Parallel Computing Notebook Gustavo April 2017

Flipping Coins in Parallel

Model Website

Q: If each worker can flip one coin per time step, how many time steps does it take the serial worker to flip two coins?

A:Two time steps

Q: How many time steps does it take two parallel workers to flip the two coins?

A: One time step

Q: Set the work size to 16. How many time steps does it take the serial worker to flip the coins? A:Sixteen time steps

Q: How many time steps does it take the parallel workers to flip the coins?

A: Eight time steps

Q: Set the number of parallel workers to 4. How many time steps does it take the parallel workers to flip the coins now?

A: Four time steps

Q: Set the number of parallel workers to 8. How many time steps does it take the parallel workers to flip the coins now?

A: Two time steps

Q: From what you've seen, what is one reason why it would be a good idea to use parallel workers instead of a serial worker?

A: It takes less time to flip coins with parallel workers than with a serial worker

Q: Decrease the number of parallel workers to 2. Decrease the max time to 2. In 2 time steps, how many coins can be flipped by 2 parallel workers compared to one serial worker?

A: Four coins can be flipped by two parallel workers and two coins by the serial worker

Q: Increase the number of parallel workers to 4. In 2 time steps, how many coins can be flipped by 4 parallel workers compared to one serial worker?

A: Eight coins are flipped by the parallel workers

Q: Increase the number of parallel workers to 8. In 2 time steps, how many coins can be flipped by 8 parallel workers compared to one serial worker?

A: Sixteen coins compared to two coins

Q: From what you've seen, what is another reason why it would be a good idea to use parallel workers instead of a serial worker?

A: The parallel workers give more data

Q: Increase the max time to 16 time steps. Decrease the number of parallel workers to 2. Decrease the max worker memory to 2 coins. If each worker can only hold 2 coins in memory, what is the maximum number of coins that can be flipped by 2 parallel workers compared to 1 serial worker?

A: Four coins

Q: Increase the number of parallel workers to 8. If each worker can only hold 2 coins in memory, what is the maximum number of coins that can be flipped by 8 parallel workers compared to 1 serial worker?

A:sixteen coins

Q: From what you've seen, what is another reason why it would be a good idea to use parallel workers instead of a serial worker?

A: Parallel workers are able to do more work with less memory

<u>Human Parallel Computer - Data Parallelism through Forest Fire Simulations</u>

My number:3

Total number of students:18

My probability:0.167

Percentages: 34%, .69%, .69%, 1.03%, .69%

Iteration counts:1,2,2,3,2 Average percentage:2.888% Averge # of iterations:10

Q: What were some of the **tasks** we did in this exercise? What were they, and who did them?

A:we found averages

Q: What kinds of **data** did we work with in this exercise?

A:probability

Q: In which steps was there **communication** or **message passing** during this exercise (mark these steps)?

A:writing information

Q: In what ways could this exercise have been **optimized** so it could take less time?

A:we could have had more instructors

Q: How could we have run this exercise using two instructors instead of one?

A:The instructors could have split the work in half

Q: In what ways did we simulate a **parallel computer** in this exercise?

A: We all worked as a group

Domain Decomposition

Model Website

Image:

Click to choose color: Click or drag: Number of dependencies: 26 Workload sizes: 28 14 14 14 14 8

Q: If we assumed each color is assigned to a researcher in a real forest, and each researcher is studying how a fire spreads through the forest, why do we call them **dependencies**? Why do we call them **workload sizes**?

A: The workload sizes is the amount of work that each scientist has to do based on how much territory they have

Q: If we assumed each color is assigned to a computer running a simulation for that part of the forest, why do we call them **dependencies**? Why do we call them **workload sizes**?

A: Dependencies are how much time it takes to send a message

Q: Why would we want to minimize the dependencies?

A: so that the scientists or computers don't have to depend on others for information

Q: What are some reasons we might want to give more work to one of the colors/researchers/computers?

A: It minimizes dependencies

Parallel Recipes

My serial recipe-score a goal

Materials:

- 1. yourself
- 2. Soccer ball
- 3. Soccer net

Instructions:

- 1. Run from one side of the field while dribbling the ball
- 2. Get into a good position to kick the ball
- 3. Aim for the net
- 4. Kick the ball towards the net

Dependencies:

- yourself
- Soccer ball
- Soccer net

My parallel recipe

Materials:

- 1. yourself
- 2. Soccer ball
- 3. Your team
- 4. Soccer net

Instructions:

- 1. Run from your side of the field while dribbling the ball
- 2. Pass the ball to one of your team mates
- 3. Have them run while dribbling the ball
- 4. They get into a position to kick the ball
- 5. They kick the ball into the net

Q: In what ways was your **parallel** recipe different than your **serial** (non-parallel) recipe? A:in a serial you only need one person, in a parallel you need more than one person.

