
Proposal Repo: https://github.com/tc39/proposal-async-context
Matrix Channel: https://matrix.to/#/%23tc39-async-context:matrix.org
Please reach out to @jridgewell or @legendecas for meeting invitation

Future Topics
-​ Short topics

-​ Questions (for some future):
-​ Any word from JSCore?
-​ Is there a prototype for AsyncContext implementation which can be

tested?
-​ Non-up-to-date-AsyncContext implementations

-​ https://chromium-review.googlesource.com/c/v8/v8/+/4553
118

-​ TaskAttribution is behind a flag (similar behavior, not
identical)

-​ Polyfill based on task attribution (only works on Chromium and
requires command-line flags):
https://gist.github.com/andreubotella/e061a42b17e4eefcd971aec5
c396a9b4

-​ Google's userland transform and polyfill:
https://gist.github.com/shicks/0eec67c7b2d3693b6abf356d42a146
a4

-​ Ilias Bhallil polyfill:
https://github.com/iliasbhal/simple-async-context

-​ Are there any tests for the expectations being written? If so, where? As a
tc39 proposal but with significant web integrations, what makes sense?
WPT?

-​ https://github.com/tc39/test262/pull/3874
-​ Need test for module contexts

-​ No WPT yet.
-​ Longer discussions

 Oct 7, 2025
-​ https://github.com/tc39/proposal-async-context/pull/136

-​ Nicolo: does the HTML spec say they could be in the same agent?
-​ Andreu: the HTML spec says they're a different agent, chrome sometimes uses

the same isolate
-​ Generator semantics

-​ Steve: not doing anything in generators is more performant in browsers. Also
more consistent on yield and yield* (also cf. userland iterator map() generator).

-​ Nic: Kevin and SES group blocked the semantics. SES’s call is on Wednesday.

https://github.com/tc39/proposal-async-context
https://matrix.to/#/%23tc39-async-context:matrix.org
https://chromium-review.googlesource.com/c/v8/v8/+/4553118
https://chromium-review.googlesource.com/c/v8/v8/+/4553118
https://gist.github.com/andreubotella/e061a42b17e4eefcd971aec5c396a9b4
https://gist.github.com/andreubotella/e061a42b17e4eefcd971aec5c396a9b4
https://gist.github.com/shicks/0eec67c7b2d3693b6abf356d42a146a4
https://gist.github.com/shicks/0eec67c7b2d3693b6abf356d42a146a4
https://github.com/iliasbhal/simple-async-context
https://github.com/tc39/test262/pull/3874
https://github.com/tc39/proposal-async-context/pull/136

-​ Justin: Seems no delegate blocking understands the case that is breaking.
https://github.com/tc39/proposal-async-context/issues/18#issuecomment-201050
2039

-​ Chengzhong: Original motivation was to allow mutation without a new function
scope

-​ Alternative API:
https://github.com/tc39/proposal-async-context/blob/master/MUTATION-SCOPE.
md#alternative-decouple-mutation-with-scopes

-​ Justin: This could be acceptable. Mark does not like dynamic scope. This does
not allow mutation without a reference to the AsyncContext.Variable instance.

-​ Nic: A complementary way to preserve context on yield is adding a metaproperty
like function.sent to read the context of the caller of next(). This only works
directly inside the generator body. This has no performance cost as the context is
already on the stack.

-​ Chengzhong: the using proposal now only allows mutating a single Variable. Not
a Snapshot. So that a manual invocation of the using symbol methods, skipping
the @@dispose is limited to a single variable.

-​ Next Action: An overview picture of all these alternatives.
-​ Generator semantics with async generators

-​ Andreu: Nic’s proposal of something like function.sent for the caller context, how
does it work for async generators? If you call a `next` of an async generator
without await, some calls of `function.sentContent` might be called after the caller
of `.next()` has already exited that same context. But the promise returned by
`.next` will still need to reference that context, because it’s the context
`unhandledrejection` will be called with if it rejects. So the context will be
referenced anyway, just through more complicated means.

-​ Not a problem per-se, but implementation-wise, the context of the next caller is
always kept alive.

-​ Update of the design doc to Mozilla
-​ https://gist.github.com/andreubotella/2325bd06cef379baefd011f0e6319148

-​ Snapshot API alternatives?
-​ Context: https://github.com/tc39/proposal-async-context/issues/130
-​ AsyncContext.bind() a Function?
-​ The idea is to remove the Snapshot API, just keep

AsyncContext.bind()/AsyncContext.wrap().
-​ Michal: some people use generators and yield as an alternative to AsyncContext (?).

Solid 2.0 might be working on something related.
-​ https://effect.website/
-​

 Sep 9, 2025
-​ WebPerf Call on September 11th: WebPerf WG Agenda

https://docs.google.com/document/d/10dz_7QM5XCNsGeI63R864lF9gFqlqQD37B4q8Q46LMM/edit?tab=t.0#heading=h.of2x142jhjes
https://github.com/tc39/proposal-async-context/issues/18#issuecomment-2010502039
https://github.com/tc39/proposal-async-context/issues/18#issuecomment-2010502039
https://github.com/tc39/proposal-async-context/blob/master/MUTATION-SCOPE.md#alternative-decouple-mutation-with-scopes
https://github.com/tc39/proposal-async-context/blob/master/MUTATION-SCOPE.md#alternative-decouple-mutation-with-scopes
https://gist.github.com/andreubotella/2325bd06cef379baefd011f0e6319148
https://github.com/tc39/proposal-async-context/issues/130
https://effect.website/
https://www.w3.org/events/meetings/2f4723f7-b86d-4c4e-a7d5-08bcbe949d8d/20250911T080000/

-​ Next meeting in two weeks is cancelled for TC39 plenary week.
-​ yield* context pass-through:

https://github.com/nicolo-ribaudo/proposal-async-context/commit/32856cb7ce1aaaa9f31
0f8f4b6532b93b459012f

-​ For context discussion: https://github.com/tc39/proposal-async-context/issues/18
-​ This is a middle ground approach that allows yield* iterator to observe the

calling context, while preserving the context around yield in a generator
function.

-​ When performing yield* iterator, the iterator can be implemented as a
userland iterator with plain functions

-​ Add this to the agenda of September Plenary.
-​ Pull requests:

-​ https://github.com/tc39/proposal-async-context/pull/135
-​ https://github.com/tc39/proposal-async-context/pull/98

-​ Scott: Module as resource initiators
(https://github.com/w3c/resource-timing/issues/263)

-​ This PR only requires the module body evaluation to be in an
empty context

-​ Hosts implementing import can still observe the initiator context
at the time of import() call

-​ There is a referrer as a parameter in the host module import hook.
Hosts can use that to infer resource initiators as well.

-​ Scott: Import a style, and blocked on the style importing another
CSS was added as <link>. Are there two contexts?

-​ Jason (chat): There's also the potential for CSS Modules too
right? `import someCSS with {type: 'css'; }`

-​ Gecko design doc: https://notes.igalia.com/EosN692sTN23Z-ly0MElYQ
-​ Andreu: This is still a draft, including a prototype impl.
-​ For potential memory concerns around APIs like localStorage/BroadcastChannel,

we may decide not to propagate at all.
-​ Also notable about developer learning experience about why an API propagates

in one condition and why it does not in another condition.
-​ Planning to share this with Mozilla next week.

-​ Paint attribution tracking in Chromium
-​ Andreu: Is this useful in task attribution?
-​ Scott: for soft navigation, we want to know if an image change is caused by an

interaction. Paint tracker links a paint to a soft navigation, and to an interaction.
-​ Scott: right now it is just a subset of DOM modification, like adding a node to the

DOM, source change of an image. Style change is not supported yet.
-​ Andreu: no support with ResizeObserver
-​ Michal: This is related to ContainerTiming. Like sets the AC.Variable whenever

we observe a change to the DOM. In the future we can attribute a container
change to an initiator.

https://github.com/nicolo-ribaudo/proposal-async-context/commit/32856cb7ce1aaaa9f310f8f4b6532b93b459012f
https://github.com/nicolo-ribaudo/proposal-async-context/commit/32856cb7ce1aaaa9f310f8f4b6532b93b459012f
https://github.com/tc39/proposal-async-context/issues/18
https://github.com/tc39/proposal-async-context/pull/135
https://github.com/tc39/proposal-async-context/pull/98
https://github.com/w3c/resource-timing/issues/263
https://notes.igalia.com/EosN692sTN23Z-ly0MElYQ

 Aug 26, 2025
-​ TPAC plan: https://www.w3.org/2025/11/TPAC/

-​ Possible interested W3C WGs:
-​ WebPerf WG (Pre-TPAC call is also valuable)
-​ WHATWG Track

-​ Planned schedule: 1 hour (30m presentation, 30m discussion or 1 hour
discussion)

-​ Q: How does it work with Observales? And/or asyncIterable use cases
-​ https://github.com/tc39/proposal-async-context/issues/18

-​ Nic: Can there be a middle solution between yield should be like await, and yield
should not preserve context?

-​ Nic: A possible solution can be pass-through the context of the .next() caller,
to the inner generator of yield*, modelling this as a talk-through the inner
generator when using yield*.

-​ Example: yield* gen(), if gen() is implemented as a iterators, it can get the
caller context

``` 
{ 
  [Symbol.iterator]() { return this; }, 
  next() { 
    // In the caller context of .next(). 
    return { value: asyncVar.get(), done: true }; 
  }, 
}; 
``` 


 Aug 12, 2025
-​ dialog.after().then(() => ...) expectation and behavior

-​ Steve: Anything the async context proposal can do?
-​ Justin: Second type of async variable, also about Stephen/Datadog’s dispatch

time context, but will we run into the opposite case?
-​ Steve: the current workaround is to update the API to get rid of promise.
-​ Chengzhong: is this an after.then() only issue? Does the same tracing

library expect the two semantics at the same time?
-​ https://github.com/WICG/observable?tab=readme-ov-file#concerns

-​ Steve: second type of "continuation promise" or second type of async variable?
-​ Justin: Attach dispatchContext to the event object, if the event object is passed to

the then handler.

https://www.w3.org/2025/11/TPAC/
https://github.com/tc39/proposal-async-context/issues/18
https://github.com/WICG/observable?tab=readme-ov-file#concerns

-​ Chengzhong: after() can return a thenable, capturing the dispatch context
-​ Transforming chains of .then to async functions

-​ Steve: people expects this to be “equivalent” after the transform
-​ Steve: Is there an “equivalent” transformation of user iterators and generator

functions?
-​ https://github.com/tc39/proposal-async-context/pull/132

-​ Justin: in this PR, yield* still captures the context in the generator, and restores it
after yield*.

-​ Chengzhong: this is an editorial change if the next snippet behavior does not
change.

-​ Justin: does the PR defer the ctx 2 here to be (1), instead of (0)?
-​ Andreu: the PR also captures the context at GeneratorStart, which preserve ctx

(0). So this behavior does not change.
```js 
function *gen() { 
  // (ctx 2) 
  const nextCtx = yield* yieldAndGetVar(); 
  // (ctx 2) 
  // nextCtx => (3) can this be possible? 
} 
 
let g; 
asyncVar.run((0), () => { 
  g = gen(); 
}); 
asyncVar.run((1), () => { 
  g.next(); 
}); 
asyncVar.run((3), () => { 
  g.next(); 
}); 
 
function yieldAndGetVar(value, asyncVar) { 
  let isFirst = true; 
  return { 
    [Symbol.iterator]() { return this; }, 
    next() { 
      if (isFirst) { 
        isFirst = false; 
        return { value, done: false }; 
      } 
      // return { value: new AC.Snapshot(), done: true}; 
      return { value: asyncVar.get(), done: true }; 
    }, 

https://github.com/tc39/proposal-async-context/pull/132


  }; 
} 
``` 

-​ Generator https://github.com/tc39/proposal-async-context/issues/18
-​ Steve: What's the motivation behind generator semantics?
-​ Chengzhong:

https://github.com/tc39/proposal-async-context-disposable/?tab=readme-ov-file#li
mitations-of-run and https://www.npmjs.com/package/co

-​ Steve: cases where people want to bring in the context of “next”
-​ Steve: preserving the context across yield lost the flexibility in these cases
-​ Justin: https://matrixlogs.bakkot.com/TC39_Delegates/2023-03-23#L173
-​ Justin: it is still possible to wrap the generator, to pass the context of the next to

pass to the generator.
-​ Chengzhong: still skeptical about merging contexts on yield, like fallback to

preserve if next didn’t provide a new abort signal in the context
-​ Andreu: replay using variables after yield?

 Jul 15, 2025
-​ https://github.com/tc39/proposal-async-context/pull/129

-​ Steve: Is it distinguishable if the async context map is a WeakMap?
-​ Nic: No. Having a WeakRef to a value in the async context map, it is observable

if the value is never GC-ed. But if the value can be released, it is not observable.
-​ Nic: The spec do not mandate the GC details.

-​ Firefox investigation:
-​ MessageChannel:

-​ One option is to only propagate when neither port has ever been
transferred

-​ Same as task attribution
-​ BroadcastChannel:

-​ There is a process-wide map keeping track of the number of listeners,
with refcounting. The original thread is notified when all the other listeners
handled the message, so it's possible to keep the context to propagate it
and then do some clean-up there.

-​ We also need to keep track of which thread a JSHandle belongs to, to
know when to expose the context and when not.

-​ IndexedDB and LocalStorage still wip
-​ Will write down a document, maybe with attached patches on GitHub, and send it

to Gecko
-​ WHATWG plans

-​ Stakeholders: Domenic, Anne
-​ More concerns on the spec side that every spec author will have to think about

this.

https://github.com/tc39/proposal-async-context/issues/18
https://github.com/tc39/proposal-async-context-disposable/?tab=readme-ov-file#limitations-of-run
https://github.com/tc39/proposal-async-context-disposable/?tab=readme-ov-file#limitations-of-run
https://www.npmjs.com/package/co
https://matrixlogs.bakkot.com/TC39_Delegates/2023-03-23#L173
https://github.com/tc39/proposal-async-context/pull/129

-​ Noise if the context is passed explicitly.
-​ Hard to write tests (?) if being passed implicitly.

-​ Spec notations like “queue a task”, “in parallel”, with questions like threads and
cross-agents.

-​ What’s actually breaking in incremental rolling out?
-​ For tracing it’s an improvement
-​ Frameworks depend on the context for dependency injection. This could

be a breaking (when the context changes from A to B).
-​ Can an implementation be rolled out incrementally, with the spec being a whole

roll out?
-​ Jul 29 (in two weeks), the next meeting collides with the TC39 plenary and will be

cancelled.
-​ Andreu plans (no promise) to prepare the document before the plenary.
-​ A proper time might be presenting at the Sept plenary, with Mozilla’s feedback on

the document

 Jul 1, 2025
-​ https://github.com/tc39/proposal-async-context/pull/126
-​ https://github.com/tc39/proposal-async-context/pull/127
-​ Firefox investigation:

-​ MessageChannel
-​ No distinction on message port if it is cross-agent. Firefox saves data like

SharedArrayBuffer on a per-process map and passes ID across agents to
detect if the data can be posted.

-​ Nic: can we propagate only if the port has never been transferred? A port
coming back is like a different port that goes _through_ the other thread.

-​ Chengzhong: MessagePort is meant to be used cross-agent, we should
maybe just never propagate the context and tell React to update their
code. I wouldn't propagate the context in Node.js if I have an HTTP client
and server in the same thread that talk to each other.

