Abstract Data Structure Reference

Java Collections Framework

+ Module: java.base
+ Package: java.util

Page
+ Collection<E> 1
+ AbstractCollection -
+ List<E> 3
7 + AbstractList<E> -
| + ArrayList<E> 5
+ AbstractSequentialList<E> -
+ LinkedList<E> 8
+ Vector -
| + Stack 11
+ Queue<E> 13
7 + Deque<E> -
+ AbstractQueue<E> -
| + PriorityQueue<E> 14
+ Set<E> 16
l + AbstractSet<E> -
| + HashSet<E> 17
+ TreeSet<E> 19
+ Map<K,V> 21
I + AbstractMap<K,V> -
+ HashMap<K,V> 23

+ TreeMap<K,V>

*NOTE: The Java Collections Framework includes additional classes, abstract classes, and interfaces not covered in this packet.

Copyright © 2024 Jeff C. Mickel

Collection<E> extends Iterable<E>

Description:

e The root interface in the collection hierarchy

® Represents a group of objects, known as its elements

e Some collections allow duplicate elements, while
others do not

e Some collections are ordered, while others are
unordered

Direct Sub-interfaces:

o List<E>
o

e Set<E>
o

(e]

boolean

A linear, ordered collection

A collection of uniquely different elements

® Queue<E>

A collection that adds and removes elements
in a first-in/first-out (LIFO) order

interface Collection<E>

Interfaces contain no instance variables.

+ boolean
+ boolean
+ boolean
+ boolean

add (E e)

addAll (Collection<E> c)
contains (Object o)
containsAll (Collection<E> c)
+ boolean isEmpty ()

+ boolean remove (Object o)

+ boolean removeAll (Collection<E> c)
+ int size ()

Additional methods not shown.

* Methods inherited from Iterable<E> interface.

add (E e)

Precondition:

Postcondition:

boolean

This Collection contains 0 or more elements of some data type (E) to be specified at runtime.

If allowed, parameter e is added to this Collection. Each implementing subclass will define the criteria for
which elements may be added to the Collection.
Returns true if the size of this Collection is changed. Otherwise, returns false.

addAll (Collection<E> c)

Precondition:

Postcondition:

boolean

This Collection and parameter c each contain 0 or more elements of some data type (E) to be specified at
runtime.

If allowed, each element of parameter c is added to this Collection. Each implementing subclass will define

the criteria for which elements may be added to the Collection.
Returns true if the size of this Collection is changed. Otherwise, returns false.

contains (Object 0)

Precondition:

Postcondition:

boolean

This Collection contains 0 or more elements of some data type (E) to be specified at runtime.

Returns true if this Collection contains an element equivalent to parameter o (i.e., using equals ()).
Otherwise, returns false.

containsAll (Collection<E> c)

Precondition:

Postcondition:

boolean

This Collection and parameter c each contain 0 or more elements of some data type (E) to be specified at
runtime.

Returns true if this Collection contains equivalent elements (i.e., using equals ()) for each element of
parameter c. Otherwise, returns false.

equals (Object o)

Precondition:

Postcondition:

This Collection contains 0 or more elements of some data type (E) to be specified at runtime.
Parameter o may be null.

Returns true if parameter o is a Collection<E> and meets all of the appropriate requirements for equivalence of
collections, as defined by the implementing subclass. Otherwise, returns false.

boolean isEmpty ()

Precondition: This Collection contains 0 or more elements of some data type (E) to be specified at runtime.

Postcondition: Returns true if this Collection currently contains O elements. Otherwise, returns false.

Iterator<E> iterator()

Precondition: This Collection contains 0 or more elements of some data type (E) to be specified at runtime.
Postcondition: Returns an Iterator that can iterate through all elements contained within this Collection in some

predetermined order. Each implementing subclass will define an appropriate order in which its custom
Iterator shall visit the elements.

boolean remove (Object 0)

Precondition: This Collection contains 0 or more elements of some data type (E) to be specified at runtime.
Parameter o may be null.

