MODUL AJAR DEEP LEARNING MATA PELAJARAN : MATEMATIKA BAB: 5. PERSAMAAN GARIS LURUS

Α.	ID	E	T	IΤΔ	2	M	O	n	Т	٠.
		4 17	.				` '	.,,		- 1

Mata Pelajaran : Matematika Fase / Kelas /Semester : D / VIII / Genap

Topik : A. Grafik Persamaan Garis Lurus, B. Pengertian

Kemiringan

Alokasi Waktu : 8 Jam Pelajaran (4 pertemuan x 2 JP)

Tahun Pelajaran : 2025/2026

B. IDENTIFIKASI KESIAPAN PESERTA DIDIK

Peserta didik diharapkan sudah memiliki pengetahuan awal tentang sistem koordinat Kartesius (kuadran, titik koordinat), operasi aljabar dasar (penjumlahan, pengurangan, perkalian, pembagian bilangan bulat dan pecahan), serta konsep fungsi sederhana. Keterampilan dasar yang dibutuhkan meliputi kemampuan menempatkan titik pada koordinat Kartesius dan melakukan substitusi nilai ke dalam persamaan. Kesulitan yang mungkin muncul adalah pemahaman konsep abstrak tentang kemiringan, kesulitan dalam memvisualisasikan grafik dari persamaan, atau kebingungan dalam membedakan sumbu x dan sumbu y. Beberapa peserta didik mungkin juga mengalami kesulitan dalam ketelitian saat menggambar grafik.

C. KARAKTERISTIK MATERI PELAJARAN

Materi "Persamaan Garis Lurus" merupakan jenis pengetahuan konseptual, prosedural, dan sedikit kontekstual. Konseptual dalam memahami makna kemiringan dan bentuk persamaan garis lurus; prosedural dalam langkah-langlangkah menggambar grafik dan menentukan kemiringan; serta kontekstual dalam mengaitkan kemiringan dengan fenomena nyata. Relevansinya dengan kehidupan nyata sangat tinggi, seperti dalam menganalisis data, memahami gradien jalan, atau pergerakan suatu objek. Tingkat kesulitannya moderat hingga tinggi, karena melibatkan konsep abstrak dan ketelitian dalam perhitungan serta penggambaran. Struktur materi tersusun secara logis, dimulai dari pengenalan grafik, kemudian konsep kemiringan, dan nantinya akan berlanjut ke berbagai bentuk persamaan garis lurus. Integrasi nilai dan karakter dapat dilakukan melalui pengembangan sikap teliti, cermat, rasa ingin tahu, kritis dalam menganalisis pola, serta kolaborasi dalam diskusi kelompok.

D. DIMENSI LULUSAN PEMBELAJARAN

Berdasarkan tujuan pembelajaran, dimensi profil lulusan yang akan dikembangkan adalah:

- **Penalaran Kritis:** Peserta didik mampu menganalisis hubungan antara persamaan dan grafik garis lurus, serta memecahkan masalah terkait kemiringan.
- **Kreativitas:** Peserta didik mampu menyajikan grafik dan konsep kemiringan dengan cara yang inovatif dan mudah dipahami.
- Kolaborasi: Peserta didik mampu bekerja sama dalam kelompok untuk menyelesaikan masalah dan berbagi pemahaman.
- **Kemandirian:** Peserta didik mampu secara mandiri menemukan pola dan menyelesaikan soal latihan.
- **Komunikasi:** Peserta didik mampu menjelaskan konsep dan hasil kerja mereka secara lisan maupun tertulis.

DESAIN PEMBELAJARAN

A. CAPAIAN PEMBELAJARAN (CP) NOMOR: 32 TAHUN 2024

Pada akhir fase D, peserta didik dapat menyelesaikan masalah terkait fungsi linear, termasuk memahami konsep kemiringan dan titik potong, serta menggambar grafiknya.

B. LINTAS DISIPLIN ILMU

- Fisika: Konsep kecepatan (perbandingan jarak/waktu) sebagai aplikasi kemiringan.
- Ilmu Komputer/Informatika: Konsep koordinat dan grafik dasar dalam pemrograman visual.
- Desain Grafis/Seni Rupa: Penggunaan koordinat dan garis dalam menciptakan visual.
- Ilmu Ekonomi: Analisis grafik pertumbuhan atau penurunan data ekonomi.