-​ Chengzhong: also, right now there is no JS way to tell whether a
messageport has been roundtripped or not.

-​ Steve: it's a common pattern to use MessagePort as a fast scheduling
thing. Jasmine for example also does it, not just React.

-​ Chengzhong: Regardless, no support of propagation across roundtrips of
the port.

-​ BroadcastChannel
-​ Same agent or different agents? Need to look more into this.

-​ Chengzhong: Different principle? "Do not propagate for APIs that could be
cross-agent". To avoid user surprise.

-​ Nic: For a function that on different prototypes, like button.focus() and
iframe.focus, should button.focus() propagate?

https://github.com/tc39/proposal-async-context/pull/126
https://github.com/tc39/proposal-async-context/pull/127

-​ Nic: Databases that thought of as only single-agent, should their APIs
propagate? Users might not be thinking about the potential cross-agent
case.

-​ Andreu: will look into conditions different tabs creating agents, and how it works
with indexdb.

-​ Nic: If this is implementation detail, they should be treated like always
different agents.

 Jun 17, 2025
-​ Feedback from Hackfest:

-​ Notes:
https://github.com/Igalia/webengineshackfest/wiki/2025-AsyncContext:-trimming-
down-the-web-integration

-​ Nic: smaug prefers a whole design. Asks about complexity to implement in firefox
(potentially in webkit):

-​ Propagate contexts on postMessage/BroadcastChannel across realms
-​ Writing to IndexDB/LocalStorage and trigger events

-​ Michal Mocny: is the question Firefox specific? Or is it “how easy is it to
implement it?”

-​ Shaseley: Any feedback from Webkit?
-​ Nic: asked Anne in the past, but Anne has the HTML editor hat on.
-​ Andreu: asked Suzuki (JSC, not WebKit), they were not fully looking into

AsyncContext. Bun implemented AsyncLocalStorage. They were concerned
about Bun’s use case.

-​ Shaseley: WebKit position request
https://github.com/WebKit/standards-positions.

-​ Andreu: Bun(JSC)/Node.js(V8) did not implement yield support yet.
-​ Nic: Did bun upstream the patch? (Andreu: no)
-​ Michal: Relationship between Node.js ALS / AsyncContext

-​ Chengzhong: General idea is to build ALS ontop of AC
-​ Nic: API Parity, ALS.enterWith to be replaced with

github.com/tc39/proposal-async-context-disposable
-​ Chengzhong: https://github.com/nodejs/node/pull/58065 deprecating

ALS.disable
-​ Michal: any not supported use cases from ALS?
-​ Nic: without enterWith, framework APIs like before/after hooks will need

refactoring.
-​ Michal: relying on Promise continuation to propagate?

-​ Michal: negative was emphasis on shipping the full form of the proposal.
-​ Nic: smaug worried about “a main page creates a realm/iframe, contains a

AC.Var, calling to the outer page, and the main page captures the context and
keeps the realm/iframe alive”

https://github.com/Igalia/webengineshackfest/wiki/2025-AsyncContext:-trimming-down-the-web-integration
https://github.com/Igalia/webengineshackfest/wiki/2025-AsyncContext:-trimming-down-the-web-integration
https://github.com/WebKit/standards-positions
http://node.js
http://node.js
http://github.com/tc39/proposal-async-context-disposable
https://github.com/nodejs/node/pull/58065

-​ An option is to make context mapping a weakmap, performance concern
was raised.

 Jun 3, 2025
Cancelled, discussion will be on WebEngine Hackfest session, June 4:
https://github.com/Igalia/webengineshackfest/issues/64

 May 20, 2025
-​ May plenary: 2025-05 - AsyncContext web integration brainstorming

-​ https://github.com/tc39/agendas/blob/main/2025/05.md UTC+2
-​ Andreu: Frameworks feedback that they don’t need particular events to

propagate.
-​ Steve: Important for users to not change most propagation cases. The API

should do the right thing by default.
-​ Shaseley: Are there some events still on the table to be supported? Like

XMLHttpRequests
-​ Shaseley: In our case, React will break if

postMessage/MessageChannel/onmessage does not propagate
-​ Justin: Registration context for event listeners can still be the reasonable option
-​ Steve: Registration context is not useful in cases
-​ Shaseley: lot of events run in empty context. Dispatch context makes sense
-​ Justin: If dispatch context is possible, it will be good
-​ Shaseley: Features like AsyncTask/async stack traces, Microsoft’s effort on

resource timing need to propagate context on events.
-​ Shaseley: Mozilla has no position on task attribution (yet?)
-​ Andreu: Dan Minor considered implementing scheduler.yield with the equivalent

of CPED, without the rest of task attribution / AsyncContext.
-​ Web Engines Hackfest: https://github.com/Igalia/webengineshackfest/wiki AsyncContext:

trimming down the web integration (tentatively June 3rd)
-​ https://github.com/nodejs/node/pull/58104

-​ Set a value in CPED, during an async function before the first await, the mutation
in CPED leaks out from the async function.

```js 
async function foo() { 
  setCPED(value); 
  await 0; 
} 
 
const p = foo(); 
getCPED(); // value changed. 

https://docs.google.com/presentation/d/1yBtSvF5z3P4PliB2NziYzm90d27keiX2P9-MfoDvpJs/edit?slide=id.p#slide=id.p
https://github.com/Igalia/webengineshackfest/issues/64
https://github.com/tc39/agendas/blob/main/2025/05.md
https://github.com/Igalia/webengineshackfest/wiki
https://github.com/nodejs/node/pull/58104


await p; 
``` 

-​ Chromium handles this by resetting the value.
-​ CPED does not support restoring values in generator functions as well.

```js 
function* gen() { 
  setCPED(value); 
  yield; 
  getCPED(); // value lost 
} 
``` 

-​ Justin: last with @Ron, with disposable to detect using syntax.
-​ Shaseley: Not seeing issue with await change. Need to think about the

generator's case more and talk about this next time.

 Apr 8, 2025
-​ AsyncContext Stage 2 Update (slides)

-​ New comment on
https://github.com/mozilla/standards-positions/issues/1187#issuecomment-27863
04707 suggests that we will need to go through both use cases and mental
model complexities.

-​ Andreu will present these slides.
-​ Disposable AsyncContext for Stage 1 (slides)

-​ Clarify why we need a separate proposal
-​ Dependency
-​ The main proposal is valid by itself.

-​ Realm boundary:
-​ It’s only “ShadowRealm Callable Boundary”

-​ Composability
-​ Signal compute function, using a variable.
-​ Make it clear that all three solutions are compose-able.
-​ Composing multiple variable mutations, does it fit into

DisposableStack-like?
-​ Before-each hook, can it return a value, and a test-framework can use it

in the test body function.
-​ @@enter with DisposableStack

-​ Push @@enter to stage 2, reach out to @Ron
-​ Slide 11 needs clarification on @@dispose

-​ We should explain using variable carefully without saying that
@@dispose will restore a snapshot, as “restore a snapshot” also affects
other variables.

https://github.com/tc39/proposal-async-context
https://github.com/tc39/proposal-async-context/blob/master/FRAMEWORKS.md
https://docs.google.com/presentation/d/1YkSQIWxCQCLSe1WKFWpndEd-gdf9coE1HRYa_v_z5J0/edit
https://github.com/mozilla/standards-positions/issues/1187#issuecomment-2786304707
https://github.com/mozilla/standards-positions/issues/1187#issuecomment-2786304707
https://github.com/legendecas/proposal-async-context-disposable
https://docs.google.com/presentation/d/1p_rQ5UagJ3Bgwbds0NL-nBaR3ovJLmyHmKuRMJejs_Y/edit?usp=sharing

-​ Potential prevention: fail fast to have .run methods to check not-disposed variable
scopes.

-​ Schedule the main proposal update before this new proposal.

 Mar 25, 2025
-​ Events

-​ Node.js Collab Summit https://github.com/openjs-foundation/summit/issues/446
April 1-2, 2025

-​ BlinkOn 20 https://www.chromium.org/events/blinkon-20/ April 7-8, 2025
-​ Public event.
-​ Michal has a lightning talk about soft navigation. Recording will be shared

publicly.
-​ https://github.com/tc39/proposal-async-context/pull/117 Merged

-​ For Angular, mention signal and dependency injection.
-​ Steve: they don’t think it will be helpful, unfortunately.
-​ Nic: Mozilla’s standards positions say that the README focuses on frameworks,

not benefiting end users. This document addresses this concern.
-​ Michal: reading this doc shows the world with/without this feature.

-​ https://github.com/legendecas/proposal-async-context-disposable
-​ Nic: Even the proposal can go with @@dispose only, we should push strongly

with @@enter, to prevent users from accidentally mutating a value in the scope.
-​ Nic: @@enter discouples the scope with the value being entered. So library can

say "the variable will enter with this value", and then the user code actually exists
it.

​
``` 
var1.run(100, () => { 
  var2.run(200, () => { 
​ const x = var1.withValue(101); 
​ x[Symbol.enter](); 
​ var2.withValue(201)[Symbol.enter](); 
​ x[Symbol.exit](); 
​ // is var2 200 or 201 here? And var1? 
  }); 
}) 
``` 
``` 
var1.run(100, () => { 
  var2.withValue(201)[Symbol.enter](); 
}) 
// what is var2 here? 
``` 

https://github.com/openjs-foundation/summit/issues/446
https://www.chromium.org/events/blinkon-20/
https://github.com/tc39/proposal-async-context/pull/117
https://github.com/legendecas/proposal-async-context-disposable

​ - Nic/Steve: Currently run is implemented as one clone of the snapshot, with the updated
variable, and then restore the previous pointer when it's done. If .run does not restore var2 in
that example, it needs two clones instead.
​ ​ - Chengzhong: With Node.js AsyncLocalStorage, var2 would be 201.

- This addresses the concern that frameworks can not change their public API to adopt
AsyncContext.run pattern.

-​ Steve: Jasmine,
-​ Chengzhong: and other test frameworks.
-​ Shaseley: can we make it an error if the call order is messed up?
-​ Chengzhong: we can define it before stage 2.
-​ Nic: We still need to define the error state, because you can try/catch around the

exit that throws
-​ Andreu: Need to make sure it works with DisposableStack, if we make it an error
-​ Steve: Ron is against about strict using declaration with @@enter. If this

proposal allows loose manual invocation, this should not be an issue.
-​ Nic: if we allow loose @@enter, we should make it hard to mess up.
-​ Steve: how this is different from ContinuationFlow from messing up with the

Variable one has access to
-​ Michal (in chat): Is it possible to have a read-only reference to a variable?
-​ Andreu: disposable across run boundary
-​ Steve: curious about ABA-1B-1 cases:

-​ const x = v.withValue(1); x[Symbol.enter](); const y = v.withValue(2);
y[Symbol.enter](); x[Symbol.dispose](); y[Symbol.dispose]();

-​ const x = v.withValue(1); x[Symbol.enter](); v.run(2, () =>
x[Symbol.dispose]());

-​ const x = v.withValue(1); v.run(2, () => x[Symbol.enter]());
x[Symbol.dispose]();

-​ Nic (chat): The reverse-wrap that Steve proposed could be
AsyncContext.Snapshot.contain(() => runMaliciousCode())

-​ Steve: bring up with SES confirming with the guarantees they were hoping.

 Mar 11, 2025
-​ Mozilla’s standards-positions:

https://github.com/mozilla/standards-positions/issues/1187#issuecomment-2711498173
-​ Shaseley: will share this internally, and to Shu
-​ Steve: there are cases where it is impossible to pass the context explicitly, like

the signal proposal handlers
-​ Trend in app code doing loose coupling.
-​ Event handler will issue an RPC, and a data store, and triggers a global

state mutation, observations. There are no function called directly.
-​ There are cases in Google that can not extend the argument list to pass

the context.
-​ TODO: Reach out to frameworks like Angular.

https://github.com/mozilla/standards-positions/issues/1187#issuecomment-2711498173

-​ Nic: for users in frameworks (react, OpenTelemetry), write a passage for each of
them about how the proposal can improve UX

-​ Shaseley: how well is wording in spec like “queue a task” in implementation
working out?

-​ Andreu: APIs like XHR already need to track the API objects.
-​ Shaseley: Storage API has not been looked at.
-​ Nic: have a short list about implementation examples. And how task attribution

implements them.
-​ Shaseley: Mozilla might be concerned about “are we going to do this for EVERY

SINGLE api?”
-​ Nic: is Mozilla planning to implement Task Attribution?
-​ Shaseley: no
-​ Andreu: if async context is there, mozilla can implement task attribution easier.
-​ Justin: Did we want to list real world use cases?

-​ React async components being one
-​ Examples of loose coupling where there is no direct function call to pass

additional data through
-​ Middleware (side effects registered to watch RPC responses)
-​ RxJS
-​ Google’s Signals that Steve talked about

-​ Dependency injection (framework)
-​ We have to think up framework changes that they may never make,

before we can show how user code will benefit
-​ Concurrent Server handlers would be a good one (My Vercel example

from the original slide deck)
-​ Nic: Vue's compiler also already polyfills AsyncContext :)

https://github.com/vuejs/core/blob/fb0c3ca519f1fccf52049cd6b8db3a67a669afe9
/packages/runtime-core/src/apiSetupHelpers.ts#L480

-​ Per-context vs. per-isolate state
-​ Scott: is this a per-realm or per-isolate thing? On scheduler.yield, cases can be

changing contexts in an isolate
-​ Andreu: cross-origin?
-​ Scott: embed frame A in frame B, a task in frame A triggers invocation in frame

B.
-​ Scott: AsyncContext makes it impossible to query other’s state, but it allows

affecting them.
-​ Andreu: It’s per-isolate. But I thought you couldn’t have different origins in a

single isolate.
-​ Scott: Same-site cross-origin code runs in the same isolate. Also cross-site in

mobile devices.
-​ Scott: Why is AsyncContext per-isolate?
-​ Andreu: Stephen Belanger argued that it should be, matching

AsyncLocalStorage’s behavior with Node.js vm module.
-​ Andreu: cross-site interactions shouldn’t propagate the context

https://github.com/vuejs/core/blob/fb0c3ca519f1fccf52049cd6b8db3a67a669afe9/packages/runtime-core/src/apiSetupHelpers.ts#L480
https://github.com/vuejs/core/blob/fb0c3ca519f1fccf52049cd6b8db3a67a669afe9/packages/runtime-core/src/apiSetupHelpers.ts#L480
https://github.com/vuejs/core/blob/fb0c3ca519f1fccf52049cd6b8db3a67a669afe9/packages/runtime-core/src/apiSetupHelpers.ts#L480

-​ Nic: if a frame A calls B sync on the stack, is it a browser call, or a JS function
call?

-​ Scott: JS triggers an event in another frame, would have a frame A on the stack
(?)

-​ Scott: per-context propagation was slow, causing performance issues.
-​ Justin (chat): When we discuss this with SES folks, we need to stress that this

can be secured with the same mechanisms that we’ve already proven
-​ Nic: what happens if A directly calls B’s setTimeout
-​ Scott: B’s setTimeout captures B’s context. Olli has concerns affecting each

other’s state.
-​ Nic: if it’s sync, isn’t it good to be able to affect other’s state?
-​ Andreu: I don’t think affecting the state of a same-site cross-origin iframe is an

issue. For cross-site, it is. But cross-site same-agent interactions shouldn’t be
synchronous (e.g. postMessage), so not propagating the context shouldn’t be an
issue, right?

