
Printing in Docs/Sheets/Slides
SHARED EXTERNALLY
luizp@google.com
ikopylov@google.com

Last Updated: October 2019

Overview
Currently Docs/Sheets/Slides do a combination of client-side and server-side printing.

Client printing is preferred over server printing:

1.​ It's much faster. Server printing requires relayout of the document on the server-side, as
well as shipping of all the resources (e.g. images) back down to the client.

2.​ It ensures that the printed page matches the on-screen layout. This can vary across
browser/platform due to font rendering differences.

3.​ It works offline.

Client-side Printing
Client-side printing is currently only done by Docs on Chrome.

Docs currently renders its content to HTML. In order to print, it uses print media CSS to hide the
UI and position the content appropriately. It uses an @page rule to set the page size, remove
printer margins, and hide browser header/footers.

Server-side Printing
Printing is always done server-side for Sheets and Slides, which use Java server-side rendering
logic to render to PDF. For non-Chrome browsers, printing is also done server-side for Docs.

Ideal Long-Term State
1.​ Client rendering on Canvas. Currently we use a mix of HTML, SVG and Canvas for

rendering and would like to unify on Canvas for better cross-platform support, simplified
shared logic, and performance.

2.​ Client printing via Canvas. Once there is a consistent rendering surface, ideally it could
be used for both local PDF generation and local printing.

Requests for Chrome

[done] P0 Printing via Canvas
Canvas surfaces currently print as an image, which is problematic for client printing:

1.​ Resolution differences between the screen dpi and printer dpi could cause the content to
be blurry.

2.​ Results in large printed documents, which is particularly problematic when printing to
PDF.

3.​ Text is rendered as an image when printing to PDF and is not selectable/interactive or
searchable.

4.​ Hyperlinks are lost when printing to PDF.
5.​ Entire document content needs to be rendered to one or more canvases at print time,

which has memory / performance considerations.

A fix was implemented in crbug/959357, which saves any canvas commands during beforeprint
to a display list, and plays them back to the PDF. This addresses the issue, but an explicit API
for producing PDF, would still be the ideal solution.

P1 Printing mixed page size/orientation
We’d like to be able to produce PDFs with different page sizes and orientations. In order to do
this, we need some way to represent that in the browser. Could be through @page rules or
through the printing API discussed below.

P2 Accessible PDFs
In order to generate accessible PDFs from the printed content, the document needs to be
tagged with additional metadata (e.g. alt text for images, document structure tags for
paragraphs / tables, etc).

P2 Customization of settings in print dialog
Changes that users make in the Print Dialog can sometimes produce unexpected results. (e.g.
crbug/716883).
In the short term, would like to handle client printing in Docs in the same way as PDFs. This
would remove some dialog options (e.g. margins, headers/footers) that cause unexpected
results. It would also make behavior consistent between Doc/Sheets/Slides, since client and
server printing would be treated the same way.
Longer term, would like to either be able to customize the dialog, or print directly from the app.

https://bugs.chromium.org/p/chromium/issues/detail?id=959357
https://bugs.chromium.org/p/chromium/issues/detail?id=716883

P3 Print API
Ideally, we could produce PDFs using a canvas-like API. This is sketched out in the appendix
below. This would allow PDFs to be produced on demand, and avoid having to control PDF
properties indirectly through HTML/CSS.

P3 Offline Download as PDF
Today, downloading a document as PDF from within Docs (and not via browser print) requires a
round trip to the server which lays out the document from scratch, produces a PDF and sends it
back down to the client. This requires the user to be online and is wasteful in terms of bandwidth
and repeated layout work. Ideally, the client would be able to generate a PDF directly, via the
same mechanism as printing.

Appendix A: Ideal browser API for Canvas printing
Ideally there would be a print-specific API allowing developers to issue low-level printing
instructions. One possibility would be to allow the creation of a print-specific Canvas2D Context
with new APIs to start/end pages at custom sizes and to generate hyperlink rects.

iOS and Android have similar solutions via creation of a PDF context for print. 1

 iOS Android

Initialization Create/terminate PDF context
via
UIGraphicsBeginPDFContext
and UIGraphicsEndPDFContext

Create a PDFDocument or
PrintedPDFDocument

Start/finish pages Via UIGraphicsBeginPDFPage. Via PDFDocument#startPage
and #finishPage.

Mixed page sizes Supported Only supported when output to
PDF (not when printing)

PDF context allows same
instructions as screen
context

Yes, active PDF context is a
standard CGContext

Yes, using a standard Canvas
from Page#getCanvas

Hyperlink to external
URL

Yes, via
UIGraphicsSetPDFContextURL
ForRect

Not supported

Hyperlink to internal
position

Yes, via
UIGraphicsAddPDFContextDes
tinationAtPoint and
UIGraphicsSetPDFContextDest
inationForRect

Not supported

1 Additionally, both iOS and Android allow for querying of printer capabilities and direct control over print
jobs, which may not be an initial requirement for this web print API.

https://developer.apple.com/documentation/uikit/1623931-uigraphicsbeginpdfcontexttodata
https://developer.apple.com/documentation/uikit/1623929-uigraphicsendpdfcontext
https://developer.android.com/reference/android/graphics/pdf/PdfDocument.html
https://developer.android.com/reference/android/print/pdf/PrintedPdfDocument.html
https://developer.apple.com/documentation/uikit/1623915-uigraphicsbeginpdfpagewithinfo
https://developer.android.com/reference/android/graphics/pdf/PdfDocument.html#startPage(android.graphics.pdf.PdfDocument.PageInfo)
https://developer.android.com/reference/android/graphics/pdf/PdfDocument.html#finishPage(android.graphics.pdf.PdfDocument.Page)
https://developer.apple.com/documentation/coregraphics/cgcontext
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/pdf/PdfDocument.Page.html#getCanvas()
https://developer.apple.com/documentation/uikit/1623916-uigraphicssetpdfcontexturlforrec
https://developer.apple.com/documentation/uikit/1623916-uigraphicssetpdfcontexturlforrec
https://developer.apple.com/documentation/uikit/1623911-uigraphicsaddpdfcontextdestinati
https://developer.apple.com/documentation/uikit/1623911-uigraphicsaddpdfcontextdestinati
https://developer.apple.com/documentation/uikit/1623925-uigraphicssetpdfcontextdestinati
https://developer.apple.com/documentation/uikit/1623925-uigraphicssetpdfcontextdestinati

	Printing in Docs/Sheets/Slides
	SHARED EXTERNALLY
	Overview
	Client-side Printing
	Server-side Printing
	Ideal Long-Term State

	Requests for Chrome
	[done] P0 Printing via Canvas
	P1 Printing mixed page size/orientation
	P2 Accessible PDFs
	P2 Customization of settings in print dialog
	P3 Print API
	P3 Offline Download as PDF

	Appendix A: Ideal browser API for Canvas printing