C. TUJUAN PEMBELAJARAN

Pertemuan 1 (2 JP): Mengenal dan Menggambar Grafik Persamaan Garis Lurus y = mx

- Peserta didik dapat memahami hubungan antara persamaan y=mx dengan bentuk grafik garis lurus yang melalui titik pusat (0,0) setelah melakukan eksplorasi tabel nilai.
- Peserta didik dapat menggambar grafik persamaan garis lurus y=mx pada bidang Kartesius dengan tepat setelah melakukan latihan terbimbing.
- Peserta didik dapat mengidentifikasi letak titik pada grafik persamaan y=mx setelah berdiskusi kelompok.

Pertemuan 2 (2 JP): Mengenal dan Menggambar Grafik Persamaan Garis Lurus y = mx + c

- Peserta didik dapat memahami pengaruh nilai c dalam persamaan y=mx+c terhadap posisi grafik pada bidang Kartesius setelah membandingkan beberapa contoh.
- Peserta didik dapat menggambar grafik persamaan garis lurus y=mx+c menggunakan dua titik yang diketahui (misalnya titik potong sumbu x dan y) dengan cermat.
- Peserta didik dapat menganalisis perbedaan grafik y=mx dan y=mx+c setelah presentasi kelompok.

Pertemuan 3 (2 JP): Memahami Pengertian Kemiringan (Gradien)

- Peserta didik dapat menjelaskan pengertian kemiringan (gradien) garis lurus dengan bahasa mereka sendiri setelah mengamati contoh nyata.
- Peserta didik dapat menentukan kemiringan garis lurus dari grafik dengan tepat setelah melakukan perhitungan dari perubahan y dan perubahan x.
- Peserta didik dapat mengidentifikasi kemiringan positif, negatif, nol, dan tak terdefinisi dari grafik garis lurus setelah melakukan latihan.

Pertemuan 4 (2 JP): Menentukan Kemiringan dari Persamaan dan Dua Titik

- Peserta didik dapat menentukan kemiringan garis lurus dari persamaan y=mx+c dengan benar setelah memahami bentuk umum persamaan.
- Peserta didik dapat menentukan kemiringan garis lurus yang melalui dua titik (x1,y1) dan (x2,y2) menggunakan rumus dengan akurat.

• Peserta didik dapat menghubungkan konsep kemiringan dengan aplikasi dalam kehidupan sehari-hari (misalnya, kemiringan tangga, jalan) setelah melihat contoh-contoh visual.

D. TOPIK PEMBELAJARAN KONTEKSTUAL

Grafik Persamaan Garis Lurus:

- Grafik pertumbuhan tanaman (tinggi vs waktu).
- Grafik pergerakan kendaraan dengan kecepatan konstan (jarak vs waktu).
- Hubungan antara jumlah barang dan harganya dalam penjualan sederhana.

Pengertian Kemiringan:

- Kemiringan tangga, jalan, atau atap rumah.
- Kemiringan dalam bidang olahraga (misalnya, kemiringan lintasan lari atau ski).
- Tingkat kenaikan atau penurunan harga suatu produk dari waktu ke waktu.
- Tingkat perubahan data dalam survei sederhana.

E. KERANGKA PEMBELAJARAN

Praktik Pedagogik:

- Pembelajaran Berbasis Proyek (Mini Proyek): Membuat poster interaktif atau "Gallery Walk" grafik persamaan garis lurus dan kemiringan.
- **Diskusi Kelompok:** Menganalisis masalah, membandingkan hasil, dan mempresentasikan penemuan.
- Eksplorasi Lapangan (Sederhana/Observasi Lingkungan Sekolah): Mengidentifikasi contoh kemiringan di lingkungan sekolah (tangga, tanjakan).
- Wawancara (Opsional/Jika memungkinkan): Narasumber (guru fisika, teknisi bangunan) untuk mendapatkan informasi tentang aplikasi kemiringan.
- **Presentasi:** Menyajikan hasil diskusi, proyek kelompok, atau solusi masalah.

Mitra Pembelajaran:

- Lingkungan Sekolah: Sudut-sudut bangunan, tangga, lapangan (untuk mengidentifikasi kemiringan).
- Lingkungan Luar Sekolah: (melalui studi kasus/video) Jalan raya, bangunan bertingkat.
- **Masyarakat:** Orang tua (membantu mengamati kemiringan di sekitar rumah), tukang bangunan (pemahaman tentang gradien).

Lingkungan Belajar:

- Mengintegrasikan ruang fisik kelas (penataan tempat duduk untuk diskusi, area presentasi, papan tulis/whiteboard untuk menggambar grafik).
- Ruang virtual (akses internet, platform belajar daring) untuk mencari referensi atau menggunakan alat bantu grafik online.
- Penggunaan kertas grafik, penggaris, dan pensil warna sebagai alat bantu visual.

Pemanfaatan Digital:

- **Perpustakaan Digital:** Mengakses e-book atau artikel tentang fungsi linear dan grafiknya.
- Forum Diskusi Daring: Google Classroom atau WhatsApp Group untuk berbagi soal, diskusi, dan bertanya jawab di luar jam pelajaran.

- **Penilaian Daring:** Menggunakan Google Forms untuk kuesioner atau kuis, Kahoot/Mentimeter untuk kuis interaktif.
- Alat Bantu Grafik Online: Geogebra atau Desmos untuk memvisualisasikan grafik persamaan garis lurus dan melihat perubahan akibat variasi koefisien.

F. LANGKAH-LANGKAH PEMBELAJARAN BERDIFERENSIASI

PERTEMUAN 1:

MENGENAL DAN MENGGAMBAR GRAFIK PERSAMAAN GARIS LURUS Y=MX (2 JP)

1. KEGIATAN PENDAHULUAN (15 MENIT)

- **Berkesadaran**: Guru memulai dengan mengajak peserta didik menarik napas dalam dan fokus pada "titik-titik" di sekitar mereka (misalnya, sudut meja, ujung pensil). "Bayangkan titik-titik ini ada di sebuah kertas kotak-kotak. Bisakah kalian menggambarnya?" (**Membangkitkan kesadaran ruang dan koordinat**).
- **Bermakna**: Guru menampilkan gambar denah sederhana dengan koordinat atau peta lokasi. "Bagaimana cara kita menunjukkan lokasi suatu tempat dengan tepat? Apa hubungannya dengan angka-angka?" (**Menghubungkan dengan pengalaman nyata dan apersepsi koordinat Kartesius**).
- **Menggembirakan**: Guru dapat menggunakan permainan "Tebak Lokasi" dengan koordinat sederhana di papan tulis.
- Apersepsi: Mengingat kembali materi sistem koordinat Kartesius.
- Menyampaikan tujuan pembelajaran hari ini.

2. KEGIATAN INTI (60 MENIT)

Memahami (Berkesadaran, Bermakna):

- Guru membagi peserta didik menjadi kelompok kecil (diferensiasi proses: kelompok heterogen berdasarkan hasil identifikasi kesiapan awal).
- Setiap kelompok diberikan lembar kerja berisi tabel nilai untuk beberapa persamaan y=mx (misalnya, y=x, y=2x, y=-x).
- **Diferensiasi Konten**: Kelompok dengan pengetahuan awal yang lebih kuat dapat diminta untuk menganalisis lebih banyak persamaan atau persamaan dengan koefisien pecahan. Kelompok yang membutuhkan bimbingan dapat fokus pada satu atau dua persamaan sederhana.
- Peserta didik mengisi tabel nilai, menentukan koordinat titik, dan menggambar titik-titik tersebut pada kertas grafik.
- **Diskusi kelompok**: "Apa pola yang kalian temukan dari titik-titik ini? Jika dihubungkan, membentuk apa?" (Mengarahkan pada pembentukan garis lurus).