-​ Scott: In Chrome there are synchronous cross-site interactions, e.g. calling
iframe.focus() synchronously fires a focus event in the iframe. Same with
blur.

-​ https://github.com/whatwg/html/issues/3506
-​ Chengzhong: Cross ShadowRealm sync function calls need to be able to

propagate the context and this does not allow querying values without access to
a variable instance.

-​ Nic: it allows changing with a snapshot without access to the variable instance.
-​ Andreu: If two sites happen to be in the same browser process / event loop /

agent, they should behave like they are in separate processes.
-​ Nic: in focus example, can you detect it's a sync call from the other iframe?
-​ Andreu: you could observe it with timing side channels like Spectre, but not

through anything intended by the specs
-​ Nic: working on a principle on how the web propagates.

-​ Navigation behavior
-​ Andreu: What will happen with navigation? Let’s say we define a variable in a

same-origin tab, and then we reload the page or navigate to a same origin url,
can the context be observed after the navigation (through that variable)? What if
we navigate an iframe instead?

-​ Andreu: The current understanding is to only propagate across same-document
navigation, never cross-document.

-​ Scott: that’s what we are doing now. Double check on same process navigation.
-​ Andreu: For session history, there’s the bfcache (back-forward cache), which

keeps documents alive for some time after you navigate, to not have to reload
them if you go back.

-​ Andreu: But that can’t be used to navigate back and forth synchronously. Can
preserve context with a snapshot, but not through a navigation. So if a timeout
triggers after a back-and-forth navigation, should it preserve context?

https://github.com/whatwg/html/issues/3506

-​ Scott: Task attribution probably does, because bfcache freezes and then
unfreezes the event loop task queues.

-​ Andreu: I don’t think specifying this would be an issue, but it should definitely be
tested.

-​ Actions
-​ Chengzhong: Response to Mozilla’s standards-positions

-​ Nic: remember to link to React & Vue’s document about AsyncContext.
-​ Steve: will reach out to Angular ask to share publicly.

-​ Scott: Check on task attribution on navigation.

 Feb 25, 2025
-​ Memory Management Document:

https://github.com/tc39/proposal-async-context/pull/115
-​ Going to open a mozilla/standard-positions request after this PR lands.

-​ Prior Arts Elaboration: https://github.com/tc39/proposal-async-context/pull/116
-​ Continuation: https://github.com/tc39/proposal-async-context/issues/60

-​ Support await AsyncContext.Snapshot/AsyncContext.Variable
write for ergonomics.

-​ Nicolò: https://hackmd.io/@nicolo-ribaudo/SJz-ydiqkl
-​ There was discussions about await changing the context, documented in

https://github.com/tc39/proposal-async-context/blob/master/CONTINUATION.md
-​ Michal showed a demo like await asyncVar.withValue(val). But with

other Promises restore the context before await.
-​ Mutation can be achieved with .set method, @@dispose only makes it harder

to leak to the outer scope.
-​ Steve: If this is left as a follow-up, how do these APIs work together?
-​ Steve: FWIW, google internal tracing doesn't need continuation flow because we

wrap separate children in their own spans and use mutable state within the span
bookkeeping to flow context out

 Feb 11, 2025
-​ Overflow from last time:

-​ where should scheduler context propagation diverge from the async context
propagation, like, preventing user snapshots from breaking soft navigation?

-​ Shaseley: break soft navigation if user restores with
AsyncContext.Snapshot.

-​ Nic: Is this just about don’t want others to change own’s own variable

https://github.com/tc39/proposal-async-context/pull/115
https://github.com/tc39/proposal-async-context/pull/116
https://github.com/tc39/proposal-async-context/issues/60
https://hackmd.io/@nicolo-ribaudo/SJz-ydiqkl
https://github.com/tc39/proposal-async-context/blob/master/CONTINUATION.md

-​ Michal: Snapshot restores all variables. In this case, a special variable
dont want to be changed.

-​ Chengzhong: does this only apply to specific scheduler API?
-​ Shaseley: a Snapshot.run breaks from the chain like click.

Snapshot.run should only used by async state owners.
-​ Michal: should snapshot be limited
-​ Steve: callbacks in APIs like setTimeout need to be wrapped with

snapshot.run
-​ Michal: any scheduling API, not only scheduler.posttask
-​ Justin: we do not expect anyone to touch async context, but only

frameworks. Framework can use snapshot to continue soft navigation
-​ Michal: an internal value will be overridden.
-​ Michal: restore a default context in a user interaction event listener, loses

browser internal variables
-​ Andreu: can be a host hook for browsers
-​ Nic: from react dev’s pov, react owns the async state. Should

security/permissions be affected by await / context.
-​ Michal:

https://react.dev/reference/react/useTransition#react-doesnt-treat-my-stat
e-update-after-await-as-a-transition

-​ Michal: startTransition is likely to be called in an event listener. And
setPage initiates a softNavigation. Will await someAsyncFunction
change the async state of setPage?

-​ Steve: No. await is not going to mess with the caller's context.
-​ Steve: Snapshots everything and it will be sure we are in the exact same

snapshot, including browser states.
-​ Nic: Signal has some APIs for everything, and some APIs for framework.

The names are different with the dangerous APIs. Maybe async context
should do the same

-​ Michal: If user land scheduler is inevitable, this could be more helpful.
Initial thought is that this can a simple break out of the jail.

-​ Andreu: better to not have Snapsnot to be Promise only.
-​ Justin: the context of promise uses the time of promise.then. Perform

promise.then on a global promise does not inherit the global async
state.

-​ Nic:
``` 
class ContextCapturer { 
  #runner = setInterval(() => { 
​ this.#callbacks.forEach(cb => cb()); 
  }) 
  #callbacks; 
 

https://react.dev/reference/react/useTransition#react-doesnt-treat-my-state-update-after-await-as-a-transition
https://react.dev/reference/react/useTransition#react-doesnt-treat-my-state-update-after-await-as-a-transition


  run(cb) { 
​ this.#callbacks.push(cb); 
  } 
 
  end() { 
​ clearInterval(this.#runner); 
  } 
} 
``` 

-​ This allows "stealing" the context without Snapshot.
-​ It captures when you do `new CaptureContext()`, and runs the callbacks

in it
-​ Michal: might not trust a userland scheduler to associate the soft

navigation. Some value in userland scheduler.
-​ Justin:

``` 
const nilCtxQueue = []; 
let nilCtxPromise = Promise.resolve().then(run); 
 
function run() { 
  nilCtxPromise = Promise.resolve().then(run); 
  const queue = nilCtxQueue.slice(); 
  nilCtxQueue.length = 0; 
 
  for (const item of queue) { 
​ item(); 
  } 
} 
 
function scheudleInNil(cb) { 
  nilCtxQueue.push(cb); 
} 
``` 

-​ It is possible to propagate nil context just with promise.then
-​ Andreu: I will not oppose to have host hook to preserve browser internal

variables on snapshot/restore. The host hook would take the context to
restore, and return either an alternative context to restore, or empty. And
the default host hook is just returning empty.

-​ Michal: BTW I just found
https://github.com/tc39/proposal-async-context/issues/85 is related to
previous conversation?

-​ Nic: yes
-​ https://github.com/tc39/proposal-async-context/pull/111

-​ No updates on next week’s TC39 plenary

https://github.com/tc39/proposal-async-context/issues/85
https://github.com/tc39/proposal-async-context/issues/85
https://github.com/tc39/proposal-async-context/pull/111

-​ Batching with HTML integration feedback addressed.
-​ Next time:

-​ Feedbacks&document on memory management
-​ Michal: https://github.com/tc39/proposal-async-context/issues/60
-​ Michal: Support await

AsyncContext.Snapshot/AsyncContext.Variable write for
ergonomics.

 Jan 28, 2025
-​ WHATNOT feedbacks:

-​ Handling should be uniform for everything
-​ Semantics should be worked out in advance

-​ List events that should use registration context, and all the rest use
dispatch context

-​ Events dispatched synchronously, are always in dispatch context
-​ User initiated events do not propagate context, and use fallback context
-​ Events triggered by API but not synchronously, like XHR, postMessage

in the same agent
-​ Michal: A very common pattern to effectively yield
-​ Polyfills based on same window postMessage, may need

propagation
-​ An alternative API might be needed for polyfills.
-​ Michal: for curiosity I checked core-js and it will use

MessageChannel whenever available
(https://github.com/zloirock/core-js/blob/master/packages/core-js/i
nternals/task.js#L80-L86) for setImmediate

-​ Capture a Snapshot can be an alternative
-​ Scott: Have FS operations, IndexDB been covered? Devtools instruments

async stack traces, there is something missing (?)
-​ Do a lot “queue a task and fire an event”
-​ For tracing libraries, the ability to get the context at platform API

call is sufficient for instrumentations.
-​ We shouldn't save the context implicitly [except for Promises?] to avoid leaking

memory
-​ The leak is hypothetical, can this be an opt-in?
-​ Andreu: The feedback was more like if a context can be alive for indefinite

time
-​ Implicit propagation is the core of the proposal
-​ Andreu: for like setTimeout, the context is save along with the callback.

When it times out, the references to the callback and context is cleared.

https://github.com/tc39/proposal-async-context/issues/60
https://github.com/zloirock/core-js/blob/master/packages/core-js/internals/task.js#L80-L86
https://github.com/zloirock/core-js/blob/master/packages/core-js/internals/task.js#L80-L86

-​ Window1 created a setTimeout, and a callback is from another window.
When window1 is collected, the callback is still scheduled (?).

-​ Another design is making the context map a weak map.
-​ APIs like requestIdleCallback may never call the callback if there is

no idle time.
-​ When will an AsyncContext.Variable be collected, and making the entry in

the global context weak map expire?
-​ E.g. when an iframe/window is no longer referenced, the instances

can be collected, and its entries in the global context can be
collected as well.

-​ Generally, an AsyncContext.Variable is created at a
module-top-level scope, and will not be collected, unless the
whole window is destroyed.

-​ The last call was short of time and the topic was out of time.
-​ The memory leak concern needs to be clarified if only certain APIs like

Observers, or all APIs should not implicitly propagate.
-​ Next time:

-​ where should scheduler context propagation diverge from the async
context propagation, like, preventing user snapshots from breaking soft
navigation?

-​ https://github.com/tc39/proposal-async-context/pull/111

 Jan 14, 2025
-​ https://github.com/tc39/proposal-async-context/pull/100 was merged

-​ Andreu: If a stream is transferred to another agent and be transferred back,
should there be any context propagation or preservation?

-​ Nicolo: postMessage to yourself. Trace across workers would be nice, but
requires agent-wide GC. For request-response worker interaction, better to have
a separate promise-returning API.

-​ Chengzhong: real world use cases are helpful.
-​ #107: Event.captureFallbackContext follow-up

-​ Nicolo: should a “read” fallback context API be exposed? The current shape only
allow writes the “fallback context”, but not allow reads what the “fallback context”
contains.

-​ Steve: the point of the fallback context is that the code is not aware of the
fallback context. “Read” breaks this assumption.

-​ Nicolo: the idea would be to set a new updated fallback in the
registration-variable's run method

-​ Steve: this would break the fallback for other variables that didn't want this
behavior.

-​ WHATNOT: https://github.com/whatwg/html/issues/10906

https://github.com/tc39/proposal-async-context/pull/111
https://github.com/tc39/proposal-async-context/pull/100
https://github.com/tc39/proposal-async-context/pull/107
https://github.com/whatwg/html/issues/10906

-​ A polyfill based on task attribution:
https://gist.github.com/andreubotella/e061a42b17e4eefcd971aec5c396a9b4

 Dec 17, 2024
-​ Longer discussions

-​ https://github.com/tc39/proposal-async-context/pull/100
-​ Can we merge and iterate on it?

-​ Add clear notes about TODO points.
-​ Continuation variable allows “returning” value around “await”s.
-​ Dispatch context on events will not allow this.
-​ https://github.com/tc39/proposal-async-context/issues/107

 Nov 26, 2024
-​ Longer discussions

-​ Web Integration #100
-​ Proposed solution:

-​ Start with a set of asynchronous events, use the dispatch context.
Browser events use the “fallback” context.

-​ For synchronous events, use the context where the events were
dispatched.

-​ Definitions:
-​ Sync events: dispatched in the middle of a task (i.e. immediately

when triggered), i.e. abortSignal
-​ Async events: a new task scheduled, new entry point, but were

triggered from a previous task, i.e. setTimeout, XHR.send,
postmessage. Most events?

-​ Browser events: new entry point, triggered without a previous task,
start with empty context, i.e. user interactions or os events, click,
scroll…

-​ Discuss: js module execution
-​ adding script, or dynamic import(), ShadowRealm.prototype.importValue()
-​ We don’t evaluate modules more than once. Multiple callers might

request/add the same module. So we don’t want to set the AsyncContext
based on the caller, instead some global?

-​ Task Attribution V2
-​ APIs like requestAnimationFrame doesn’t queue a task and run callbacks

at once
-​ async/await and mutation inside a function scope: #101

-​ Short topics
-​ #98: should the host hook be limited from accessing the importer’s async context

snapshot?
-​ NIc: Consistent root context per realm.

https://docs.google.com/document/d/1hZ1FdFtHoPk7h9mwTPJSlF83T7YnTpmfa0CEQbPn8Ks/edit?tab=t.0#heading=h.nzv5bytar3s
https://gist.github.com/andreubotella/e061a42b17e4eefcd971aec5c396a9b4
https://github.com/tc39/proposal-async-context/pull/100
https://github.com/tc39/proposal-async-context/issues/107
https://github.com/tc39/proposal-async-context/pull/100
https://github.com/tc39/proposal-async-context/pull/101
https://github.com/tc39/proposal-async-context/pull/98

-​ ShadowRealm
-​ Next actions:

-​ Update #100 to the latest proposed solution.
-​ switch on/off weeks for meetings (other bi-weekly) starting Dec 17.
-​ shaseley@google.com, mmocny@google.com

 Nov 12, 2024
-​ Short topics

-​ Browser feedback on web integration
-​ Mozilla is implementing scheduler.yield. Scheduler.yield only propagates

through promise and async/await, nothing else. No web APIs integration.
Separate implementation.

-​ Changes how snapshot interacts with scheduler and/or task
attribution

-​ Also determines whether promise or setTimeout is more
expensive

-​ though this depends on details of how maps are
implemented, can keep some variables in a separate
bucket that does/n't propagate under certain
circumstances

-​ Incremental addition of async context on events. List the initial set of
events integrate async context, e.g. unhandledrejection, postmessage

-​ Prefers a simple solution of fallback context. clarify motivation of fallback
context trees

-​ specifically, only falling back when browser directly triggers the
callback without a dispatch context (n.b. if dispatch context is
specifically set to root context, it would not fallback)

-​ does it ever make sense to use the same fallback for a non-event?
-​ Iterator helpers

-​ iterator helpers are a lot like sync events - shouldn't trigger fallback
-​ also an analogue to generators, which run in initial context

-​ may want to rethink generators and treat them more like sync
events?

-​ more expressive, easier transpilation
-​ generators also currently need extra special handling in the

spec, don't just fall out from promise/await
-​ assumption made with using syntax was that context will be

restored inside generator body - treating as sync event would
make that future extension problematic

-​ weakens idea of context being block-scoped - less teachable

mailto:shaseley@google.com

-​ can we work around these counterpoints? how important is block
scoping?