Postcondition: If this Collection contains an element equivalent to parameter o (i.e., using equals ()), one matching
element is removed from this Collection and the size of Collection size is reduced by 1.
Returns true if the size of this Collection is changed. Otherwise, returns false.

boolean removeAll (Collection<E> c)

Precondition: This Collection and parameter c each contain 0 or more elements of some data type (E) to be specified at
runtime.

Postcondition: For each item in parameter c, if this Collection contains an element equivalent to the item in c (i.e., using
equals ()), one matching element is removed from this Collection and the size of Collection size is
reduced by 1.

Returns t rue if the size of this Collection is changed. Otherwise, returns false.

int size()

Precondition: This Collection contains 0 or more elements of some data type (E) to be specified at runtime.

Postcondition: Returns the number of elements currently contained within this Collection.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

List<E>

Description: . .
e An ordered collection interface List<E>

e The user has precise control over where in the list each
element is inserted

Interfaces contain no instance variables.

e Elements can be accessed by their integer index +void add(int i, E e)
(position in the list)
o Elements can be search for in the list +boolean addAll (int i, Collection<E> c)

Implementing Classes:
® ArrayList<E>
o Array-based implementation that uses a static
array as the underlying data structure for
storing
o User has direct access to any and all elements
o Inserting and removing from the middle of the
list requires shifting whole sections of
elements within the array
e LinkedList<E>
o Link-based implementation that uses a series
of doubly-linked nodes to chain together
elements in
o User has direct access to the head and tail
elements
o All other elements require the list to be
linearly traversed in order to reach them

+E get(int 1)
+ int indexOf (Object o)

+ int lastIndexOf (Object o)
+ ListIterator<E> listIterator ()

+ ListIterator<E> listIterator (int i)
+ E remove (int 1)

+E set(int i, E e)

Additional methods not shown.

* Method inherited from Collection<E> interface.
void add(int i, E e)

Precondition: Parameter i is a valid index position within this List.
Parameter e may be null.

Postcondition: Inserts parameter e into this List at index position i, shifting the relative positions of all subsequent elements
to the next higher index positions. The size of this List is increased by 1.

boolean add(E e)

Precondition: Parameter e may be null.

Postcondition: Appends parameter e to the end of this List and the size of this List is increased by 1.
Returns true.

boolean addAll (int i, Collection<E> c)

Precondition: Parameter i is a valid index position within this List.
Parameter c may contain null elements.

Postcondition: Inserts all elements of parameter c into this List at index position i, shifting the relative positions of all
subsequent elements to higher index positions such that lie beyond the last element of parameter c. The size of
this List is increased by the number of elements added.

boolean equals (Object 0)

Precondition: Parameter o may be of any object data type and may be null.

Postcondition: Returns true if parameter o is a List, has the same size as this List, and contains all of the same elements in
the same order as this List. Otherwise, returns false.

int get(int 1i)

Precondition: Parameter i is a valid index position within this List.

Postcondition: Returns the element at index position 1.

int indexOf (Object o)

Precondition: Parameter o may be of any object data type and may be null.

Postcondition: Returns the index position of the first occurrence in this List of an element equivalent to parameter o or -1 if
no such element is contained within this List.

Iterator<E> iterator()

Precondition: The implementing class contains an inner class that implements the ListIterator interface.

Postcondition: Returns an ListIterator that can traverse through each element of this List in either ascending or
descending order of index position.

int lastIndexOf (Object o)

Precondition: Parameter o may be of any object data type and may be null.

Postcondition: Returns the index position of the last occurrence in this List of an element equivalent to parameter o or -1 if
no such element is contained within this List.

ListIterator<E> listIterator()

Precondition: The implementing class contains an inner class that implements the ListIterator interface.

Postcondition: Returns a ListIterator that can traverse through each element of this List in either ascending or
descending order of index position.

ListIterator<E> listIterator(int i)

Precondition: Parameter i is a valid index position within this List.
The implementing class contains an inner class that implements the ListIterator interface.

Postcondition: Returnsa ListIterator thatcan traverse through each element of this List in either ascending or
descending order of index position and is positioned to start at the index position specified by parameter 1.

E remove (int 1i)

Precondition: Parameter i is a valid index position within this List.

Postcondition: The element at index position i has been removed and returned and the size of this List is reduced by 1.

E set(int i, E e)

Precondition: Parameter i is a valid index position within this List.
Parameter e may be null.

Postcondition: The element at index position i has been replaced by parameter e and the element originally at that position is
returned.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

ArrayList<E>
® Resizable-array implementation of the List interface class ArrayLiSt<E>

Description:

e Implements all optional list operations - int size
® Permits all elements, including null - E[] elementData
e Provides additional methods to manipulate the size of
the array that is used internally to store the list. Additional fields not shown.
e FEach ArrayList instance has a capacity, dictated by
the length of the array used to store the elements in +void add(int i, E e)
the list + boolean add(E e)
e Capacity is always at least as large as the list size + boolean addAll (int i, Collection<E> c)
® Aselements are added to an ArraylList, its capacity + boolean addAll (Collection<E> c)
grows automatically + boolean contains (Object o)
e Adding an element has constant amortized time cost. + boolean containsAll (Collection<E> c)

+ void ensureCapacity (int minCapacity)
+ boolean equals (Object o)

+ boolean isEmpty ()

+int get(int 1)

+ int indexOf (Object o)

+ Iterator<E> iterator ()

+ int lastIndexOf (Object o)

+ ListIterator<E> listIterator ()

+ ListIterator<E> listIterator (int 1)
+ E remove (int 1)

+ boolean remove (Object o)

+ boolean removeAll (Collection<E> c)
+E set(int i, E e)

+ int size()

Additional methods not shown.

void ensureCapacity(int minCapacity)

Precondition:

Postcondition:

Pseudocode:

Parameter minCapacity is a positive integer that represents the minimum desired length of elementData.
If necessary to ensure the specified capacity, the length of elementData has been expanded by 50%.

If the length of elementData is less than parameter minCapacity...
...declare anew E [] called bigger and assign to it a new array that is 50% longer than elementData.
...for each index position i in elementData...
...assign to index position i of bigger the element in index position 1 of elementData.
...reassign to elementData a reference to bigger.

void add(int i, E e)

Precondition:

Postcondition:

Pseudocode:

Parameter i is a valid index position within this List.
Parameter e may be null.

Inserts parameter e into this List at index position i, shifting the relative positions of all subsequent elements
to the next higher index positions. The size of this List is increased by 1.

Ensure the capacity of elementData to hold at least size + 1 elements.
For each index position j, iterating backward from size through i + 1..
...Assign to index position j of elementData the elementinindex position j - 1.
Assign the value of parameter e into index position i of elementData.
Increment size by 1.

boolean

add (E e)

Precondition:

Postcondition:

Pseudocode:

boolean

Parameter e may be null.
Appends parameter e to the end of this List and the size of this List is increased by 1.

Ensure the capacity of elementData to hold at least size + 1 elements.
Assign the value of parameter e into index position size of elementData.
Increment size by 1.

addAll (int i, Collection<E> c)

Precondition:

Postcondition:

Pseudocode:

boolean

Parameter i is a valid index position within this List.
Parameter c may contain null elements.

Inserts all elements of parameter c into this List at index position i, shifting the relative positions of all
subsequent elements to higher index positions such that lie beyond the last element of parameter c. The size of
this List is increased by the number of elements added.

Ensure the capacity of elementData to hold at least size plus the length of parameter c.
For each element of parameter c, invoke the add (E) method to append the element to this LinkedList.

equals (Object o)

Precondition:

Postcondition:

Pseudocode:

Parameter o may be of any object data type and may be null.

Returns true if parameter o is a List, has the same size as this List, and contains all of the same elements in
the same order as this List. Otherwise, returns false.

If parameter o is null, return false.
If parameter o is a reference to this ArrayList, return true.
If parameter o is nota List, return false.
If parameter o does not have the same size as this ArrayList, return false.
Declare a List<E> called that and assign to it the value of parameter o after typecasting it to a List<E>.
For each index position i in this list...
...If the element at position 1 from this list and the element from position i from that list do not
contain equivalent elements (i.e., using equals ())...
...return false.
Return true.

int get(int i)

Precondition:

Postcondition:

Pseudocode:

Parameter i is a valid index position within this List.
Returns the element at index position 1.

Return the element at index position i of elementData.

int indexOf (Object o)

Precondition:

Postcondition:

Pseudocode:

Parameter o may be of any object data type and may be null.

Returns the index position of the first occurrence in this List of an element equivalent to parameter o or -1 if
no such element is contained within this List.

For each index position i in elementData...
...If the element at index position 1 is equivalent to parameter o (i.e., using equals ())...
...return the value of i.
Return -1.

int lastIndexOf (Object o)

Precondition: Parameter o may be of any object data type and may be null.

Postcondition: Returns the index position of the last occurrence in this List of an element equivalent to parameter o or -1 if
no such element is contained within this List.

Pseudocode: For each index position i of elementData, from size - 1 throughO...
...If the element at index position i is equivalent to parameter o (i.e., using equals ())...
...return the value of i.
Return -1.

ListIterator<E> listIterator()

Precondition: ArrayList containsan inner class called ListItr thatimplementsthe ListIterator interface.

Postcondition: Returnsa ListIterator thatcan traverse through each element of this List in either ascending or
descending order of index position.

Pseudocode: Return a new instance of the LinkedList class' custom ListItr inner class.

ListIterator<E> listIterator(int 1i)

Precondition: Parameter i is a valid index position within this List.
ArrayList contains an inner class called ListItr thatimplementsthe ListIterator interface.

Postcondition: Returns a ListIterator that can traverse through each element of this List in either ascending or
descending order of index position and is positioned to start at the index position specified by parameter 1.

Pseudocode: Return a new instance of the LinkedList class' custom ListItr inner class initialized to start at index 1.

E remove (int 1i)

Precondition: Parameter i is a valid index position within this List.
Postcondition: The element at index position i has been removed and returned and the size of this List is reduced by 1.

Pseudocode: Declare an E variable called orig and assign to it the element at index position i of elementData.
For each index position j, iterating from i + 1 through size - 1..
...Assign to index position J - 1 of elementData the element inindex position j.
Assign null into index position size - 1 ofelementData.
Decrement size by 1.
Return the value of orig.

E set(int i, E e)

Precondition: Parameter i is a valid index position within this List.
Parameter e may be null.

Postcondition: The element at index position i has been replaced by parameter e and the element originally at that position is
returned.

Pseudocode: Declare an E variable called orig and assign to it the element at index position i of elementData.
Assign the value of parameter e into index position i of elementData.
Return the value of orig.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

LinkedList<E>
Description: ’ ’
e Doubly-linked list implementation of the List and class LinkedList<E>

Deque interfaces - int size

e Implements all optional list operations — Node<E> first
® Permits all elements, including null — Node<E> last
e Operations that index into the list will traverse the list
from the beginning or the end, whichever is closer to Additional fields not shown.

the specified index.
+void add(int i, E e)

+ boolean add(E e)

+ boolean addAll (int i, Collection<E> c)
+ boolean addAll (Collection<E> c)

+ boolean contains (Object o)

+ boolean containsAll (Collection<E> c)
+ boolean equals (Object o)

+ boolean isEmpty ()

int get(int 1)

int indexOf (Object o)

Iterator<E> iterator ()

int lastIndexOf (Object o)
ListIterator<E> listIterator ()
ListIterator<kE> listIterator (int i)

+ E remove (int 1)

+ boolean remove (Object o)

+ boolean removeAll (Collection<E> c)

+E set(int i, E e)

+ int size()

+ + + o+ + +

Additional methods not shown.

void add(int i1, E e)

Precondition: Parameter i is a valid index position within this List.
Parameter e may be null.

Postcondition: Inserts parameter e into this List at index position i, shifting the relative positions of all subsequent elements
to the next higher index positions. The size of this List is increased by 1.

Pseudocode: Compare i with half of the size of this LinkedList to determine whether the first or last is closer to i.
Starting at the closer end of the list, traverse to the Node at position i.
Insert a new Node at index position i and assign the value of parameter e into the Node.
Increment size by 1.

boolean add(E e)

Precondition: Parameter e may be null.

Postcondition: Appends parameter e to the end of this List and the size of this List is increased by 1.

Pseudocode: Inserta new Node at 1ast and assign the value of parameter e into the Node.
Increment size by 1.

boolean

addAll (int i, Collection<E> c)

Precondition:

Postcondition:

Pseudocode:

boolean

Parameter i is a valid index position within this List.
Parameter c may contain null elements.

Inserts all elements of parameter c into this List at index position i, shifting the relative positions of all
subsequent elements to higher index positions such that lie beyond the last element of parameter c. The size of
this List is increased by the number of elements added.

Compare 1 with half of the size of this LinkedList to determine whether the first or last is closerto i.
Starting at the closer end of the list, traverse to the Node at position i.

For each element of parameter c, insert a new Node at index position i, assign the element into the Node, and
increment 1.

Increment size by the number of elements in parameter c.

equals (Object o)

Precondition:

Postcondition:

Pseudocode:

Parameter o may be of any object data type and may be null.

Returns true if parameter o is a List, has the same size as this List, and contains all of the same elements in
the same order as this List. Otherwise, returns false.

If parameter o isnull, return false.
If parameter o is a reference to this LinkedList, return true.
If parameter ois nota List, return false.
If parameter o does not have the same size as this LinkedList, return false.
Declare a List<E> called that and assign to it the value of parameter o after typecasting it to a List<E>.
Traverse through each Node of this list and that list...
...If the Node from this list and the Node from that list do not contain equivalent elements (i.e., using
equals())...
...return false.
Return true.

int get(int i)

Precondition:

Postcondition:

Pseudocode:

Parameter i is a valid index position within this List.
Returns the element at index position 1.

Compare i with half of the size of this LinkedList to determine whether the first or last is closerto i.
Starting at the closer end of the list, traverse to the Node at position i.
Return the value stored in the Node at position 1.

int indexOf (Object o)

Precondition:

Postcondition:

Pseudocode:

Parameter o may be of any object data type and may be null.

Returns the index position of the first occurrence in this List of an element equivalent to parameter o or -1 if
no such element is contained within this List.

Starting at the Node referenced by first, traverse backwards through each Node of this LinkedList...
...If the element stored in the Node is equivalent to parameter o (i.e., using equals ())...
...return the relative index position of the Node.
Return -1.

int lastIndexOf (Object o)

Precondition: Parameter o may be of any object data type and may be null.

Postcondition: Returns the index position of the last occurrence in this List of an element equivalent to parameter o or -1 if
no such element is contained within this List.

Pseudocode: Starting at the Node referenced by 1ast, traverse backwards through each Node of this LinkedList...
...If the element stored in the Node is equivalent to parameter o (i.e., using equals ())...
...return the relative index position of the Node.
Return -1.

ListIterator<E> listIterator()

Precondition: LinkedList containsaninner class called ListItr thatimplementsthe ListIterator interface.

Postcondition: Returnsa ListIterator thatcan traverse through each element of this List in either ascending or
descending order of index position.

Pseudocode: Return a new instance of the LinkedList class' custom ListItr inner class.

ListIterator<E> listIterator(int 1i)

Precondition: Parameter i is a valid index position within this List.
LinkedList contains an inner class called ListItr thatimplementsthe ListIterator interface.

Postcondition: Returns a ListIterator that can traverse through each element of this List in either ascending or
descending order of index position and is positioned to start at the index position specified by parameter 1.

Pseudocode: Return a new instance of the LinkedList class' custom ListItr inner class initialized to start at index 1.

E remove (int 1i)

Precondition: Parameter i is a valid index position within this List.
Postcondition: The element at index position i has been removed and returned and the size of this List is reduced by 1.

Pseudocode: Compare i with half of the size of this LinkedList to determine whether the first or last is closerto i.
Starting at the closer end of the list, traverse to the Node at position i.
Remove the Node at index position 1.
Decrement size by 1.
Return the value stored in the removed Node.

E set(int i, E e)

Precondition: Parameter i is a valid index position within this List.
Parameter e may be null.

Postcondition: The element at index position i has been replaced by parameter e and the replaced element is returned.

Pseudocode: Compare i with half of the size of this LinkedList to determine whether the first or last is closer to i.
Starting at the closer end of the list, traverse to the Node at position i.
Store parameter e in the Node.
Return the element that was originally stored in the Node.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

Stack<E>

Description:

stack

® The user can pop () an element from the top of the

stack

+ boolean isEmpty ()*
e The user can peek () atthe top item on top of the +E peek ()
stack without removing it +E pop ()
e The user can test for whether the stack i sEmpty () +E push(E e)
+ int size()*

boolean

® A collection designed for holding elements prior to class Stack<E>

processing
® Represents a last-in/first-out (LIFO) stack of objects
e The user can push () an element onto the top of the

elementCount*
elementData*

+ boolean contains (Object o)*
boolean equals (Object o)*

+

Additional methods not shown.

* Method/field inherited from Vector<E> class.

equals (Object o)

Precondition:

Postcondition:

Parameter o may be of any object data type and may be null.

Returns true if parameter o is a Stack, has the same size as this Stack, and contains all of the same elements
in the same order as this Stack. Otherwise, returns false.

Pseudocode: If parameter oisnull, return false.
If parameter o is a reference to this Stack, return true.
If parameter ois nota List, return false.
If parameter o does not have the same size as this Stack, return false.
Declare a Stack<E> called that and assign to it the value of parameter o after typecasting it to a Stack<E>.
For each index position i in elementData...
...If the element at position i from this.elementData and the element from position i from
that.elementData do not contain equivalent elements (i.e., using equals ())...
...return false.
Return true.
boolean isEmpty ()

Precondition:
Postcondition:

Pseudocode:

E peek()

This Stack may be empty.
Returns true if this Stack is empty. Otherwise, returns false.

Return the result of comparing elementCount with 0.

Precondition:

Postcondition:

Pseudocode:

This Stack may be empty.

If this Stack is empty, throws an EmptyStackException. Otherwise, returns the element at the top of this
Stack without removing it from the Stack.

If this Stack is empty...
...throw a new EmptyStackException.
Return a reference to the element at index position size - 1 of elementData.

E pop()

Precondition: This Stack may be empty.

Postcondition: If this Stack is empty, throws an EmptyStackException. Otherwise, removes and returns the element at
the top of this Stack and reduces the size of this Stack by 1.

Pseudocode: If this Stack is empty...
...throw a new EmptyStackException.
Decrement the value of elementCount.
Return a reference to the element at index position size - 1 of elementData.

E push(E e)

Precondition: Parameter e may be null.

Postcondition: Adds parameter e to the top of this Stack and returns the added element and increases the size of this Stack
by 1.

Pseudocode: Assign parameter e to index position elementCount of elementData.

Increment the value of elementCount.
Return parameter e.

int size()

Precondition: This Stack contains 0 or more elements of some data type (E) to be specified at runtime.
Postcondition: Returns the number of elements currently contained within this Stack.

Pseudocode: Return the value of elementCount.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

Queue<E>

Description:)
® A collection designed for holding elements prior to interface Queue<E>
processing Interfaces contain no instance variables.