Mengaplikasi (Bermakna, Menggembirakan):

- Setiap kelompok memilih satu persamaan y=mx dan membuat presentasi mini (bisa di kertas flipchart atau slide sederhana) yang menunjukkan tabel nilai dan grafiknya.
- Guru memandu penggunaan Geogebra/Desmos jika fasilitas memungkinkan, untuk memvisualisasikan grafik y=mx dan melihat bagaimana nilai m mempengaruhi kemiringannya. (Elemen menggembirakan dan pemanfaatan digital).

Merefleksi (Berkesadaran, Bermakna):

• Perwakilan kelompok mempresentasikan hasil grafik mereka.

- Guru memberikan penguatan konsep dan meluruskan miskonsepsi (misalnya, kesalahan dalam menentukan koordinat).
- Peserta didik menuliskan di buku catatan mereka satu hal penting tentang grafik y=mx yang selalu melalui titik (0,0).

3. KEGIATAN PENUTUP (15 MENIT)

- Umpan Balik Konstruktif (Berkesadaran, Bermakna): Guru memberikan umpan balik umum tentang ketelitian dalam menggambar dan pemahaman konsep. "Apa tantangan terbesar saat menggambar grafik? Bagaimana cara kalian memastikan titik yang digambar sudah tepat?"
- **Menyimpulkan Pembelajaran:** Bersama-sama merangkum karakteristik grafik y=mx.
- **Perencanaan Pembelajaran Selanjutnya:** Guru menyampaikan materi pertemuan berikutnya (grafik y=mx+c) dan memberikan tugas: mencari contoh grafik yang tidak melalui titik pusat di sekitar mereka (misalnya, grafik harga tiket awal ditambah biaya parkir).

PERTEMUAN 2:

MENGENAL DAN MENGGAMBAR GRAFIK PERSAMAAN GARIS LURUS Y=MX+C (2 JP)

1. KEGIATAN PENDAHULUAN (15 MENIT)

- **Berkesadaran**: Guru meminta peserta didik mengingat kembali grafik y=mx. "Di mana letak grafik y=mx selalu berpotongan dengan sumbu-sumbu koordinat?"
- **Bermakna**: Guru menampilkan ilustrasi tarif taksi: biaya awal + biaya per kilometer. "Jika kita naik taksi, ada biaya awal. Bagaimana ini bisa digambarkan dalam grafik? Apakah selalu dimulai dari nol?" (**Menghubungkan dengan tugas sebelumnya dan memicu pemikiran tentang** c).
- **Menggembirakan**: Guru dapat menayangkan video pendek tentang garis lurus dalam kehidupan (misalnya, garis lintasan kereta, garis pada layar monitor).
- Menyampaikan tujuan pembelajaran hari ini.

2. KEGIATAN INTI (60 MENIT)

Memahami (Berkesadaran, Bermakna):

- Peserta didik kembali dalam kelompok yang sama. Setiap kelompok diberikan beberapa persamaan y=mx+c dengan nilai c yang berbeda-beda (misalnya, y=x+2, y=2x-1, y=-x+3).
- **Diferensiasi Konten**: Kelompok dapat diberikan variasi nilai m dan c yang berbeda untuk dianalisis. Kelompok yang sudah mahir dapat diminta untuk menemukan titik potong sumbu x dan y secara aljabar.
- Peserta didik diminta untuk: (1) menentukan dua titik yang dilalui garis (misalnya, titik potong sumbu x dan y atau dua titik sembarang), (2) menggambar grafik pada kertas grafik, dan (3) membandingkan hasilnya dengan grafik y=mx.
- Diskusi kelompok: "Apa yang terjadi pada grafik ketika ada nilai c? Apa arti nilai c pada grafik?"

Mengaplikasi (Bermakna, Menggembirakan):

- Setiap kelompok membuat "Papan Perbandingan" (bisa di kertas karton) yang membandingkan grafik y=mx dengan y=mx+c, menyoroti peran c (titik potong sumbu y).
- Eksplorasi dengan Geogebra/Desmos: Guru mendemonstrasikan bagaimana mengubah nilai c mempengaruhi pergeseran garis (geser naik/turun). Peserta didik dapat mencobanya secara mandiri jika ada perangkat. (Pemanfaatan digital).