-​ may be more open to something like enterWith?
-​ Snapshot identity

-​ Angular: am I in the current snapshot? be more performant
-​ Cross-realm identity
-​ If the bootstrap snapshot is a normal variable, and reference the variable

in context it is not bootstrapping, how would it tell it is in bootstrap
-​ This mattered in a tight loop in the framework's internal event queue -

making new snapshots every time was a non-starter
-​ wrap() might help a bit if it can be more performant than

Snapshot()?
-​ Dan had some ideas of how to avoid making a bunch of objects

-​ Longer discussions
-​ Next actions:

-​ Invite scheduler API folks to this meeting
-​ Plenary in 3 weeks, switch on/off weeks for meetings (other bi-weekly) starting

next week
-​ Merge soon PRs:

-​ https://github.com/tc39/proposal-async-context/pull/100 trim down events
part

-​ https://github.com/tc39/proposal-async-context/pull/98

 Oct 29, 2024
-​ Short topics

-​ https://github.com/tc39/proposal-async-context/pull/106
-​ How often will people need to set multiple variables at once?

-​ generally we don't expect it to be often
-​ a few examples of v8 internals (scheduler, etc) needing to set

multiple, but individual libraries will generally not
-​ batching is always possible, it depends on how often variables

change together whether this is more ergonomic/efficient or not - if
variables often change together, batching is a win; if not then it's
also less likely to need to change both at the same time - userland
libraries should be feasible in this case.

-​ Does this proposal allow specifying a default value?
-​ could put it on the get() call, but this shifts burden of knowing the

correct default to the caller.
-​ The static run/get example only looks better because we're setting two

vars - if setting one, then the current proposal is still preferable
-​ A disposable-based approach also obviates the need for a multiple-set

API

https://github.com/tc39/proposal-async-context/pull/100
https://github.com/tc39/proposal-async-context/pull/98
https://github.com/tc39/proposal-async-context/pull/106

-​ Steve H is concerned about polyfillability if this is a later proposal
-​ Andreu is coming around a bit to the mutation root example (suggested in

#101)
-​ This is a possible solution to testing issues
-​ Might be difficult to polyfill
-​ Could also look into a copy-on-write solution where mutations

don't affect earlier uses
-​ Conclusion: we can probably link #105/#106 to #101
-​ We should also start considering how quickly we can land the extensions

once we hit 2.7
-​ Web integration

-​ Is a stack needed?
-​ stack "feels" better but isn't strictly needed, we can just special-case the

context that comes from the browser's event loop - seems to satisfy all
known concrete use cases

-​ original proposal marked out zones of capturable context, all event
listeners triggered from within will use a context from within; Justin
proposed this is too complex and that instead we just guarantee that
browser-triggered listeners will run in the fallback context

-​ original proposal allowed two different areas to call back and forth and get
the containment context rather than seeing each other

-​ Is it reasonable to piggyback other things on this, not just events?
-​ are there other callbacks dispatched directly from browser?

-​ schedulers (setTimeout, etc) - but these use registration context
-​ media events have races between causes
-​ streams' constructor methods can be called directly, e.g. if a

readable stream passed to fetch
-​ more convoluted cases, e.g. stream transformers' ctor methods

calling into readable streams
-​ geolocation APIs (not events, dispatched async similar to

setInterval)
-​ userland APIs
-​ worklets - action comes from different agent - method takes a

function/class and calls methods from a different agent - similar to
workers so maybe we don't expect context to flow at all?

-​ workers have their own event loop and to keep going, but
worklets are short-lived

-​ event-based API means we don't need to explicitly wrap the callbacks,
since addEventListener does it automatically (though it still can even if the
wrap function is explicit)

-​ motivation was that events triggered by user action don't have an
obvious context

-​ would be nice if anybody can emulate browser context, rather than
having a special privileged context

-​ Frameworks (like signals) able to delimit the parts of a program,
not only events.

-​ passing functions still allows leaking - too expensive to capture
fallback on function instantiation, so best only used between major
separated islands in app

-​ what about dynamic import?
-​ currently uses root context since it could be imported from multiple

places - allows escaping the fallback, so no guarantees about
containment: containFallback(() => import(...)) - if
imported module registers an event listener, then it ends up
outside the container

-​ Task attribution does something for module loading/fetching -
potentially not just propagating the root, same-origin iframes may
be different but not clear on details

-​ should reach out to Scott Haseley about this
-​ Nic: What happens if .addEventListener a single listener to different

containments
-​ if fallback is part of key then it's impossible to unregister once

you're outside the fallback, since you can never get back into it, so
probably better to just use the first one and make future calls
no-op

-​ AIs
-​ Andreu: investigating iterator helpers
-​ Andreu: investigate task attribution + modules
-​ Nicolo: talk w/ Mozilla about proposed browser integration
-​ Steve: working on containment stack polyfill proof of concept
-​ Chengzhong: continuing mutation explainer, merging #106 into #101

 Oct 15, 2024
-​ Web integration proposal https://hackmd.io/@nicolo-ribaudo/rJhdk8HyJe

-​ Can the containment stack be simplified? Need concrete case to explain the
complexity

-​ Other scheduling mechanisms like Observables that batches observations
-​ Steve: frameworks want confidence that their contexts die
-​ Justin: does the fallback tree proposal mean that bootstrap contexts will live

forever?
-​ Steve: is the fallback context concept broader than just events - do we want

non-event schedulers (e.g. observers, lifecycle callbacks, signals, iterator
helpers, streams, etc) to use the same fallback root instead of registration or
global root in some/all cases?

-​ Update on Oct Plenary
-​ SES model on browser internal variables, expanding the concerns.

https://hackmd.io/@nicolo-ribaudo/rJhdk8HyJe

-​ SpiderMonkey wants AsyncContext in replacement of incumbent realm
implementation.

 Oct 1, 2024
-​ TPAC feedback

-​ Web editors prefer registration context.
-​ If queue task in parallel can work in implementation with strategy other than

registration context, web editors would not oppose the solution
-​ Q: what’s parallel queue task

-​ HTML queue events from different threads in parallel
-​ Difficulties for web editors to determine the “right” context
-​ In spec, modify the phrase “Queue a task” to also take a snapshot and

restore it at task run. In impl, work can be either in another agent, another
thread, or another process. Difficulties can be in the cross-process
communication to reference the snapshot.

-​ Currently Task Attribution uses dispatch context, but may be open to changing to
registration context (TODO: Ref), will run a finch trial to see the impact of the
switch, but caveat that Task Attribution may not be in the best state for the trial

-​ for all but the few they specifically use dispatch for - message, popstate
(history events), xhr (?)

-​ TA uses CPED in v8, we expect to build on top of that; but scheduler.yield
also uses CPED except that its state gets cleared by setTimeout and
await (i.e. different behavior than AsyncContext will need) - (link)
considers setTimeout as a new task, only propagate signal/priority for
microtasks/await

-​ setTimeout just needs to do an extra step to reset the TaskSignal
(or other internal vars) when it runs its task, can be done without
significant performance regression

-​ Next step: if it is implementable in other browsers.
-​ Web Integration Docs

-​ Dispatch & registration context and enhancements:
https://hackmd.io/@nicolo-ribaudo/ByPl9jF6A

-​ Web integration in-spec context tracking:
https://hackmd.io/5Esc8zq8SJSrettCSKTVag

-​ Example of complex system communicating through events:
https://hackmd.io/02hmitJLTXe7Us9M7Lh2YQ?view

-​ Example of how multi-app event handling:
https://gist.github.com/nicolo-ribaudo/c16386e211313edabda9680b434f7cea

-​ Next: Steve will share examples and matrices.
-​ Andreu is going to add an agenda item about Web Integration in Oct Plenary.

https://github.com/WICG/scheduling-apis/issues/94#issuecomment-2206264641
https://hackmd.io/@nicolo-ribaudo/ByPl9jF6A
https://hackmd.io/5Esc8zq8SJSrettCSKTVag
https://hackmd.io/02hmitJLTXe7Us9M7Lh2YQ?view
https://gist.github.com/nicolo-ribaudo/c16386e211313edabda9680b434f7cea

 Sep 3, 2024
-​ Web Integration

-​ Updates:
-​ Added a column in DOM Events (NOTE: SHARED EXTERNALLY)

“Context easily available at async dispatch”
-​ HTML spec editors don’t want web spec authors to have to think about

which context each event should have. We’re looking at whether the
context could be propagated automatically with HTML spec algorithms.
Trivial for 50% of events, but not so much for the rest, because some
specs (e.g. CSS) are very hand-wavy (declarative rather than imperative).
Also not easy for fetch, since it calls into the HTTP RFC, and it’s not clear
how the context flows in non-web specs. This is an analysis on spec
complexity, not implementation complexity.

-​ Implementations are imperative, not declarative, so those cases would be
easier. But in many cases browsers might be optimizing and not having
the same behavior. Would need a lot of WPT tests.

-​ Chengzhong: Publish a gist for a document categories events used in
OpenTelemetry like singleton event listeners and non-singleton event listeners.

-​ Module top level context: https://github.com/tc39/proposal-async-context/pull/98
-​ “Module and script records could snapshot the context where they run, and run

module.Evaluate() in dynamic import using that context”
-​ Create an internal slot SourceTextModule[[AsyncContextMapping]] and script

records, and not make this host defined.
-​ Host can set the host defined context first, and create/evaluate the root module.

No need for a new host hook.

 Aug 20, 2024
-​ Attendees: Jatin, Andreu, Chengzhong, Dan, Justin, Jeremy Shaker, Steve Hicks, Ariel

Backenroth
-​ Web integration

-​ Proposal: Registration time always
https://github.com/tc39/proposal-async-context/pull/100

-​ Steve: You want the most relevant causal context in any callback. The most
recent JavaScript that ran. You have several different JS contexts, in general,
which contributed to something occurring.

-​ DOM Events (NOTE: SHARED EXTERNALLY)
-​ Steve: We're trying to build a new tracing system from scratch, on top of

AsyncContext. Registration context is working out to be infeasible. If it's from
user interaction in the webpage, there's no JS that triggered it. But if you dispatch
a click event manually, we could allow that to run. There are all kinds of things in

https://docs.google.com/spreadsheets/d/1r-IjEyTEuCzQtJgSyY-a5htrQFME9RPylkv3hT_puqg/edit?gid=1971388798#gid=1971388798
https://docs.google.com/spreadsheets/d/1r-IjEyTEuCzQtJgSyY-a5htrQFME9RPylkv3hT_puqg/edit?gid=1971388798#gid=1971388798
https://github.com/tc39/proposal-async-context/pull/98
https://github.com/tc39/proposal-async-context/pull/100

DOM which have causal contexts, e.g., innerHTML or deleting an element from
JS triggering scheduling a MutationObserver.

-​ Chengzhong: OpenTelemetry instruments event handlers in a way that's specific
to the particular event, e.g., they can pick the expected context when there are
multiple contexts available. If they are in a manually triggered event vs user
interactive.

-​ https://github.com/open-telemetry/opentelemetry-js-contrib/blob/main/plugins/web
/opentelemetry-instrumentation-user-interaction/src/instrumentation.ts#L305

-​ Andreu: Frame the difference between setTimeout and user interactions in terms
of, not registration, but what starts the async thing which causes the event. For
setTimeout, logic could be based around starting the timer, for a user click there’s
nothing started from JS.

-​ Dan: Can we learn from what OTel does? Didn't that solve this problem on the
basis of registration time, via Zone.js?

-​ Chengzhong: OTel patches addEventListener.
-​ Jatin: We want to not have to have any kind of runtime library, and have the

browser just do the correct thing, rather than needing to patch addEventListener.
-​ Chengzhong: Different tracing libraries may choose different things
-​ Justin: d3 isn't going to know about tracing, so it seems like it shouldn't make a

difference between initial vs registration, since the tracing library can set up the
registration context suitably before calling into d3

-​
-​ Ariel: it's important to know when a trace is done - having the registration context

around much longer means that it continues to be accessible and may never be
done; w.r.t. OTel, this seems to be a known limitation.

-​ Dan: Knowing when a trace is done - Yoav Weiss looked into this for task
attribution, and found this to be very complicated and ultimately infeasible. How
do other platforms/systems handle this?

-​ Ariel: In android we use GC, in iOS we use reference counting
-​ Justin: curious about bootstrapping and knowing that it's done; it sounds like

you're trying to use GC as the signal, and the only way to get this to work is to
avoid having any references leftover; this seems wrong because (1) you can't
rely on GC timing, and (2) an "end" callback should be suitable to indicate when
it's done.

-​ Ariel: we don't rely on GC at all for web tracing (the
WeakRef/FinalizationReg spec says not to)

-​ Steve: We’re conflating these things because with registration context, the
bootstrap context keeps coming back. It’s not that we’re trying to get a
signal of when it completes, it’s that once it’s done we don’t want it
coming back.

-​ Ariel: We do use reference counting, so the more we have that keeps the
RC alive, the … But to Steve’s point, once we’ve completed bootstrap we
dispose of stuff. We also use that to time the bootstrap, with the timing
relying on reference counting.

https://github.com/open-telemetry/opentelemetry-js-contrib/blob/main/plugins/web/opentelemetry-instrumentation-user-interaction/src/instrumentation.ts#L305
https://github.com/open-telemetry/opentelemetry-js-contrib/blob/main/plugins/web/opentelemetry-instrumentation-user-interaction/src/instrumentation.ts#L305

-​ Steve: But knowing when it’s complete and when to ship it…
-​ Chengzhong: echo Ariel's point that OTel has these limitations - the API to

end a span is explicitly separate from removing span from the context;
even when a span is ended, we can still extend the causal children by
looking into the async var to get a span graph with child after parent is
finished

-​ Yoav's previous task termination investigation: (Note: Task termination
The backing task attribution mechanism has changed since this doc was
written)

-​ Ariel: Not just a web limitation, Android has similar issues when knowing
whether a trace is active, with everything happening in just one thread.
The key bit of information is who called me.

-​ Dan: This is a long-lived FR - Node's async-hooks had dispose hooks,
and it was a big challenge when migrating to native promises, always just
kind of worked poorly, and we've been moving away from making this
functionality available (e.g. with AsyncLocalStorage, which replaces
async-hooks but doesn't solve this problem).

-​ Task termination issue thread:
https://github.com/tc39/proposal-async-context/issues/52

-​ Chengzhong: Termination and async variables are separate, can use
using to handle termination, though not perfectly

-​ Andreu: Chrome has some code to track source of events (surprisingly unrelated
to task attribution). Trying to print this source whenever an event is fired, whether
it's user or browser initiated. Not sure how to get the data, could run all the unit
tests and web platform tests - could get all the data and munge it, but some
issues with sandboxing and not being able to get the results out of the sandbox.
Not 100% confident about the hacks, these APIs weren't intended to be used this
way, sometimes there's a whole chain of algorithms leading to an event, may not
have entire sequence tested

-​ Steve: Many events have multiple types of sources: user interaction and
programmatic - this means they can already have different types of contexts, so
it's unlikely people will depend on one specific type

-​ Andreu: Will be at TPAC next month (W3c event) - can discuss w/ web platform
folks there.

-​ Andreu: Domenic had expected (on #100) more of the web integration to
be automatic via WebIDL - the manual data flow propagation for dispatch
contexts was already too much, and what we're looking at now will be
even more

-​ Steve: many specs just say "queue a task to … fire an event", and we
probably just want to search-replace to "let S be current snapshot, queue
a task to … fire an event with snapshot S"

-​ Andreu: Parallel algorithms make this more complicated, where the spec
text essentially spawns a thread and then post a task to the event loop.
This isn’t always implemented straightforwardly in browsers.

https://docs.google.com/document/d/1yQy8RNeGXLr99bNpy-7tA1Ch7wN0piekp_-JwxC8FtA/edit
https://github.com/tc39/proposal-async-context/issues/52

-​ Dan: this is the core issue, parallel algos would need to save snapshots;
need a very clear explanation of why this is useful

 Aug 6, 2024
-​ Short topics
-​ Longer discussions

-​ Web integration #100
-​ Jeremie: Integrating tracing in angular - trying to track interactions; when

a user clicks a button, triggers an ngrx action, ngrx uses setInterval -
registration context is when store is defined

-​ Andreu: to clarify, library handles the listener, event bubbles out to
user-defined context

-​ Andreu: one reason for not exposing the dispatch context is that
synchronous events would need to be tracked specifically in the spec

-​ Steve: If we do nothing in the spec, don't we just automatically get the
dispatch context for sync events?

-​ Andreu: yes, for sync events, but not for async events - we'd get the
top-level

-​ Dan: Only two options - either sometimes have a contextual context and
sometimes either empty or registration; or else always registration

-​ Andreu: currently no good way to check if a given context is the empty
context, whereas when it's an event property, it could be null

-​ Dan: The failure mode with the former is that you're just missing context,
that could be okay?

-​ Dan: Steve should enumerate which events should run in which context,
Andreu can help with enumeration

-​ Steve: Click event running in registration context by default seems
reasonable?

-​ Peter: Does the dispatcher maybe have the ability to know what context it
wanted and use that?

-​ Jatin: Different perspective on click (and all synchronous handlers) - by
the time you step over to the next line, the listener has executed, we need
the listener to run in the provenance of the surrounding context - any
other default will lead the user to incorrect state

-​ think of specific use cases, e.g. performance tracing - if you're
trying to figure out how long something takes, then if click() is
called programmatically, then we need to account for work in that
handler

-​ other example is DI, context is a global service map; click having
access to global/scoped service map at registration time seems
incorrect because code invoking event listener could be coming
from different place; contract w/ click handler extends to any code
invoking it

https://github.com/tc39/proposal-async-context/pull/100

-​ Dan: Is programmatic click() in context of your own delegation
framework?

-​ Jatin: could be custom HTML events delivered synchronously
-​ Dan: Normal case for click() is coming from HTML, how to handle

this?
-​ Jatin: empty
-​ Dan: So how does DI work in the empty context?
-​ Jatin: need event delegation, doesn't work so well without it, that's

another issue, I think it needs to be built-in; custom events never
triggered by browser

-​ Andreu: custom element inside custom editable, deleting element
triggers callback from outside JS

-​ Dan: register event handler from inside DI context, so registration
context makes sense to capture there? but is that relevant for
frameworks?

-​ Jatin: every framework has a bit of delegation, even classic
frameworks

-​ Dan: or maybe it actually needs to be based on widget tree
-​ Jatin: DI use case is maybe less clear
-​ Dan: tracing is also confusing - say you fetch and wait for return

and then do something after, we lose the intermediate work
-​ Steve: our tracing is fine with that, spans are mutable, span tree

reflects the call tree
-​ Dan: so how does this affect events?
-​ Jatin: API to either create a root trace if one doesn't yet exist, or

else (if it already exists because invoked synchronously) then
make a child span

-​ Dan: gotcha, so that's why empty makes sense, don't want to
inherit the wrong root trace from parent

-​ Jatin: for DI, service map available to all contexts, singleton needs
to be singleton everywhere - e.g. singleton map would exist
outside the AC; scoped maps would be more registration time;
could work w/ dispatch-time, but scoped maps may not always
have what you want - this may be the intention, e.g. react contexts
don't guarantee you're going to find what you're looking for

-​ Steve: lots of contexts - dispatch, registration, construction, etc
-​ Jatin: collection of many event handlers, each could have their

own context. Another super-interesting context is load-time
context - for dynamic loaders, may want to know when a class
was loaded

-​ Dan: don't know whether frameworks want to use snapshots this way - do
we need to make snapshots more efficiently than making a whole new
object? Would be messy, but could allow "adding" a snapshot to an
existing object.

-​ Jatin: also haven't discussed server-side - this is also available on
servers, right?

-​ Andreu: yes, web integration is a requirement for 2.7, but we hope
server integration would be built on consistent principles

-​ Jatin: AsyncLocalStorage exists, right?
-​ Dan: yes, but it lets a lot flow through with causal context; we

should file an issue w/ NodeJS's standards positions repo - also
w/ cloudflare and deno

-​ Andreu: discussed w/ Guy Bedford
-​ Dan: WinterCG wasn't sufficient, need more Node feedback; hope

for consistency between web and node, but they might go w/
dispatch regardless of what web does

-​ Dan: Andreu was working on enumerating, but most events didn't
always have a dispatch context, and feedback to avoid switching
between dispatch and registration led to always going with
registration

-​ Andreu: Some events are always sync, but we need to have a
single API for every event

-​ Jatin: one thing that's super clear - any attempt to make context
propagation easy will end up causing big problems for
frameworks; example - thread pool on servers, grab a thread to
process a request and then return it; problem arose when wanting
background thread to have access to request thread - now threads
being reused and risks leaking data across users; not trivial to fix,
requires exposing gory details. Less likely on web, but multilogin
is still a thing and we don't want user A to pollute user B
(account-switching menu at the very least is dangerous territory)

-​ Steve: is the tl;dr that we need to make sure that the gory details
are at least accessible?

-​ Jatin: yes, the consequences can be really bad, if you want a
reasonable default maybe don't use this API.

-​ Dan: but at the same time, we absolutely need a reasonable
default. Tracing can't require calling obscure APIs.

-​ Peter: it becomes global - not just people intentionally using AC,
but everyone who calls a function needs to be careful.

-​ Steve: best we can do is have people in dangerous territory pay
attention and then do the right thing for ordinary cases

-​ Dan: I thought registration was the best fallback because of object
capabilities - principle is that trusted code is running in a particular
context and you don't want it to be able to escape that context -
code has certain rights; if the outer (more powerful) code wants to
set the user to a particular value and invoke inner code, the inner
code can never reset the value of that variable, all sub-tasks

calling back into user APIs are guaranteed to be restricted to that
user - this is an argument for registration over empty

-​ Dan: Could register click handlers in a no-span context
-​ Jatin: Event delegation …
-​ Dan: We care more about what information is exposed to framework
-​ Peter: On the Zalgo question - different behavior is registered callback

triggered by code or user interaction - this doesn't seem like a bad Zalgo
situation - it's generally distinguishable which case you're in; if JS is
invoking some code then it really does make sense to propagate context
through. If you don't allow the context to flow through then it's very difficult
for user code to handle correctly - this is particularly bad for custom
elements, but applies elsewhere

-​ Steve: Sorry for leading us astray with registration; next step is to
enumerate events with Andreu?

-​ Andreu: concerned about async events - will try to get fuller list.

 Jul 23, 2024
-​ Short topics

-​ Editorial: unify term async context mapping #99
-​ Dan: suggest use term “snapshot”
-​ Shay (chat): I like "snapshot mapping" or "snapshot map" here because it

sounds like you're going to have to talk about "snapshot entries" as well
-​ Shay (chat): (and then the internal thing is the "variable key"?)

-​ Web integration document:
https://github.com/tc39/proposal-async-context/pull/100

-​ Andreu: not all events are shipped initially with snapshot captured
-​ Andreu: Dan Minor want the document be a requirement for stage 2.7
-​ Dan: focus on cases where event dispatched with snapshot captured, not

expanding on spectacular cases
-​ Dan: Yoav Weiss mentioned in task attribution that capturing snapshots in

WebIDL might be too slow
-​ AsyncContext Update July 2024

-​ Dan: additional slide about AsyncContext & web frameworks
-​ If frameworks take snapshot objects all the time, will it be too

costly to have identical objects with the same snapshot?
-​ Shay: good to be cheap to take snapshot
-​ Justin: it is slow in react context with recursive reconciliation.
-​ Shay (chat): I keep wanting to hope that this would let you legally read

from context in more places/do it more lazily but I'm not sure that works
out for react the way it it does for fine-grained frameworks

-​ Shay (chat): keep running into "oh, but it'd just end up rerunning the
component anyway, no savings there"

https://docs.google.com/presentation/d/1FlPdrStgDUzl_AGvZpxnnZZANicfLZlXiZVYpgo_UPg/edit#slide=id.gc6f73a04f_0_0
https://github.com/tc39/proposal-async-context/pull/99
https://github.com/tc39/proposal-async-context/pull/100

-​ Performance concerns about frameworks making lots of new snapshots
-​ We could alleviate this by having Snapshot.get() that returns the same

object to avoid allocations
-​ would need to be frozen to satisfy SES requirements
-​ would allow observing whether someone else mutated a variable

(side question: does a no-change mutation create a new
snapshot? Shay Lewis hopes so)

-​ would be unprecedented w.r.t. the spec creating frozen objects
-​ also some cross-realm concerns

-​ Plan is to mention that we're investigating framework use and
performance, and to lightly allude to there being some trade-offs, but not
go into detail about the nature of the solution and thus avoid rat-holing on
those issues.

-​ Viability of mutable variable over set/enterWith
-​ works on a document to cover this part. Chengzhong Wu (legendecas)

 Jul 9, 2024
-​ Short topics

-​ https://github.com/tc39/proposal-async-context/pull/97
-​ https://github.com/tc39/proposal-async-context/pull/96
-​ https://github.com/tc39/proposal-async-context/pull/94

-​ Longer discussions
-​ Cross-realm variables (not a blocker)

-​ In HTML EnvironmentSettingsObject used to determine the incumbent
realm could be built on AsyncContext

-​ Might be relevant to https://github.com/tc39/ecma262/issues/3160
-​ Matteo: variable is only accessible in .run function, have to wrap user code in

`.run`. Not a problem for making frameworks, a problem for dev modifying their
entry points for default value.

-​ Andreu: there is an option bag for default value, `new Variable({ defaultValue:
123 })`

-​ Steve: that is one value for all default cases
-​ Matteo: pre-require a module has no chance for .run
-​ Andreu: if you have user code in the top level of multiple modules, I can see how

having to wrap all of them would mean adding boilerplate
-​ Stephen: .set can take in a place that make sense for a scope.
-​ Steve: user would ask for .set in both variables
-​ Stephen:

-​ example: create a DB in one file, access it in another - forward-flowing
(flow-thru) allows this use case

-​ .run and .set both make some degree sense with flow-thru
-​ Matteo: https://gist.github.com/mcollina/825638bedf35c49411733243c44acb4e

mailto:legendecas@gmail.com
https://github.com/tc39/proposal-async-context/pull/97
https://github.com/tc39/proposal-async-context/pull/96
https://github.com/tc39/proposal-async-context/pull/94
https://github.com/tc39/ecma262/issues/3160
https://gist.github.com/mcollina/825638bedf35c49411733243c44acb4e

-​ use case: beforeEach() in a test can't initialize an async var that requires
a run API

-​ Steve: can we approximate this by explicitly running with a "scope" rather than a
"value"?

-​ ```
-​ async_context_scope(() =>
-​ variable.set() // only effective in this scope.
-​ })
-​ ```

-​ Stephen: force scope heavily limits the constructs.
-​ Andreu: web api integration details can depend on strict scoping (for async web

APIs that take an async callback, such as
document.startViewTransition()), and change to the .run model could
delay the web integration. Not saying this shouldn’t do.

-​ Steve: my stance is that I'm hoping we can avoid delaying past August for
attempting 2.7

-​ [] A summary of .set semantics is needed to move forward with this semantics.

 Jun 25, 2024
-​ Short topics

-​ https://github.com/tc39/proposal-async-context/issues/90 context for the error
event – how do we make that happen spec-wise?

-​ Andreu: Domenic talked about line and column numbers attached to the
error event. Ecma262 don’t have any infra about capturing contexts at
throw completion etc.

-​ It would not be a reasonable timeframe to get this into the HTML
spec/ecma262 before the next plenary

-​ Steve: are there any use cases for the contexts of the error event? Are
they related to the line/col numbers?

-​ Andreu: ecma262 don’t have any line/col numbers in the spec texts.
-​ Steve: the proposal should be caring about if restoring the context or not
-​ Andreu: in an eventual consistent future, it would be specified in the same

place
-​ Steve: what is the use case for restoring the throw context in the error

event handler. Divergence with the registration-time of the event handler.
If we ultimately follow-up with a separate causal-context type of variable,
would all the use cases here just rather use that other kind of var?

-​ Andreu: If unhandledrejection restores the rejection context then we want
error event to restore the throw context for consistency; Bloomberg has a
use case for the former but not the latter

https://github.com/tc39/proposal-async-context/issues/90

-​ Chengzhong: Can ErrorConstructor capture the context as a property like
`.stack`? Implementation like V8 has infra capture stack at throw time but
it didn’t exist in ecm262

-​ Andreu: We discussed about Promise
constructor-vs-resolution-vs-schedule time, need to investigate the use
case of Error instances.

-​ Steve: if in a follow-up proposal of causal variable, the follow-up proposal
might be different from the current one. It's not clear that two separate
variables will be sufficient.

-​ Andreu: Bloomberg has a use case about the unhandledrejection
contexts. Whenever an application throws, kill that specific application (via
AbortSignal in context) and leave other applications to continue to run. A
global unhandledrejection handler, each application gets its own signal
when it starts, but inside the application code they would not care about
flow-through vs flow-around

-​ Steve: this is an example where there's some mixing between
(registration|lexical|flow-around) and (causal|flow-through), since
AbortSignal tends to want to behave lexically, but here it wants causal
context in rejection handler

-​ Longer discussions
-​ https://github.com/tc39/proposal-async-context/pull/94 documents continuation

flow to be a follow-up proposal
-​ Chengzhong: there's a more nuanced distinction - it's not that each

variable follows a flow-through or flow-around semantic; restoring the
most recent causation allows to observe previously-unobservable promise
state.

-​ Steve: two types of flow: lexical vs causal; at least three different ways to
decide which wins when contexts merge: (1) determined by the type of
merge, (2) choose separately for each variable, (3) manual override when
registering a callback (i.e. wrap). This is a two-dimensional matrix
(variables on one axis, merge type on the other) and it's not clearly
separable into a single dimension

-​ Daniel: in Bloomberg’s case the two variables both work, and passing the
causal context as a variable would also work.

-​ Andreu: To have the registration time for events, and an
AsyncContext.Snapshot property on the event for the causal context

-​ Steve: worried that if we have two type of variable,
-​ DE: existence of merge points, not convinced that purely causal make

sense
-​ Steve: usercode needs to be ignorant of async context variables. The

variables need to decide which wins at merge points
-​ DE: Given ALS solves problems even though it might not solve it

perfectly. This big problem space doesn’t mean we shouldn’t do anything

https://github.com/tc39/proposal-async-context/pull/94

-​ Andreu: Many of us don’t have the full picture, can we get feedback from
developers that use ALS and other solutions in other languages, as well
as from APM vendors?

