способы сравнений;
- записывать, сравнивать, округлять числовые данные;
- использовать реальные величины в разных системах измерения;
- составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

- Свободно оперировать понятиями: уравнение; неравенство; равносильные уравнения и неравенства; уравнение, являющееся следствием другого уравнения; уравнения, равносильные на множестве; равносильные преобразования уравнений;
- решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения третьей и четвёртой степеней, дробно-рациональные и иррациональные;
- овладеть основными типами показательных, логарифмических, иррациональных, степенных, тригонометрических уравнений и неравенств и стандартными методами их решений и применять их при решении задач;
- применять теорему Безу к решению уравнений;
- применять теорему Виета для решения некоторых уравнений степени выше второй;
- понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
- владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
- использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
- владеть разными методами доказательства неравенств;
- решать уравнения в целых числах;
- изображать на плоскости множества, задаваемые уравнениями, неравенствами и их системами;
- свободно использовать тождественные преобразования при решении уравнений и систем уравнений;

В повседневной жизни и при изучении других предметов:

- составлять и решать уравнения, неравенства, их системы при решении задач из других учебных предметов;
- выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем, при решении задач из других учебных предметов;
- составлять и решать уравнения и неравенства с параметрами при решении задач из других учебных предметов;
- составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;
- использовать программные средства при решении отдельных классов уравнений и неравенств.

Функции

- Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период, чётная и нечётная функции; уметь применять эти понятия при решении задач;
- владеть понятием: степенная функция; строить её график и уметь применять свойства степенной функции при решении задач;
- владеть понятиями: показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;
- владеть понятием: логарифмическая функция; строить её график и уметь применять свойства логарифмической функции при решении задач;
- владеть понятием: тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;
- владеть понятием: обратная функция; применять это понятие при решении задач;
- применять при решении задач свойства функций: чётность, периодичность, ограниченность;
- применять при решении задач преобразования графиков функций;
- владеть понятиями: числовые последовательности, арифметическая и геометрическая прогрессии;
- применять при решении задач свойства и признаки арифметической и геометрической прогрессий;

В повседневной жизни и при изучении других учебных предметов:

- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства, асимптоты, точки перегиба, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;
- определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и т. п. (амплитуда, период и т. п.)

Элементы математического анализа

- Владеть понятием: бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;
- владеть понятиями: бесконечно большие числовые последовательности и бесконечно малые числовые последовательности; уметь сравнивать бесконечно большие и бесконечно малые последовательности;
- владеть понятиями: производная функции в точке, производная функции;
- вычислять производные элементарных функций и их комбинаций;
- исследовать функции на монотонность и экстремумы;
- строить графики и применять их к решению задач, в том числе с параметром;
- владеть понятием: касательная к графику функции; уметь применять его при решении задач;
- владеть понятиями: первообразная, определённый интеграл.

В повседневной жизни и при изучении других учебных предметов:

• решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов, интерпретировать полученные результаты.

Комбинаторика, вероятность и статистика, логика и теория графов

- Оперировать основными описательными характеристиками числового набора; понятиями: генеральная совокупность и выборка;
- оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей; вычислять вероятности событий на основе подсчёта числа исходов;
- владеть основными понятиями комбинаторики и уметь применять их при решении задач;
- иметь представление об основах теории вероятностей;
- иметь представление о совместных распределениях случайных величин.

В повседневной жизни и при изучении других предметов:

- вычислять или оценивать вероятности событий в реальной жизни;
- выбирать методы подходящего представления и обработки данных.

Текстовые задачи

- Решать разные задачи повышенной трудности;
- анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;
- строить модель решения задачи, проводить доказательные рассуждения при решении залачи:
- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
- анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
- переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

В повседневной жизни и при изучении других предметов:

• решать практические задачи и задачи из других предметов.

История и методы математики

Иметь представление о вкладе выдающихся математиков в развитие науки;

- понимать роль математики в развитии России;
- использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
- применять основные методы решения математических задач;
- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
- пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов.

СОДЕРЖАНИЕ КУРСА

Базовый уровень

Числа и выражения

Корень n-й степени и его свойства. Степень с действительным показателем, свойства степени. Действия с корнями натуральной степени из чисел, тождественные преобразования выражений, включающих степени и корни.

Логарифм числа. Десятичные и натуральные логарифмы. Число е. Логарифмические тождества. Действия с логарифмами чисел; простейшие преобразования выражений, включающих логарифмы.

Изображение на числовой прямой целых и рациональных чисел, корней натуральной степени из чисел, логарифмов чисел.

Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°, 180°, 270° Формулы приведения, сложения, формулы двойного и половинного угла

Уравнения и неравенства

Уравнения с одной переменной. Простейшие иррациональные уравнения. Логарифмические и показательные уравнения вида $\log_a{(bx+c)} = d$, $a^{bx+c} = d$ (где d можно представить в виде степени с основанием a и рациональным показателем) и их решения. Тригонометрические уравнения вида $\sin x = a$, $\cos x = a$, tg x = a, где a — табличное значение соответствующей тригонометрической функции, и их решения.

Неравенства с одной переменной вида $\log_a x < d$, $a^x < d$ (где d можно представить в виде степени с основанием a).

Несложные рациональные, показательные, логарифмические, тригонометрические уравнения, неравенства и их системы, простейшие иррациональные уравнения и неравенства.

Метод интервалов.

Функции

Понятие функции. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодичность функции. Чётность и нечётность функций.

Степенная, показательная и логарифмические функции; их свойства и графики. Сложные функции.

Тригонометрические функции $y = \cos x$, $y = \sin x$, $y = \tan x$. Функция $y = \cot x$. Свойства и графики тригонометрических функций. Арккосинус, арксинус, арктангенс числа, арккотангенс числа. Обратные тригонометрические функции, их свойства и графики.

Преобразования графиков функций: сдвиги вдоль координатных осей, растяжение и сжатие, симметрия относительно координатных осей и начала координат. Графики взаимно обратных функций.

Элементы математического анализа

Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Производная суммы, произведения, *частного*, двух функций.

Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, нахождение наибольшего и наименьшего значений функции с помощью производной.

Статистика и теория вероятностей, логика и комбинаторика

Частота и вероятность события. Достоверные, невозможные и случайные события. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики. Вероятность суммы двух несовместных событий. Противоположное событие и его вероятность.

Углублённый уровень

Числа и выражения

Множества натуральных, целых, рациональных, действительных чисел. Радианная мера угла. Тригонометрическая окружность. Синус, косинус, тангенс и котангенс числа. Тригонометрические формулы приведения и сложения, формулы двойного и половинного угла. Преобразование суммы и разности тригонометрических функций в произведение и обратные преобразования.

Степень с действительным показателем, свойства степени. Число *е*. Логарифм, свойства логарифма. Десятичный и натуральный логарифмы.

Тождественные преобразования тригонометрических, логарифмических, степенных и иррациональных выражений.

Уравнения и неравенства

Уравнение, являющееся следствием другого уравнения; уравнения, равносильные на множестве, равносильные преобразования уравнений.

Тригонометрические, показательные, логарифмические и иррациональные уравнения и неравенства. Типы уравнений. Решение уравнений и неравенств.

Метод интервалов для решения неравенств. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.

Системы тригонометрических, показательных, логарифмических и иррациональных уравнений. Системы тригонометрических, показательных, логарифмических и иррациональных неравенств.

Функции

Функция и её свойства; нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодическая функция и её наименьший период. Чётные и нечётные функции.

Взаимно обратные функции. Графики взаимно обратных функций. Тригонометрические функции числового аргумента $y = \cos x$, $y = \sin x$, $y = \tan x$, $y = \cot x$. Свойства и графики тригонометрических функций. Обратные тригонометрические функции, их главные значения, свойства и графики.

Степенная, показательная, логарифмическая функции, их свойства и графики.

Преобразования графиков функций: сдвиг, умножение на число, симметрия относительно координатных осей и начала координат.

Элементы математического анализа

Бесконечно малые и бесконечно большие числовые последовательности. Предел числовой последовательности. Бесконечно убывающая геометрическая прогрессия.

Понятие предела функции в точке. Непрерывность функции.

Дифференцируемость функции. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Правила дифференцирования.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значения с помощью производной.

Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Определённый интеграл. Вычисление площадей плоских фигур.

Комбинаторика, вероятность и статистика.

Правило произведения в комбинаторике. Соединения без повторений. Сочетания и их свойства.

Вероятность события. Сумма вероятностей несовместных событий. Противоположные события. Условная вероятность. Независимые события. Произведение вероятностей независимых событий.

Формула полной вероятности.

Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение.