Merefleksi (Berkesadaran, Bermakna):

- Perwakilan kelompok mempresentasikan "Papan Perbandingan" mereka.
- Guru memberikan klarifikasi dan penguatan konsep tentang peran c sebagai titik potong sumbu y.
- Peserta didik menuliskan satu kalimat yang menjelaskan arti nilai c dalam persamaan y=mx+c.

3. KEGIATAN PENUTUP (15 MENIT)

- Umpan Balik Konstruktif (Berkesadaran, Bermakna): Guru memberikan umpan balik atas pemahaman peserta didik tentang pengaruh c. "Bagian mana yang paling jelas bagi kalian tentang pengaruh c? Adakah yang masih membingungkan?"
- **Menyimpulkan Pembelajaran**: Mereview cara menggambar grafik y=mx+c dan makna dari c.
- **Perencanaan Pembelajaran Selanjutnya**: Guru menyampaikan bahwa pertemuan berikutnya akan membahas tentang kemiringan/gradien. Tugas: mencari contoh benda di rumah atau lingkungan sekitar yang memiliki kemiringan.

PERTEMUAN 3:

MEMAHAMI PENGERTIAN KEMIRINGAN (GRADIEN) (2 JP)

1. KEGIATAN PENDAHULUAN (15 MENIT)

- **Berkesadaran**: Guru meminta peserta didik untuk merasakan posisi tubuh mereka saat berdiri tegak dan saat sedikit miring. "Apa yang berbeda? Apa yang menyebabkan perbedaan ini?" (Membawa konsep kemiringan ke pengalaman fisik).
- **Bermakna**: Guru menampilkan gambar tangga, jalan menanjak, atau lintasan ski. "Apa yang membuat kita merasa 'berat' saat menanjak? Apa yang disebut dengan 'kemiringan' itu dalam matematika?" (Menghubungkan dengan tugas sebelumnya dan fenomena nyata).
- **Menggembirakan**: Guru dapat memutarkan video singkat atau GIF lucu tentang orang yang kesulitan mendaki tanjakan atau meluncur di turunan.
- Menyampaikan tujuan pembelajaran hari ini.

2. KEGIATAN INTI (60 MENIT)

Memahami (Berkesadaran, Bermakna):

- Guru menjelaskan konsep kemiringan sebagai perbandingan perubahan vertikal (y) terhadap perubahan horizontal (x).
- Guru memberikan beberapa grafik garis lurus yang sudah tergambar. Peserta didik dalam kelompok diminta untuk menghitung kemiringan masing-masing garis dengan menghitung Δy dan Δx .

- **Diferensiasi Konten**: Grafik yang diberikan dapat bervariasi tingkat kesulitannya (titik-titik pada bilangan bulat, titik-titik pada pecahan, atau grafik dengan kemiringan yang jelas/kabur). Kelompok yang cepat dapat diminta untuk menemukan pola kemiringan dari garis yang sejajar atau tegak lurus.
- **Diskusi kelompok**: "Bagaimana cara kita tahu suatu garis miring ke atas atau ke bawah? Apa artinya jika kemiringannya nol? Bagaimana jika vertikal?"

Mengaplikasi (Bermakna, Menggembirakan):

- Setiap kelompok membuat "Kartu Gradien" (flashcard) yang berisi contoh grafik dan nilai gradiennya (positif, negatif, nol, tak terdefinisi).
- "Gradien Challenge": Peserta didik berjalan di sekitar kelas atau lingkungan sekolah (jika memungkinkan) untuk mengidentifikasi objek-objek yang memiliki kemiringan dan memperkirakan jenis gradiennya (positif/negatif/nol). (Eksplorasi lapangan sederhana).

Merefleksi (Berkesadaran, Bermakna):

- Perwakilan kelompok mempresentasikan "Kartu Gradien" mereka.
- Guru memberikan umpan balik dan penguatan konsep, meluruskan miskonsepsi tentang kemiringan vertikal.
- Peserta didik menuliskan satu kalimat yang menjelaskan mengapa kemiringan itu penting dalam kehidupan nyata.