-​ Chengzhong: Alibaba’s internal APM solution is based on OpenTelemetry,
which uses ALS. Talking with other APM maintainers, ALS matches other
languages in general, in alignment with OTel Spec. The semantics of web
APIs might not be fully useful in detailed specific semantics. OTel doesn’t
specify anything language-specific, just a general approach.

-​ Dan: Do other languages point to a consistent answer for async/await? Is
it documented?

-​ Chengzhong: My PR document is for promise construction and promise
APIs, how it matches the current model.

-​ Steve: Registration-time semantics is the clearest possible semantics,
that seems like the right default. It’s clear we need some mechanism to
expose the other flow, but the default should be registration-time, so it’s
reasonable to move forward with this.

-​ Chengzhong: We need to document the current semantics we’re
choosing. We can continue iterating on that document for any semantics
with the two variables. We should expand on any ambiguity on how the
two semantics might be different in some cases.

-​ Steve: So error and unhandledrejection would be
registration-time, but the causal context would be provided some other
way?

-​ Dan: That’s what I’m leaning towards.
-​ Steve: We would then not have a separate variable type, and expose the

causal context whenever needed?
-​ Dan: It’s easier for me to imagine exposing it for events than promises.
-​ Steve: If you’re exposing this other Snapshot, do we need a more

performant way to get back into that snapshot? Stephen’s complaint was
that wrapping the code with run would kill performance.

-​ Dan: That request is broader than that, since it relates to enterWith and
multiple variables in one shot. I don’t know what’s actionable, since
enterWith is unworkable (stack discipline), and multiple variables would
still need a callback. If someone thinks callbacks are slow, they need to
provide a benchmark.

-​ Steve: Do we need a whole chain of causation, since a single snapshot
might not give you what you need?

-​ Dan: You could build chains of causation in a variable with nested .runs,
and that’s what task attribution does. It has a high runtime cost.

-​ Steve: This is why you’d want to have each merge type have its own
place where it stashes its alternate context.

-​ Dan: Certain particular merges would give you access to the causal
context. We’d need a convention so it’s easier to use.

-​ Issue Triage
-​ https://github.com/tc39/proposal-async-context/issues/93

-​ Andreu: import defer proposal? How this works with ShadowRealms?
Context variables won’t be able to cross the boundary, only functions, but
a ShadowRealm run can call into the parent realm, and the context
should flow through that.

-​ DE: Everything should drive from where ShadowRealm should be
instantiated (??) to avoid empty root context or zalgo.

-​ DE: Web platform needs to decide what needs to be agent-wide variable
and realm-wide variable to isolate access.

 May 28, 2024
-​ Attendees: Steve Hicks, Stephen Belanger, Daniel Ehrenberg, Chengzhong Wu, Matteo

Collina, Andreu Botella, Justin Ridgewell
-​ Longer discussions

-​ Error events https://github.com/tc39/proposal-async-context/issues/90
-​ Proposed solution: capture the context at “throw”
-​ Dan: Seems like these semantics are best, if they're implementable.
-​ Andreu: I have an idea for how to implement this, but I'm not sure
-​ Steve H: Is this still the same question independent of whether we flow

around or through?
-​ Probably yes, it's the same question
-​ Chengzhong: Dan mentioned in the chat that context can be captured as

a field of the Error object like stacktrace
-​ Andreu: Maybe, I'm not sure. Relates to unspecified stack handling. I'm

not discarding it.
-​ Stack of async/await functions

-​ Stephen B: For the separate case of stacks of async functions:
Synchronous code which throws is automatically raised to the caller, and
async functions are not. I think of the await as handling. It's explicitly
handling, "I'm now responsible for this" if an error happens. The point
where unhandled happens is where the outermost await happens.

-​ Andreu: I think both cases have to be considered together, because it's
the same error handling mechanism, one for sync and one for async.

-​ Stephen B: Unhandled means there's nothing to propagate to. When you
throw, it will walk up the sync call chain, and then call uncaught exception.
Mechanically, async/await does something at each await

-​ Dan: That corresponds to the implementation, but I'm not sure if it's
programmers' mental model

-​ Andreu: Flow through vs flow around is related to this
-​ Matteo: What I recommend is to minimize surprise behavior for end users

between sync and async code. In the eye of most JS developers, there is

https://github.com/tc39/proposal-async-context/issues/93
https://github.com/tc39/proposal-async-context/issues/90

no difference between a function and an async function. People use
try/catch for both. We need to look at both, and their correspondence.

-​ Next steps on the extension with the flow-through model
-​ Stephen B: Flow-through minimizes surprising behavior. Customers are

confused because callbacks flow context into the logically continuing
code, but with async/await, the logically continuing code is what happens
after the await. Different mechanically, but from the user code
perspective, what they're expecting it to work the same way whether it's
callbacks or promises.

-​ Steve H: I wonder if this is transient, just when trying to transition. When
async-first, maybe it's surprising the other way. An async function feels
like a separate task, so the follow-on is the previous context.

-​ Chengzhong: I'm not clear on some details of the flow-through model,
given the lack of spec text/detailed semantics. In Stephen's doc, it only
defined the higher level model. I'd like to have detailed spec text, so that
we can compare the semantic differences.

-​ Stephen B: I could possibly take this on when I'm back in 2 weeks. To
Steve H's point: I don't think this is the case. Flow-around makes sense
with UI libraries where it's working recursively and it doesn't flow
backwards in a logical form. In Node, we have all this branching and
converging and we want to know what came before me. We need to be
able to follow, where did we follow-from. We're supposed to create
follow-from links for all of the preceding things for Promise.all, I care less
about that, right now we have to guess where we're linking to. Guessing
is bad.

-​ Matteo: The difference in pattern between browsers and Node.js: in the
browser, when we talk about async/await and Promises, there are fewer
Promises because more Promises cause more lag on the UI. In
backends, you're doing a lot more async work, up to thousands of
promises. If you call an async function, the context stays there. I think it
will require way more effort for developers, from APMs and framework
authors, to give us something that's consistent with user expectations.
Certain cases might not be fixable to some extent. Startup and
metaframeworks: Next.js's request store is handled within the
metaframework. Without a metaframework, there are way too many
quirks, so a developer cannot handle it. So it's nicer to have enterWith, so
you don't need to wrap everything. Is this too costly, performance-wise?
This goes to our friends in engines to decide. We need to have a measure
of what the problem.

-​ Dan: the current AsyncLocalStorage is not flow-through matches the
AsyncContext proposal. This is the current reality. How bad the current
reality is with concrete example. My current understanding is that both
context matters. And Promise.all is one of the case that both concept

come together. The current proposal chooses a subset that seemed good
enough.

-​ Stephen Belanger: APM in all other languages cost less than 5%
overhead. We have to guess the order of awaits.

-​ Steve H: in a properly instrumented code, correct graph can be built
-​ Stephen B: Can not instrument all the userland code
-​ Justin: There was an example in Matrix for this case

https://matrixlogs.bakkot.com/TC39_Async_Context/2024-05-21#L23
-​ Dan: can you come up with a python reference example or any

OpenSource reference that works as described.
-​ Stephen B: Other languages can do bytecode manipulation but JS can

not. Mostly internal APM vendor stuff
-​ Justin: .Net implements mutate and copies on start of an async function, it

doesn't seem to do flow-through
-​ Dan: enterWith/set and flow-through/flow-around are different topics.
-​ Andreu: Even APM doesn’t care about merges, WebIntegration needs to

merge contexts, like Observers like PerformanceObserver merges
multiple contexts into a single event. The ecma262 has to be consistent
with web spec and it becomes unclear about “consistent”?

-​ Stephen B: We only need one context to be a useful causal context
-​ Justin Ridgewell:.Net implements mutate and copies on start of an async

function, it doesn't seem to do flow-through
-​ Stephen Belanger: We only need one context, it just needs to be a

correct context.
-​ Steve Hicks: if we're flowing through, the last promise to resolve is

probably the most likely to have the most up-to-date data
-​ Andreu: {fill in}
-​ Justin: I disagree with every other languages behaves like what Stephen

B described. No other languages operates like flow-through semantics. In
there any languages implements flow-through semantics in the standard
library?

-​ Stephen: No but every APM vendor has to implement that on their own.
Ruby or Crystal might flow that way.

-​ Justin: .Net copies the current context value at the beginning of the async
function with a mutable `.set`. Mutating with `.set` doesn’t modify the
value in the parent scope.

-​ Dan: the rational needs to be really clear if we change the current
proposal

-​ Steve Hicks: if we're flowing through, the last promise to resolve is
probably the most likely to have the most up-to-date data

-​ Steve Hicks: copy-on-write seems like it would break "flow-out" semantics
that Stephen wants?

-​ Justin Ridgewell: Yes

https://matrixlogs.bakkot.com/TC39_Async_Context/2024-05-21#L23

-​ Stephen Belanger: Nope, it doesn't. You just need to capture at the end to
flow out.

-​ But it _does_ make that controllable.
-​ Justin Ridgewell: As a return value?
-​ Stephen Belanger: Essentially, yes.
-​ But doesn't need an explicit return.
-​ Stephen: Just needs a hook to store and restore around the points.
-​ Matteo: enterWith snapshot?
-​ Stephen: I will be fine with landing some sort with flow-through spaces for

future extension.
-​ Dan: we should be explicit to the committee that there might be an

extension with flow-through proposal
-​ Stephen: We can not switch to AsyncContext in production before

enterWith is with the proposal. Expecting enterWith to be bound with
flow-through semantics.

-​ Steve H: Is that a problem for SES folks to be about to change the value
in outer scope?

-​ Action items:
-​ Write a spec text on the flow-through pattern to compare on

async-sync code differences
-​ Compare with other languages like Ruby with open-source APMs

that adopt flow-through semantics
-​ Give examples of the usefulness/essentialness of enterWith
-​ Draft idea for snapshot enterWith and see if it fixes issues
-​ Explain in some more detail what the cost of the current problems

are (memory to process? Inaccuracy in guessing cause? others?)
-​ Short topics

-​ Plans on next plenary
-​ No update in the June plenary
-​ Call on June 11 is canceled for June Plenary

 May 14, 2024
-​ Short topics

-​ error event on web integration and interaction with FinalizationRegistry
(https://github.com/tc39/proposal-async-context/issues/82#issuecomment-21105
95301)

-​ Longer discussions
-​ The case for _not_ binding around awaits:

https://github.com/tc39/proposal-async-context/issues/83
-​ Steve Hicks: Are implementers happy about two way propagation?
-​ Steven: Don’t have a strong opinion on the default contexts. There are

different needs on the shape of the graph, needs a flexible way to retrieve

https://github.com/tc39/proposal-async-context/issues/82#issuecomment-2110595301
https://github.com/tc39/proposal-async-context/issues/82#issuecomment-2110595301
https://github.com/tc39/proposal-async-context/issues/83

the necessary contexts, rather than dropping leaf contexts without a way
to restore it.

-​ Andreu: Will try implementing something, maybe callingContext(), in
V8 and report on the complexity and performance difference.

-​ Justin: Per-store propagation being configurable means O(n) restore
operations. Snapshot/restore is a constant time operation. Would it be
possible for engines to implement this behavior?

-​ Stephen: Otel spec defines that links should be generated from
Promise.all operations

-​ Chengzhong: Otel spec is casually defined and mostly focused on links
between distributed services. Not specifically mentioning Promise.all links

-​ Stephen: diagnostic channel transform function can present to transform
store data to span and may not present.

-​ Stephen: Otel baggages set in different branches of an operation needs
to be merged and propagated to subsequent sibling operations.

-​ Stephen: No other vendors implement the proposed model. Want to
create a new model.

-​ Stephen: calling context can be a solution to only save span ids instead of
span objects, in this way it would be cheaper to propagate span
relationships. (??)

-​ Steve Hicks: calling context may be feasible than per instance bind
around await

-​ Andreu: write down each own expected async/await and APIs shape and
behavior.

-​ Distinguished open questions:
-​ Get calling context aside from the default context (like registration

context)
-​ Merging multiple context branches
-​ Feedback to parent async context scope

-​ ​Per-instance wrap: https://github.com/tc39/proposal-async-context/issues/25
-​ Stephen shared doc: and Universal Context Management RFC

, slides: Universal Diagnostics Channel RFC
 Dynamically Flowing Observability Insight

-​ Diagnostic channel only modifies one store

 Apr 30, 2024
-​ Short topics:

-​ Variable.p.wrap?
https://github.com/tc39/proposal-async-context/issues/25

-​ Worried about confusion with Snapshot.wrap
-​ +2

https://docs.google.com/document/d/1v8tMzV51Cuz32-60dhopoIMIxWfy_epOIRwoL5LmKVc/edit#heading=h.xqiqhldknlma
https://docs.google.com/document/d/1DTZ2C5BKsoVRnU_ihyi93blF3cxXIbqqcIaSYurhBRk/edit?usp=sharing
https://docs.google.com/presentation/d/1jYO45MudKGPOtir5hK0_wB7XS0D_ksLe4j5NvC8YfTc/edit#slide=id.g2cd2b8dc86c_1_21
https://github.com/tc39/proposal-async-context/issues/25
https://github.com/tc39/proposal-async-context/issues/25

-​ Might want to snapshot multiple values
-​ Not convinced yet

-​ Specifying as weak references?
https://github.com/tc39/proposal-async-context/issues/76

-​ Weak values are slower
-​ Implementers are already expecting it to be weak
-​ Certain internal mappings that engines are worried will leak if they

use AsyncContext, but they assumed normal Variables would be
collected

-​ Informational note: programs could but probably won't GC,
do not depend on it being implemented, need to discuss in GH
issue

-​ Longer topics:
-​ Not binding around await (call-time resolve):

https://github.com/tc39/proposal-async-context/issues/83
-​ const { AsyncLocalStorage } = require("async_hooks");
-​ const als = new AsyncLocalStorage();
-​
-​ als.run(1, async () => {
-​ console.log({ current: als.getStore() });
-​ await new Promise((r) => als.run(2, r));
-​ console.log({ current: als.getStore() });
-​ });
-​ Logs 1, 1
-​ als.run(1, async () => {
-​ console.log({ current: als.getStore() });
-​ await als.run(2, () => Promise.resolve());
-​ console.log({ current: als.getStore() });
-​ });
-​ Logs 1, 1
-​ Will discuss further with Stephen

-​ Calling context continuation:
https://github.com/tc39/proposal-async-context/pull/77

-​ APIS that might be merge points
-​ Media event listeners might also represent a merge point,

but not convinced yet
-​ Signals

-​ Promise.all/race and friend represent a merge point of multiple
promises, might want to receive the inner promises' contexts after
the await

-​ Would also help Stephen's resolve-time need?
-​ Re asyncVar.wrap(), maybe certain variables should behave

differently

https://github.com/tc39/proposal-async-context/issues/76
https://github.com/tc39/proposal-async-context/issues/83
https://github.com/tc39/proposal-async-context/pull/77

-​ Could be set during construction, when awaiting they
would receive different context times.

