
Superfluidity and Superconductivity - Exercise 1 
 

1.​ Coherent state path integrals 

a.​ Prove the identity  ∫ 𝑑(ϕ‾ , ϕ)𝑒−ϕ‾ 𝐴ϕ = (𝑑𝑒𝑡 𝐴)ζ 

b.​ Consider two real bosonic fields . Governed by the action  ϕ
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Compute the thermal fluctuations of the fields  as a function of < ϕ
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temperature. Why are these “fluctuations”? What happens at T = 0? Now add 
the term  
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and repeat the calculation of the fluctuations. What happens at zero 
temperature? Identify the part of the fluctuations related to quantum “zero 
point motion” and relate them to the term  in the action in Matsubara ω
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frequency.   
c.​ Compute the Fermionic Matsubara sums  
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d.​ Consider the fermionic action 

. Use the identity  𝑆[ψ‾ , ψ, 𝐽‾, 𝐽] =
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 to compute the expectation < ψ‾ (𝑥, τ)ψ(𝑥, τ) >= 1
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value above at zero temperature.  
 

2.​ The weakly interacting Bose gas 

a.​ Consider free bosons . Compute the 𝑆[ψ‾ , ψ] =
0
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Bose-Einstein condensation temperature  by computing  and find 𝑇
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when it becomes zero. Assuming it remains zero (for stability), compute the 
number of Bosons in the ground state as a function of temperature.  

b.​ Now add the repulsive interaction: . Decouple the 𝑆'[ψ‾ , ψ] =
0
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quadratic order in the small deviations . Diagonalize the action, find the ϕ
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spectrum and compute self-consistently the values of  by ρ
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demanding number conservation and minimizing the action with respect to . ρ
0

How does  behave close to the condensation temperature?  µ(𝑇)
c.​ Consider the vortex solution in a two-dimensional superfluid: 

, where , and where . Compute ψ(𝑟) = ρ
0
𝑒𝑖θ(𝑟) θ(𝑟) = 𝑛ϕ ϕ = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦/𝑥)

the energy of the vortex 
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Note that you may assume the vortex core has a finite size  and the sample ξ
is finite with typical size . Now consider two vortices of equal winding of 𝐿
strength unity that are displaced by distance , i.e. 𝑑

. Compute the energy of the this configuration  θ(𝑟) = ϕ(𝑥, 𝑦) + ϕ(𝑥 − 𝑑, 𝑦)
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where  is computed for n = 1. Do this by introducing the appropriate branch 𝐸
1

cuts such that  become a single valued function. Using integration by parts, θ
map the area integral into a boundary integral. Excluding the cuts, estimate 
the energy using a contour integral over analytic functions.  
 

3.​ Spontaneous symmetry breaking:  
a.​ Using the Gaussian fluctuations of the XY model, compute the contribution of 

phase fluctuations to the correlation function 

  < ψ+(𝑟, τ)ψ(𝑟', τ) >≈ ρ
0

< 𝑒𝑖(θ(𝑟',τ)−θ(𝑟,τ)) >  

in one, two and three dimensions. Explain why this implies that long-ranged 
order is not possible in one and two dimensions. ​
Note: you may neglect the compactness of the field . θ

b.​ Consider a cube of 4He at T=0. Imagine the initial phase is set at 

 and the variance at . Estimate how long will < θ >  =  0 < θ2 >  =  (π/10)2 

it take the phase to become completely disordered, i.e. . < θ2 >  =  16π2

Use the fact that the velocity of sound in a superfluid 4He is 20 cm/sec, the 
density is 0.125 g/cm3 and the mass is 4 amu.  

 