ИСПОЛЬЗУЕМЫЕ ФОРМЫ, СПОСОБЫ И СРЕДСТВА ПРОВЕРКИ И ОЦЕНКИ ОБРАЗОВАТЕЛЬНЫХ РЕЗУЛЬТАТОВ

Оценка знаний – систематический процесс, который состоит в определении степени

соответствия имеющихся знаний, умений, навыков, предварительно планируемым. Процесс оценки включает в себя такие компоненты: определение целей обучения; выбор контрольных заданий, проверяющих достижение этих целей; отметку или другой способ выражения результатов проверки. В зависимости от поставленных целей по-разному строится программа контроля, подбираются различные типы вопросов и заданий. Но применение примерных норм оценки знаний должно внести единообразие в оценку знаний и умений учащихся и сделать ее более объективной. Примерные нормы представляют основу, исходя из которой, учитель оценивает знания и умения учащихся.

Содержание и объем материала, подлежащего проверке и оценке, определяются программой по математике для основного общего образования. В задания для проверки включаются основные, типичные и притом различной сложности вопросы, соответствующие проверяемому разделу программы.

Основными формами проверки знаний и умений учащихся по математике в основной школе являются опрос, экзамен, зачет, контрольная работа, самостоятельная работа, тестирование, проверочная работа наряду с которыми применяются и другие формы проверки. При этом учитывается, что в некоторых случаях только устный опрос может дать более полные представления о знаниях и умениях учащихся; в тоже время письменная работа позволяет оценить умение учащихся излагать свои мысли на бумаге; навыки грамотного оформления выполняемых ими заданий.

При оценке устных ответов и письменных работ учитель в первую очередь учитывает имеющиеся у учащегося фактические знания и умения, их полноту, прочность, умение применять на практике в различных ситуациях. Результат оценки зависит также от наличия и характера допущенных погрешностей. Среди погрешностей выделяются **ошибки, недочеты и мелкие погрешности**.

Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями и их применением.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в соответствии с программой основными. К недочетам относятся погрешности, объясняющиеся рассеянностью или недосмотром, но которые не привели к искажению смысла полученного учеником задания или способа его выполнения. Грамматическая ошибка, допущенная в написании известного учащемуся математического термина, небрежная запись, небрежное выполнение чертежа считаются нелочетом

К мелким погрешностям относятся погрешности в устной и письменной речи, не искажающие смысла ответа или решения, случайные описки и т. п.

Каждое задание для устного опроса или письменной работы представляет теоретический вопрос или задачу.

Ответ на вопрос считается безупречным, если его содержание точно соответствует вопросу, включает все необходимые теоретические сведения, обоснованные заключения и поясняющие примеры, а его изложение и оформление отличаются краткостью и аккуратностью.

Решение задачи считается безупречным, если получен верный ответ при правильном ходе решения, выбран соответствующий задаче способ решения, правильно выполнены необходимые вычисления и преобразования, последовательно и аккуратно оформлено решение.

Оценивание ответа учащегося при устном опросе и оценка письменных работ проводится по пятибалльной системе.

Оценивание устного ответа обучающегося:

Ответ оценивается отметкой «5», если учащийся:

• полностью раскрыл содержание материала в объеме, предусмотренном программой и учебником;

- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя.

Ответ оценивается отметкой «4», если работа учащегося

- удовлетворяет в основном требованиям на оценку "5", но при этом имеет один из недочетов:
- в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
- допущены 1-2 недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Ответ оценивается отметкой «3», если:

- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программы;
- имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил обязательное задание.

Ответ оценивается отметкой «2», если:

- не раскрыто содержание учебного материала;
- обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятия, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Ответ оценивается отметкой «1», если

• ответ полностью отсутствует.

Оценивание письменных работ:

При проверке письменных работ по математике следует различать грубые и негрубые ошибки.

К грубым ошибкам относятся:

- вычислительные ошибки в примерах и задачах;
- ошибки на незнание порядка выполнения арифметических действий;
- неправильное решение задачи (пропуск действий, неправильный выбор действий, лишнее действие);
- не доведение до конца решения задачи или примера;
- невыполненное задание.

К негрубым ошибкам относятся:

- нерациональные приемы вычислений;
- неправильная постановка вопроса к действию при решении задачи;
- неверно сформулированный ответ задачи;
- неправильное списывание данных чисел, знаков;

• преобразование не доведено до конца.

При оценке письменных работ ставятся следующие отметки:

- «5»- если задачи решены без ошибок;
- «4»- если допущены 1-2 негрубые ошибки;
- «3»- если допущены 1 грубая и 3-4 негрубые ошибки;
- «2»- незнание основного программного материала;
- «1» -отсутствие письменного задания (в том числе письменного домашнего задания).

Оценивание тестовых работ:

```
«5» - 87 – 100 %;

«4» - 70 – 86 %;

«3» - 51 – 69 %;

«2»- менее 50%.
```

Ответ оценивается отметкой «1», если ответ полностью отсутствует.