3. KEGIATAN PENUTUP (15 MENIT)

- Umpan Balik Konstruktif (Berkesadaran, Bermakna): Guru mengapresiasi upaya peserta didik dalam memahami konsep gradien. "Apa bagian yang paling menarik dari kemiringan ini? Apakah kalian menemukan kemiringan yang aneh?"
- Menyimpulkan Pembelajaran: Mereview pengertian kemiringan dan cara menentukannya dari grafik.
- Perencanaan Pembelajaran Selanjutnya: Guru menyampaikan bahwa pertemuan berikutnya akan membahas cara menentukan kemiringan dari persamaan dan dua titik. Tugas: mencoba mencari tahu rumus kemiringan jika diketahui dua titik.

PERTEMUAN 4:

MENENTUKAN KEMIRINGAN DARI PERSAMAAN DAN DUA TITIK (2 JP)

1. KEGIATAN PENDAHULUAN (15 MENIT)

- **Berkesadaran**: Guru meminta peserta didik mengingat kembali bagaimana menentukan kemiringan dari grafik. "Bagaimana cara kita menghitung kemiringan dari grafik?"
- **Bermakna**: Guru menampilkan grafik garis lurus tanpa skala yang jelas, hanya dengan dua titik koordinat. "Bagaimana kita menghitung kemiringan garis ini tanpa harus menggambar seluruhnya? Apakah ada cara yang lebih cepat?" (Menghubungkan dengan konsep sebelumnya dan memicu kebutuhan akan rumus).
- **Menggembirakan**: Guru dapat memutarkan lagu atau jingle pendek tentang rumus gradien.
- Menyampaikan tujuan pembelajaran hari ini.

2. KEGIATAN INTI (60 MENIT)

Memahami (Berkesadaran, Bermakna):

- Guru memperkenalkan rumus kemiringan m=x2-x1y2-y1 dan juga bagaimana mendapatkan m dari persamaan y=mx+c.
- Guru memberikan latihan soal yang bervariasi:
 - ☐ Menentukan kemiringan dari persamaan y=mx+c.
 - ☐ Menentukan kemiringan dari dua titik yang diberikan.
- **Diferensiasi Proses**: Peserta didik dapat bekerja secara berpasangan atau individu. Guru memberikan kartu soal dengan tingkat kesulitan berbeda. Peserta didik yang kesulitan diberikan soal dengan bilangan bulat sederhana. Peserta didik yang sudah mahir diberikan soal dengan pecahan, bilangan negatif, atau soal cerita kontekstual.
- **Diskusi kelompok/pasangan**: "Bagaimana cara memastikan kita tidak salah dalam memasukkan nilai x1,y1,x2,y2 ke dalam rumus?"

Mengaplikasi (Bermakna, Menggembirakan):

- **Mini Proyek Kelompok**: Setiap kelompok membuat "Peta Konsep" atau "Infografis Digital Sederhana" yang merangkum semua cara menentukan kemiringan (dari grafik, dari persamaan y=mx+c, dan dari dua titik). (Diferensiasi produk: bebas memilih format penyajian).
- **Simulasi Kemiringan**: Menggunakan aplikasi Geogebra/Desmos, peserta didik dapat menggerakkan dua titik pada bidang koordinat dan melihat bagaimana nilai kemiringan berubah secara otomatis. (Pemanfaatan digital).

Merefleksi (Berkesadaran, Bermakna):

- Perwakilan kelompok mempresentasikan "Peta Konsep" atau "Infografis" mereka.
- Guru memberikan penguatan dan memastikan semua metode penentuan kemiringan telah dipahami.
- Peserta didik menuliskan di buku refleksi: "Saya paling yakin dalam menentukan kemiringan dengan cara karena".

3. KEGIATAN PENUTUP (15 MENIT)

- Umpan Balik Konstruktif (Berkesadaran, Bermakna): Guru memberikan apresiasi atas kerja keras peserta didik dan kemampuan mereka dalam menggunakan rumus. "Apa yang kalian rasakan saat berhasil menyelesaikan soal kemiringan yang rumit? Bagaimana kalian akan berlatih lagi agar semakin mahir?"
- Menyimpulkan Pembelajaran: Bersama-sama peserta didik menyimpulkan semua cara menentukan kemiringan garis lurus dan hubungannya dengan persamaan garis lurus.
- Perencanaan Pembelajaran Selanjutnya: Guru mengarahkan ke materi selanjutnya atau memberikan tugas pengayaan/remedi. "Bagaimana jika kita diminta membuat persamaan garisnya sendiri dari grafik atau dua titik? Itu yang akan kita pelajari selanjutnya!"