Q: In what ways was your **parallel** recipe the same as your **serial** (non-parallel) recipe? A:You need some of the same objects

Q: In what ways was your parallel recipe more efficient? In what ways was it less efficient?

A: You are able to make the goal faster

Q: Did anything need to change about the resources/materials/ingredients/tools in your recipe when you went from serial to parallel?

A: adding another person

Q: In what ways do you think this activity relates to computing and parallel computing? A:in parallel computing there are many calculations happening at the same time

Going Shopping

Solutions:

- 1. One person goes for everything
- 2. Twelve go at a time
- 3. Call the parents

What if's:

- 1. Supermarket is closed
- 2. Van doesn't work
- 3. Not enough space in van
- 4. Not enough money
- 5. Inability to drive
- 6. allergies

- Q: Where is there inherent **parallelism** in your solutions?
- A: If twelve go at a time then there are more people doing the same thing
- Q: Where are there **dependencies** between tasks in your solution?
- A: If one person goes then you are depending on that person.
- Q: Where is there **communication** in your solution?
- A: Communicating between you and the children's parents

Parallelism in Nature

1. Model link:http://www.shodor.org/interactivate/activities/ABetterFire/Data:

Tasks:how many trees are left

Parallelizable data:speed of trees getting burned

Parallelizable tasks:trees getting burned

Q: What patterns do you notice in the types of data and tasks that can be parallel?

A:how many trees are getting burned and how many trees are left

Q: What patterns do you notice in the types of data and tasks that cannot be parallel?

A: the speed of the fire spreading

Careers in High Performance Computing

Career: Mechanical Engineering

How HPC can be used in that career:

Sources: http://www.engineering.com/Hardware/ArticleID/12764/What-Is-High-Performance-Com-puting-and-How-Can-Engineers-Use-It.aspx

• Can be used to design airplanes

The World's "Fastest" Supercomputers

- Q: When was the most recent Top500 list published?
- A: November 2016
- Q: What is the name of the fastest supercomputer in the world according to the most recent list?
- A: Sunway TaihuLight
- Q: Where is that supercomputer located?
- A: China
- Q: How many **cores** does it have?
- A: 10,649,600
- Q: How much peak performance (RPEAK) does it have?
- A: 125,435.9TFLOP/S
- Q: How many of the Top500 sites in the top 10 are located in the United States?
- A: 3
- Q: If the **Blue Waters** supercomputer was capable of a **peak performance** of **13,000 TFLOP/S** when it came on-line in 2012, where would it be listed in the November 2012 list?
- A: 3rd
- Q: Why doesn't Blue Waters appear on that list?
- A: they opted out of the list

Source:

- Q: What are cores?
- A: the central processing unit that does the computing
- Q: What does **TFLOP/S** stand for?
- A: trillion floating point operation per second
- Q: What does **Linpack** measure?
- A: how fast they can do mathematical equations
- Q: What would be some different ways to rank supercomputers?
- A: they can be tested by using different applications.

LittleFe

Where the name comes from:Big Iron is a slang for big supercomputer, little fe is for small supercomputers

Components:

- motherboard(x6)
- CPU
- Core(2 per CPU)
- Hard Drivers(x1)
- Network(ethernet)
- Ram(memory)(1-4GBmotherboard)
- Powersupply
- cooling(fan, heat sink)
- case

Blue Waters demo

YouTube video

Q: What are the advantages to using a remote supercomputer as compared to a local supercomputer like LittleFe?

A:They can send back visualizations

Q: What are the disadvantages?

A: They take up more space

Parallel Computing: Terminology and Examples

<u>Slides</u>

Shopping for Your Own Supercomputer

• Part:

Cost:

Link:

Q: What are the most important parts of a supercomputer?

A: Motherboard, CPU, Ram, Cooling system

Q: What assumptions did you make when you did your shopping? Which of these assumptions were false?

A: what kind of component you need

Dagri demo

Q: What are some of the ways you can envision augmented reality being used for science?

Α

Q: What specific scientific examples can you think of that would benefit from augmented reality?

A: