Configurable Token Management
for Spark Running on YARN

Background

Current Spark on YARN supports accessing kerberized cluster if security is enable, also it is
transparent for end user, Spark on YARN automatically gets the token from system to be
accessed. This significantly enhance the usability for production users, but still it has several
problems:

1.

Supported service is hard-coded, only HDFS, Hive and HBase are supported for token
fetching. For other third-party services which need to be communicated with Spark in
Kerberos way, currently the only way is to modify Spark code.

Current token renewal and update mechanism is also hard-coded, which means other
third-party services cannot be benefited from this system and will be failed when token is
expired.

Also In the code level, current token obtain and update codes are placed in several
different places without elegant structured, which makes it hard to maintain and extend.

Target

So here propose a new configurable token management class to address all the issues
mentioned above:

Make service pluggable and configurable, this will allow users to add their own service
token fetching mechanism (not only limit to HDFS, Hive and HBase).

Add configurable token management class to manage all the services, including token
fetching, renewing and updating.

Provide enough flexibility for end users to satisfy different scenarios (batch processing or
long running service, dynamically token updating...)

Solution

ConfigurableTokenManager

+ initialize()

+ fetchToken(service: String)
+ fetchTokens()

+ renewTokens()

*

<<interface>> <<interface>>
ServiceTokenRenewable ServiceTokenProvider

+ serviceName()
+ obtainTokensFromService()

+ getTokenRenewalinterval() + isTokenRequired()

+ getTimeFromNowToRenewal()

HDFSTokenProvider HiveTokenProvider HBaseTokenProvider

ServiceTokenProvider

ServiceTokenProvider is responsible for obtaining token from specific service, any service that
need to be accessed through Kerberos has to implement its own Service TokenProvider to offer
a way to get the tokens. Also getTokenRenewallnterval should be implemented to offer the
token renewal interval for timely token renewal.

By default HDFSTokenProvider, HiveTokenProvider and HBaseTokenProvider will be
implemented internally. Also users could implement their own ServiceTokenProvider and
registered into Configurable TokenManager.

Two configurations to control whether this Service TokenProvider will be loaded or not:

1. spark.yarn.security.tokens.${service}.enabled
This configuration controls whether this service will be loaded or not, this configuration
keeps the same as current one, by default hdfs, hbase and hive token provider will be
loaded. For any other service which needs to be loaded should set this configuration to
true.

Also the service here should keep the same name as provided in Service TokenProvider.
2. spark.yarn.security.tokens.${service}.class

This configuration specifies the full-qualified class name of token provider. By default
hdfs, hbase and hive class will be loaded in automatically. For other service needs to be
loaded should specify the class name.

ServiceTokenRenewable

For any service token Provider in which token is renewable should implement this interface, this
will be used for periodical token renewal to avoid token expiration.

ConfigurableTokenManager

ConfigurableTokenManager manages all the registered token providers and provide APIs for
other modules to call. This module will be lied in yarn/client, driver, AM and executors as a
singleton. In the yarn/client it will fetch the tokens and add into Credentials and UGI, in the AM
side it will periodically renew the tokens, in the driver/executor side it will update the new tokens
periodically.

	Configurable Token Management
	for Spark Running on YARN
	Background
	Target
	Solution