-​ Action Items
-​ event object property to receive calling context
-​ don't wrap me AsyncContext.dontWrap(fn) api
-​ Investigate receiving merged promise's contexts
-​ AsyncVar construct-time option about registration or

call-time
-​

 Apr 16, 2024
-​ Hopefully quick topics (15min total):

-​ Terminology: https://github.com/tc39/proposal-async-context/issues/73
-​ Change to "mapping"

-​ Receiver this during run:
https://github.com/tc39/proposal-async-context/issues/80

-​ Opposed, if pushback we will remove variadic args
-​ Disposable Snapshot to support termination?

https://github.com/tc39/proposal-async-context/issues/52
-​ Proposal is to make Snapshot disposable, not add termination yet
-​ Hesitant, because it's viral
-​ Will discuss more on the thread, need to think though when to dispose

Snapshot.wrap()
-​ Longer Topics

-​ using syntax and Variable scope:
-​ https://github.com/tc39/proposal-async-context/issues/60
-​ https://github.com/tc39/proposal-using-enforcement/issues/1#issuecomm

ent-2052638125
-​ "Strict enforcement proposal" unlikely to help
-​ Options are (1) lots of nesting, (2) one level of nesting with a runAll or

runWithSetter, or (3) preferred, no nesting at all - but need to eliminate all
risk of leaking mutations to callers, either by changing using or else some
custom syntax (custom syntax would be ideal for adding this later)

-​ There was a similar case in Rust wrt the destructor for a scope not
necessarily running, in the pre-1.0 `thread::scoped` API
(https://github.com/rust-lang/rust/issues/24292, a good write-up despite
the name is https://faultlore.com/blah/everyone-poops/). Eventually
replaced with a callback API (not unlike `.run`):
https://doc.rust-lang.org/std/thread/fn.scope.html

-​ AI: Justin to make a PR with specific needs for using
-​ Call-time vs Registration-time context:

https://github.com/tc39/proposal-async-context/issues/73
https://github.com/tc39/proposal-async-context/issues/80
https://github.com/tc39/proposal-async-context/issues/52
https://github.com/tc39/proposal-async-context/issues/60
https://github.com/tc39/proposal-using-enforcement/issues/1#issuecomment-2052638125
https://github.com/tc39/proposal-using-enforcement/issues/1#issuecomment-2052638125
https://github.com/rust-lang/rust/issues/24292
https://faultlore.com/blah/everyone-poops/
https://doc.rust-lang.org/std/thread/fn.scope.html

-​ https://github.com/tc39/proposal-async-context/issues/18
-​ https://github.com/tc39/proposal-async-context/issues/82
-​ https://github.com/tc39/proposal-async-context/issues/77
-​ Registration time is when you want to make the choice, but it's hard to

"unwrap" at that point - could add a function exotic to do this
-​ .NET has ExecutionContext.SuppressFlow and RestoreFlow
-​ Some details around avoiding null mappings in DOM (question: are we

sure that the null mapping is wrong?)
-​ AI: explore unwrap method and addEventListener options

 Apr 2, 2024
-​ Updates since last presentation

-​ registration vs call time semantics
-​ Justin will post calltime api

-​ AysncContext.wrap is back
-​ Andreu will post GH issue about which HTML APIs need to change
-​ Small bug fixes that landed and refactorings

-​ What to do about Task Attribution's Call-time behavior
-​ Generator's init-time vs call-time

-​ Still need example from Stephen
-​ RPC interceptor -> UI update

-​ single registration handling multiple calls, want to propagate the the call
time

-​ signal setter -> reaction,
-​ needs the call time context during some updates, but if multiple sets

happen it's not clear
-​ Async actions are simple, sync actions could be either.

-​ Some events do not happen via API (click is via user interaction), and the
empty context isn't useful there.

-​ These are basically async actions
-​ unhandledrejection is another async send, but the registration context is

not useful
-​ Task Attribution's message event?

-​ Attribution uses call-time for MessagePort/MessageChannel, but not
window.onmessage which uses registration

-​ Task Attribution can patch Blink code to propagate a call-time context if
necessary, can internally do a snapshot.run(var.run(calltime))

-​ Zone.js allows patching the propagation to do call-time
-​ Tell zone.js not to patch certain APIs, and those will carry call-time

-​ Choices
-​ If we do call-time

-​ Possible to do registration-time via wrapping

https://github.com/tc39/proposal-async-context/issues/18
https://github.com/tc39/proposal-async-context/issues/82
https://github.com/tc39/proposal-async-context/issues/77
https://learn.microsoft.com/en-us/dotnet/api/system.threading.executioncontext.suppressflow?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.executioncontext.restoreflow?view=net-8.0

-​ But requires a lot of wrapping
-​ If we do registration-time

-​ Could do call-time via options-bag to every API
-​ Not every API would require this (eg, setTimeout())
-​ Could be a boolean AsyncContext.useCallTime or better API

-​ Maybe a wrapping function
-​ Would need way to transition both ways

-​ We could provide call-time context someway
-​ AsyncContext.callTime.run(() => {})

-​ make an example using play on Justin Ridgewell
media element, similar to signal.set()

 Mar 19, 2024
-​ Using Bindings

-​ https://github.com/nodejs/node/pull/52065
-​ https://github.com/tc39/proposal-async-context/issues/60
-​ No to this feature because it allows polluting the context returned from a scope
-​ Investigate as a follow on
-​ Node shouldn't add this without AC support

-​ Generators (and by extension Iteartor Helpers) capturing context:
-​ https://github.com/tc39/proposal-async-context/issues/75#issuecomment-198415

1672
-​ Reach out to @Qard to clarify the objection
-​ Keep init-time spec for now, absent Stephen's use case requiring call-time.
-​ If generators use init-time, then iterator helpers could use init-time as well.

-​ Stage 2.7: Next Steps
-​ dminor asked for HTML integration spec before advancing to stage 2.7
-​ https://github.com/whatwg/html/pull/9408
-​ Collect Zone.js behaviors on Web APIs: e.g. the unhandled rejection behavior

might not aligned with AsyncContext.
-​ Dminor: listing APIs can also be helpful, but still would like to see exact

spec.html. Happy to see an update on the next plenary and ask for stage
advancement on June.

 Mar 5, 2024
-​ https://github.com/tc39/proposal-async-context/pull/69

-​ Registration time capturing is not possible when the observer callback is batched.
-​ Registration time can be achieved by maintaining a WeakMap to the mutated

element objects.

mailto:jridgewell@google.com
https://github.com/nodejs/node/pull/52065
https://github.com/tc39/proposal-async-context/issues/60
https://github.com/tc39/proposal-async-context/issues/75#issuecomment-1984151672
https://github.com/tc39/proposal-async-context/issues/75#issuecomment-1984151672
https://github.com/whatwg/html/pull/9408
https://github.com/tc39/proposal-async-context/pull/69

-​ The PR will revert back to construction time.
-​ https://github.com/tc39/ecma262/pull/3195

-​ HTML currently has something like AC, but it's not properly implemented
-​ https://github.com/tc39/proposal-async-context/issues/75

-​ @andreu is reaching out to champions to work with the spec
-​ V8 Design Doc: is close to finishing
-​ https://github.com/tc39/test262/pull/3874 Please take a look
-​ TODO: Collect what current polyfills like Zone.js do regarding HTML/Web APIs, as well

as what task attribution needs. Once that is done, come up with guidelines for future web
APIs.

 Feb 20, 2024
-​ https://github.com/tc39/proposal-async-context/pull/68 Adds back

AsyncContext.Snapshot.wrap
-​ ecmarkup complaints about the spec language, fix ecmarkup or the spec

language to land the PR.
-​ https://github.com/tc39/proposal-async-context/pull/69 Handle FinalizationRegistry

-​ Registration time of event listeners is analogous to the construction time of
FinalizationRegistry

-​ This PR uses the FinalizationRegistry.register as the registration time instead.
-​ FinalizationRegistry.register is not the time that a callback is provided,

mismatches with event listeners.
-​ This can be a correct precedent for future DOM APIs, like modification observers.

-​ https://github.com/tc39/proposal-async-context/pull/70 Only preserve AC for user
generators

-​ Iterator helpers can be a follow-up.
-​ https://github.com/tc39/proposal-async-context/pull/71 Update polyfill
-​ Using a linked list in the implementation instead of a map

-​ It is really difficult to flat a linked list, which is important to free the unobservable
list nodes and preserve the tailing one.

-​ Must wait until AC stack is empty to due a mutative flatten:
https://gist.github.com/jridgewell/ef8a674291f8f7419a2bea0448c3b0eb

-​ Possible to do immutable, but incurs memory after flattening
-​ Feedback from V8 re. data structures

-​ Alternative: Hash Array Mapped Trie (HAMT) can provide better memory usage
-​ V8 will not land anything before the design doc is approved, and also not until

stage 2.7
-​ When setting same value again, only reallocate on a single branch of

modification. linked list reallocates the whole tree to keep immutability
-​ Benchmark suites: adding cases integrated with OpenTelemetry, with Zone.js and with

AsyncContext

https://github.com/tc39/ecma262/pull/3195
https://github.com/tc39/proposal-async-context/issues/75
https://github.com/tc39/test262/pull/3874
https://github.com/tc39/proposal-async-context/pull/68
https://github.com/tc39/proposal-async-context/pull/69
https://github.com/tc39/proposal-async-context/pull/70
https://github.com/tc39/proposal-async-context/pull/71
https://github.com/tc39/proposal-async-context/tree/linked-list
https://gist.github.com/jridgewell/ef8a674291f8f7419a2bea0448c3b0eb

 Jan 23, 2024
-​ FYI: Working on benchmark suites

https://legendecas.github.io/Speedometer-asynccontext
-​ Add async/await transformation case @legendecas to improve the necessity of

CPED
-​ Justin’s summary:

-​ Not clear the extent of APIs that need to support snapshot/restore, would be nice
to have a (probably non-exhaustive) list:

-​ setTimeout, addEventListener, …
-​ Any in TC39 side? I don't think so, only Promise APIs

-​ Add wrap method (static, maybe both static and prototype)
-​ Two types of wrap, static and prototype wrap
-​ Just do static wrap at the moment

-​ Expand prior art section, explaining the difference between the current AC
proposal

-​ Section detailing how to handle libraries that don't support and aren't updated to
support propagation

-​ Section detailing alternatives:
-​ Every closure captures a snapshot (ie, like Generator now does, but

everything)
-​ await hook so userland could implement instead of directly in language

-​ This would introduce security concerns
-​ The explainer should stress the performance instead

-​ https://github.com/tc39/proposal-async-context/pull/41
-​ The current implementation didn’t capture correctly the context during the

rejection
-​ https://github.com/nodejs/node/pull/48528

-​ @abotella mentioned that the blocking issue should have gone
-​ Embedder API

-​ Focus on performance rather than API nicity
-​ HTML Integration

-​ @abotella working on rebasing task attribution to work with AsyncContext.
Currently task attribution only works on the main thread, but scheduler.yield must
work in workers as well; the refactor uses a single API that can propagate the
AsyncContext snapshot, task attribution (where applicable) and scheduler.yield
stuff in every thread.

-​ Prioritize deciding the HTML semantics over making task attribution work
-​ Triggering the continuation of TPAC discussion on the propagation semantics of

events.
-​ Built-in iterators and iterator helpers integration

-​ The spec defines both as generators, and currently they preserve the snapshot.

https://legendecas.github.io/Speedometer-asynccontext
https://github.com/tc39/proposal-async-context/pull/41
https://github.com/nodejs/node/pull/48528

-​ For Map/Set built-in iterators, this is not observable.
-​ For Array built-in iterators, this can be observed if the array indices have

getters, since those are called with that snapshot.
-​ Also observable when the iterator helper methods are called.

-​ It probably doesn’t make sense that Array iterators preserve the snapshot only
for getters.

-​ Resolved that spec-created generators will not necessarily preserve a snapshot,
but JS-created generators will.

-​ Open an issue to discuss the difference between spec-created and JS-created
generators, and a PR to make this spec change

 Jan 9, 2024
Agenda Items:

-​ https://github.com/tc39/proposal-async-context/issues/65
-​ Web integration is a hard requirement
-​ Web compatibility on adding or removing async context support for a particular

Web API should be deferred to WHATWG/W3C.
-​ V8’s plan to get rid of CPED

-​ Need a web benchmark to convince V8 about the performance cost
-​ Justin can invite Google APM (frontend) framework team to the call next time

 Dec 12, 2023
Agenda Items:

-​ Mozilla may try the proposal in Jan
-​ Current WIP V8 C++ API can be improved on the Snapshot for TaskAttribution’s use

case: take a snapshot and set a variable at the same time.
-​ V8 wants to get rid of CPED because they’re concerned about the performance impact

of passing the embedder data through promise jobs. This affects AsyncContext because
it would also have to pass the snapshot pointers through those promise jobs. Andreu did
a synthetic benchmark measuring only promise continuations, and those fields do make
a difference, but they haven’t done realistic benchmarks.

-​ One suggestion was to use Node.js’s implementation of fetch as a benchmark,
since that uses promises heavily.

-​ Andreu is working on refactoring Chromium’s task attribution to use AsyncContext. They
tried making every event use the registration-time snapshot (which involves cloning the
snapshot map at every event), and ran Speedometer on that. There was a regression
(compared to CPED-based task attribution), but it was slight and the ranges overlapped
significantly. But that might not reflect cases with multiple AsyncContext variables.

https://github.com/tc39/proposal-async-context/issues/65

 Nov 14, 2023
Agenda Items:

-​ https://github.com/tc39/proposal-async-context/pull/63

The calendar item didn’t suffer from the daylight-saving time change. We may need to
re-arrange the call time if people have conflicts with the new meeting time. Please follow the
conversation in the matrix channel if you would prefer a new meeting time.

 Oct 31, 2023
Agenda Items:

-​ No updates this week: is working on a doc about Chengzhong Wu (legendecas)
incumbent settings and active scripts in HTML, and the status of browsers
implementations to see if AsyncContext could take place in.

-​ Prioritizing design doc.
-​ Andreu: V8 landed a change on CPED but got reverted for wpt regression of task

attribution
-​ Andreu: List of event semantics (reg vs call)
-​ Yulia’s confusion: what AC.Snapshot is for, explaining why it is essential for span-id

propagation
-​ FAQ: why does run takes a callback, not a enterWith method.