G. ASESMEN PEMBELAJARAN

1. ASESMEN AWAL PEMBELAJARAN:

• **Observasi**: Mengamati interaksi peserta didik saat apersepsi, kemampuan mereka dalam menempatkan titik pada koordinat.

- Tes Diagnostik Singkat (5 soal):
 - 1. Tentukan koordinat titik A(3, -2) dan B(-1, 4) pada bidang Kartesius!
 - 2. Jika y=2x-3, berapakah nilai y jika x=0 dan jika x=2?
 - 3. Apa yang Anda ketahui tentang sumbu X dan sumbu Y?
 - 4. Gambarkan sebuah garis lurus yang melalui titik (0,0) pada bidang Kartesius!
 - 5. Apa yang Anda bayangkan ketika mendengar kata "kemiringan" atau "tanjakan" dalam matematika?

2. ASESMEN PROSES PEMBELAJARAN:

Tugas Harian (selama kegiatan inti setiap pertemuan):					
☐ Pertemuan 1: Penilaian akurasi tabel nilai dan grafik y=mx.					
□ Pertemuan 2: Penilaian ketelitian dalam menggambar grafik y=mx+c dar perbandingan dengan y=mx.					
☐ Pertemuan 3: Penilaian Kartu Gradien dan hasil observasi kemiringan di lingkungan.					
☐ Pertemuan 4: Penilaian Peta Konsep/Infografis tentang kemiringan.					

- **Diskusi Kelompok**: Observasi keaktifan dalam berdiskusi, kemampuan memecahkan masalah bersama, dan kontribusi ide.
- Presentasi: Penilaian kemampuan menjelaskan konsep, menjawab pertanyaan, dan kerja sama kelompok.

3. ASESMEN AKHIR PEMBELAJARAN:

- Jurnal Reflektif (di akhir bab):
 - 1. Apa yang saya rasakan setelah mempelajari Persamaan Garis Lurus dan Kemiringan?
 - 2. Konsep apa yang paling mudah saya pahami dan mengapa?
 - 3. Konsep apa yang paling sulit saya pahami dan bagaimana saya mengatasi kesulitan tersebut?
 - 4. Bagaimana saya bisa melihat aplikasi Persamaan Garis Lurus dan Kemiringan dalam kehidupan sehari-hari? Berikan dua contoh!
 - 5. Bagaimana saya akan melanjutkan belajar Matematika agar lebih baik di masa depan, terutama untuk materi yang lebih menantang?

Tugas Akhir/Proyek: Penilaian proyek kelompok (Poster Interaktif/Gallery Walk
tentang Grafik dan Kemiringan) berdasarkan rubrik yang mencakup:
☐ Akurasi representasi grafik.
☐ Kebenaran konsep kemiringan.
☐ Kreativitas dan visualisasi.
☐ Kolaborasi kelompok.

• Tes Tertulis (5 soal):

- 1. Gambarkan grafik persamaan garis lurus y=3x-2 pada bidang Kartesius! (Gunakan minimal dua titik)
- 2. Tentukan kemiringan (gradien) dari persamaan garis lurus 4x+2y=8!
- 3. Perhatikan grafik di samping (disertakan gambar grafik). Tentukan nilai

- kemiringan garis lurus tersebut! (Asumsi gambar grafik dapat diberikan oleh guru).
- 4. Sebuah garis lurus melalui titik P(2, -3) dan Q(-1, 6). Tentukan kemiringan garis yang melalui kedua titik tersebut!
- 5. Seorang pendaki mendaki gunung dengan kemiringan yang stabil. Jika setiap 10 meter ia bergerak secara horizontal, ketinggiannya bertambah 7 meter. Berapakah kemiringan lintasan pendakian tersebut? Jelaskan artinya!

Mengetahui,	, 20				
Kepala Sekolah	Guru Mata Pelajaran				
()	()				