 Chengzhong Wu (legendecas)
-​ Dan and Andreu are going to present at NodeConfEU:

https://www.nodeconf.eu/daniel-ehrenberg-asynccontext-observability-in-javascript-throu
gh-tc39-and-wintercg

 Oct 18, 2023
Agenda Items:

-​ https://github.com/tc39/ecma262/pull/3195
-​ It would be good to unify the problem space around incumbent realm and active

scriptOrModule under async context. Chengzhong Wu (legendecas)

 Sep 19, 2023
Agenda Items:

-​ Quick update: slides for Sept 2023: Async Context 2023.09
-​ TPAC updates?

mailto:legendecas@gmail.com
mailto:legendecas@gmail.com
mailto:legendecas@gmail.com
https://docs.google.com/presentation/d/12A3LYlqgzmqRqE0mJ47GRWB6uKlqoFXiWE9gsxpRje4/edit?usp=sharing
https://github.com/tc39/proposal-async-context/pull/63
https://www.nodeconf.eu/daniel-ehrenberg-asynccontext-observability-in-javascript-through-tc39-and-wintercg
https://www.nodeconf.eu/daniel-ehrenberg-asynccontext-observability-in-javascript-through-tc39-and-wintercg
https://github.com/tc39/ecma262/pull/3195

 Sep 5, 2023
Agenda Items:

-​ Slides for Sept 2023: Async Context 2023.09
-​ Elaboration on unhandledrejection: Deferred Promise Jobs & AsyncContext

-​ Problems in call-time promise unhandledrejection context with Node.js async_hooks
-​ https://github.com/legendecas/node/tree/async_hooks/call-time

 Aug 22, 2023
Agenda Items:

-​ Items needs to be addressed before the 2023.9 TC39 meeting:
-​ Still have bug in unhandled rejection, pending PR

https://github.com/tc39/proposal-async-context/pull/41
-​ Need to verify spec behavior propagates context at time of `reject()` call:

https://github.com/tc39/proposal-async-context/issues/16
-​ engine262 implementation: https://github.com/engine262/engine262/pull/227

Action Items
​ to work on implementing reject call-time in Node via chengzhong.wcz@alibaba-inc.com
flag

 Aug 8, 2023
Agenda Items:

1.​ https://github.com/tc39/proposal-async-context/pull/61
a.​ Merged

2.​ Andreu has engine262 implementation, no PR yet
3.​ Test262 tests: https://github.com/tc39/test262/pull/3874
4.​ Still have bug in unhandled rejection, pending PR

https://github.com/tc39/proposal-async-context/pull/41
5.​ Need to verify spec behavior propagates context at time of `reject()` call

 Async Context Meeting (2023-08-08 13:02 GMT-4) - Transcript

 Jul 25, 2023
Agenda Items:

1.​ https://github.com/tc39/proposal-async-context/issues/18#issuecomment-1645671319

https://docs.google.com/presentation/d/12A3LYlqgzmqRqE0mJ47GRWB6uKlqoFXiWE9gsxpRje4/edit?usp=sharing
https://docs.google.com/document/d/1oPJj7k0txm0p54lKQ0ngS8ifEU1WGDhyKLbZmpfckJg/edit?usp=sharing
mailto:chengzhong.wcz@alibaba-inc.com
https://docs.google.com/document/d/1ZG1ceWWJYwkeFbJRrVaPweY0BsawnGvbfBnjWTQFq2Q/edit?usp=sharing
https://github.com/legendecas/node/tree/async_hooks/call-time
https://github.com/tc39/proposal-async-context/pull/41
https://github.com/tc39/proposal-async-context/issues/16
https://github.com/engine262/engine262/pull/227
https://github.com/tc39/proposal-async-context/pull/61
https://github.com/tc39/test262/pull/3874
https://github.com/tc39/proposal-async-context/pull/41
https://github.com/tc39/proposal-async-context/issues/18#issuecomment-1645671319

a.​ Current expected behavior is fine. See if V8 implementation is not complicated or
not slower, otherwise we can revisit.

b.​ AP: Prepare examples for iterator helpers to see how the context is propagated.
c.​ Are there any built-in iterators not built from generators which observably don’t

propagate the context? AP: Find if there are and discuss them.
d.​ Confirm fast-paths for array/string iterator still works with context restoring

2.​ https://github.com/whatwg/html/pull/9408
3.​ Task Termination

 Async Context Meeting (2023-07-25 13:02 GMT-4) - Transcript

 Jun 27, 2023
Agenda Items:

1.​ Node.js semantic differences discussion
a.​ Thenable handling

i.​ Bug in V8 that effects Task Attribution, Cloudflare local storage, and new
AsyncContext code

b.​ Unhandledrejection
i.​ Node has decided to use `reject()` time context, because it’s what

embedder preserved continuation data gives us
1.​ Deferred = ctx.run(1, () => {…})
2.​ ctx.run(2, () => {deferred.reject(1)})
3.​ Would inherit 2 at unhandledrejection

ii.​ Would be nice if we could have both init and call time contexts at
unhandledrejection, need to pass snapshot to handler to happen

c.​ Async generator
i.​ Committee prefers init time capture and restore
ii.​ DataDog is fine with that approach
iii.​ Not clear if Node has the tools to implement it

d.​ Per agent vs per realm context sharing
i.​ Current spec is per agent, so different realms can capture the context
ii.​ Node chose to make it per realm
iii.​ Node attaches symbol to async resource, eg the literal promise instance,

so data can leak
iv.​ Might be fine to use current spec since there’s not the same leakage

unless you have the actual asyncVar instance
e.​ https://github.com/nodejs/node/pull/48528

i.​ Current impl uses a linked list of frames, run pushes a new frame to the
list

https://docs.google.com/document/d/14wqxqBqv2s09JZhWdoR8nOiupKxyME--rGjaSDHpQLQ/edit?usp=sharing
https://github.com/whatwg/html/pull/9408
https://github.com/nodejs/node/pull/48528

ii.​ Want the ability to snapshot only a single var’s value to be restored later
on top of whatever is currently present

iii.​ Const fn = storage.bind(() => {})
iv.​ fn()

2.​ Updating Design Doc
a.​ V8 had concerns about current impl
b.​ Must faster than async_hooks for node’s benchmarks
c.​

 Jun 13, 2023
Agenda Items:

1.​ https://github.com/tc39/proposal-async-context/pull/55
a.​ Feedback from web engines hackfest

i.​ Snapshot.p.restore might be confusing, thought it restored the context
permanently

ii.​ Several attendees expressed concern
iii.​ No objection to switching back to `run`
iv.​ Will switch back to `AsyncSnapshot.p.run`

2.​ Heard feedback from Chrome and Webkit
a.​ Want to see speedometer benchmarks for performance, and worried about

memory usage
b.​ Need to include in design doc how there will be no regressions

i.​ If task attribution is implemented based on async context
ii.​ Task attribution and AsyncContext could coexist in a tuple structure, so

that attribution does not need to use the context mapping for lookups/set
iii.​ Schedule priority will already be storing a second bit in the continuation

data, so adding another pointer to a mapping context might work?
c.​ Need more explicit data structure guidance

3.​ Task Termination discussion
a.​ Need some form of reference counting for a fast path
b.​ Snapshots would allow references to continue tied to the snapshot

4.​ WIP PR to HTML spec
a.​ Prior task attribution PR was reverted because of performance issue

i.​ It added context to all possible callbacks
ii.​ https://chromium-review.googlesource.com/c/chromium/src/+/3738432

b.​ Currently wrapping every callback
c.​ Event related callbacks are performance sensitive
d.​ If the benchmark doesn’t use AsyncContext, hopefully no regression
e.​ If the code does use AsyncConext, how much of a penalty are we willing to take?

5.​ Angular
a.​ Want to use AsyncContext in new Signals implementation to support async

computation (not just old Zone.js code!)

https://github.com/tc39/proposal-async-context/pull/55
https://chromium-review.googlesource.com/c/chromium/src/+/3738432

Action Items

​Review reverted Chrome PR Justin Ridgewell
​Add more details to design doc
​Rename `Snapshot.p.restore` back to `Snapshot.p.run` legendecas@gmail.com

 May 30, 2023
Agenda Items:

1.​ Actions from the last plenary meeting TC39 Meeting Notes — 2023-05-17
2.​ https://github.com/tc39/proposal-async-context/pull/55

a.​ Namespace
b.​ Name of AsyncLocal

Attendees: abotella@igalia.com chengzhong.wcz@alibaba-inc.com
 dehrenberg@bloomberg.net Justin Ridgewell

Notes:
-​ V8 work:

-​ https://chromium-review.googlesource.com/c/v8/v8/+/4553118
-​ https://chromium-review.googlesource.com/c/v8/v8/+/4475425
-​ https://docs.google.com/document/d/1UewS3CiSbghRuOjSDOmH5FAPeDQ94E

R4QKJPlgnCLK8/edit#heading=h.mwad14vicl1e
-​ Async Context Meeting (2023-05-30 13:07 GMT-4) - Transcript

Actions:
​ Longform examples that aren’t trivial enough to fit in slides

​Should also show how multiple instances will be used together
​Finish design doc and V8 implementation to get actionable feedback from V8 delegates

​ Including which data structures to use for performance
​Renames legendecas@gmail.com

​AsyncContext namespace
​Variable class

​Get
​Run
​Get name

​Snapshot class

mailto:justin.ridgewell@vercel.com
mailto:legendecas@gmail.com
https://docs.google.com/document/d/1RZKD6fwl5Ta3ME6Mg3ILgazFpxxszbhs7UHYPn7_zL4/edit#heading=h.1otmgonncpdh
mailto:abotella@igalia.com
mailto:chengzhong.wcz@alibaba-inc.com
mailto:dehrenberg@bloomberg.net
mailto:justin.ridgewell@vercel.com
https://docs.google.com/document/d/194eQTTSGjUdH3Y6O6jpkQJKbMKU4WtTISsxd2KUvzaw/edit?usp=sharing
mailto:legendecas@gmail.com
https://github.com/tc39/proposal-async-context/pull/55
https://chromium-review.googlesource.com/c/v8/v8/+/4553118
https://chromium-review.googlesource.com/c/v8/v8/+/4475425
https://docs.google.com/document/d/1UewS3CiSbghRuOjSDOmH5FAPeDQ94ER4QKJPlgnCLK8/edit#heading=h.mwad14vicl1e
https://docs.google.com/document/d/1UewS3CiSbghRuOjSDOmH5FAPeDQ94ER4QKJPlgnCLK8/edit#heading=h.mwad14vicl1e

​Restore
​Still meet with Node Diagnostics WG

​ legendecas@gmail.com Justin Ridgewell
​Feedback on unhandled rejection context
​Feedback on generator/async-generators

 May 2, 2023
Agenda Items:

1.​ Task termination
2.​ Kevin’s feedback on generators:

https://matrixlogs.bakkot.com/TC39_Delegates/2023-03-23#L173
3.​ Open issues

a.​ https://github.com/tc39/proposal-async-context/issues/49
b.​ https://github.com/tc39/proposal-async-context/issues/50

Attendees: abotella@igalia.com chengzhong.wcz@alibaba-inc.com
 dehrenberg@bloomberg.net Justin Ridgewell tc39@softwarechris.com

 yoavweiss@google.com

Notes:
-​ Async Context Meeting (2023-05-02 13:10 GMT-4) - Transcript

Actions:
​Spec on snapshot/restore with generators
​Constructor extension: name and defaultValue in an option bag
​Splitting into two classes: AsyncContext and AsyncLocal (name pending)
​Unhandledrejection reachout to Node.js Diagnostic WG

 | Apr 18, 2023 Async Context Meeting
Attendees: abotella@igalia.com chengzhong.wcz@alibaba-inc.com

 dehrenberg@bloomberg.net Justin Ridgewell ljharb@gmail.com tc39@softwarechris.com
 yoavweiss@google.com Mathieu Hofman

Agenda items:

1.​ Cloudflare’s practice @jasnell

mailto:legendecas@gmail.com
mailto:justin.ridgewell@vercel.com
https://docs.google.com/document/d/1yQy8RNeGXLr99bNpy-7tA1Ch7wN0piekp_-JwxC8FtA/edit#
mailto:abotella@igalia.com
mailto:chengzhong.wcz@alibaba-inc.com
mailto:dehrenberg@bloomberg.net
mailto:justin.ridgewell@vercel.com
mailto:tc39@softwarechris.com
mailto:yoavweiss@google.com
https://docs.google.com/document/d/13uqirBuGYs2tuCT98xqA4akn68Iixj2RB0ZZ2Bi3KHc/edit?usp=share_link
https://www.google.com/calendar/event?eid=NmprdGpoMGtjbzFvamtzNWM3MTZkZ3J1NzBfMjAyMzA0MThUMTYwMDAwWiBqdXN0aW4ucmlkZ2V3ZWxsQHZlcmNlbC5jb20
mailto:abotella@igalia.com
mailto:chengzhong.wcz@alibaba-inc.com
mailto:dehrenberg@bloomberg.net
mailto:justin.ridgewell@vercel.com
mailto:ljharb@gmail.com
mailto:tc39@softwarechris.com
mailto:yoavweiss@google.com
mailto:mathieu@agoric.com
https://matrixlogs.bakkot.com/TC39_Delegates/2023-03-23#L173
https://github.com/tc39/proposal-async-context/issues/49
https://github.com/tc39/proposal-async-context/issues/50

2.​ Constructor Extensions #29
3.​ Ergonomics of HOFs #21
4.​ Generators #18
5.​ unhandledRejection #16
6.​ Name bikeshed #44

Notes
●​ Chengzhong is working on a WIP design doc and implementation in V8:

. The design doc talks about performance and V8 AsyncContext Design Doc
embedder requirements. Not yet ready, Andreu will be working on that as well. It might
need changes to how Chromium implements task attribution.

●​ Chromium’s task attribution handling currently has a bounded list of tasks that are
tracked, and old tasks are dropped when the bound is passed. For Blink tasks, this can
be tracked, but for V8 tasks in AsyncContext this would need some refcounting or some
tracking in V8. Yoav tried to add code in V8 to let the host know about task termination,
but it’s in a hot code path and V8 folks are reluctant. Yoav is composing a doc about this.

●​ Constructor Extensions:
○​ Justin: The default value only happens on non-existing value.

●​ HOF:
○​ Dan: prefer a class with a run method, like AsyncResource.
○​ Mathieus: concern on losing the ability to create a function to snapshot the async

context
○​ Dan: wrap can be a helper method on the bind

Action items
​Reach out to React folks to talk about use cases, like async components
​Clarify the use cases in the readme. This is the limiting factor for further advancement of
this proposal.

​Kevin’s feedback on generators:
https://matrixlogs.bakkot.com/TC39_Delegates/2023-03-23#L173

https://docs.google.com/document/d/1UewS3CiSbghRuOjSDOmH5FAPeDQ94ER4QKJPlgnCLK8/edit?usp=sharing
https://github.com/tc39/proposal-async-context/issues/29
https://github.com/tc39/proposal-async-context/issues/21
https://github.com/tc39/proposal-async-context/issues/18
https://github.com/tc39/proposal-async-context/issues/16
https://github.com/tc39/proposal-async-context/issues/44
https://matrixlogs.bakkot.com/TC39_Delegates/2023-03-23#L173

	Future Topics
	Oct 7, 2025
	Sep 9, 2025
	Aug 26, 2025
	Aug 12, 2025
	Jul 15, 2025
	Jul 1, 2025
	Jun 17, 2025
	Jun 3, 2025
	May 20, 2025
	Apr 8, 2025
	Mar 25, 2025
	Mar 11, 2025
	Feb 25, 2025
	Feb 11, 2025
	Jan 28, 2025
	Jan 14, 2025
	Dec 17, 2024
	Nov 26, 2024
	Nov 12, 2024
	Oct 29, 2024
	Oct 15, 2024
	Oct 1, 2024
	Sep 3, 2024
	Aug 20, 2024
	Aug 6, 2024
	Jul 23, 2024
	Jul 9, 2024
	Jun 25, 2024
	May 28, 2024
	May 14, 2024
	Apr 30, 2024
	Apr 16, 2024
	Apr 2, 2024
	Mar 19, 2024
	Mar 5, 2024
	Feb 20, 2024
	Jan 23, 2024
	Jan 9, 2024
	Dec 12, 2023
	Nov 14, 2023
	Oct 31, 2023
	Oct 18, 2023
	Sep 19, 2023
	Sep 5, 2023
	Aug 22, 2023
	Aug 8, 2023
	Jul 25, 2023
	Jun 27, 2023
	Jun 13, 2023
	May 30, 2023
	Notes:
	Actions:

	May 2, 2023
	Notes:
	Actions:

	Apr 18, 2023 | Async Context Meeting
	Notes
	Action items