® Represents a first-in/first-out (FIFO) stack of objects
® The user can add () an element to the tail of the

queue

® The user can remove () an element from the head of
the queue

® The user can peek () at the next element to be +E peek ()
removed from the queue without removing it +E remove ()

e The user can test for whether the queue isEmpty ()

Implementing Classes: Additional methods not shown.
e LinkedList<E>
o Prioritizes elements by the order in which * Method inherited from Collection<E> interface.

they are added to the queue
® PriorityQueue<E>
o Prioritizes elements based on their relative
values
o Elements must have a "natural ordering" (i.e.,
implements the Comparable<E> interface)

boolean add(E e)

Precondition: Parameter e may be null.

Postcondition: Appends parameter e to the end of this Queue, increases the size of this Queue by 1, and returns true.

boolean equals (Object 0)

Precondition: This Queue may be empty.

Postcondition: Returns true if parameter o is a Queue, has the same size as this Queue, and contains all of the same elements
in the same order as this Queue. Otherwise, returns false.

E peek()

Precondition: This Queue may be empty.

Postcondition: If this Queue is empty, returns null. Otherwise, returns the element at the front of this Queue without
removing it from the Queue.

E remove ()

Precondition: This Queue may be empty.

Postcondition: If this Queue is empty, throws a NoSuchElementException. Otherwise, removes and returns the element
at the front of this Queue and reduces the size of this Queue by 1.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

PriorityQueue<E>

Description:
® Min-heap implementation of the Queue interface
o Stored elements are sorted vertically within a
binary heap structure
e Elements are ordered by either:
o The natural ordering of the element type
o AComparator provided to the constructor
e Elements cannot be null
e Elements must be comparable to one another (i.e.,
implements the Comparable<E> interface)
e The head of this queue is the element with the lowest
relative value, as specified by the natural ordering of
the elements

class PriorityQueue<E>

- int size

- Object[] queue

Additional fields not shown.

- void grow (int minCapacity)
+ boolean add(E e)

+ boolean contains (Object o)
+ boolean isEmpty ()*

+ E peek ()

+ E remove ()

boolean

+ int size()

Additional methods not shown.

* Method inherited from AbstractQueue<E>.

add (E e)

Precondition:

Postcondition:

Pseudocode:

boolean

Parameter e is not null.

Adds parameter e to this PriorityQueue, increases the size of this PriorityQueue by 1, and returns
true.

Increment the value of size.

Assign to index position size of queue the value of parameter e.

Declare an integer called i and assign to it the value of size.

While 1 is greater than 1 and the value at index position 1 is less than the value at index position 1 / 2...
...swap the values at index positions i and 1 / 2.

Return true.

contains (Object 0)

Precondition:

Postcondition:

Parameter o may be of any object data type and may be null.

Returns true if parameter o is contained within this PriorityQueue. Otherwise, returns false.

Pseudocode: Declare an integer variable called i and assign to it the value of 1.
While 1 is less than or equal to size...
...if the value at index position i is equivalent to parameter o (i.e., using equals ())...
...return true.
...if the value at index position 1 is less than the value at index position 1 * 2...
...assignto i the thevaluei * 2.
...otherwise...
...assignto i thethevalue (1 * 2) + 1.
Return false.
boolean isEmpty ()

Precondition:

Postcondition:

Pseudocode:

This PriorityQueue may be empty.
Returns true if this PriorityQueue is empty.

Return the result of comparing size with 0.

E peek ()

Precondition: This PriorityQueue may be empty.

Postcondition: If this PriorityQueue is empty, returns null. Otherwise, returns the lowest valued element in this
PriorityQueue without removing it from the PriorityQueue.

Pseudocode: If this PriorityQueue is empty...
..returnnull.
Returns the element in index position 1 of queue.

E remove ()

Precondition: This PriorityQueue may be empty.

Postcondition: If this PriorityQueue is empty, throws a NoSuchElementException. Otherwise, removes and returns
the lowest valued element in this PriorityQueue and reduces the size of this PriorityQueue by 1.

Pseudocode: Declare an E variable called head and assign to it the value in index position 1 of queue.
Assign to index position 1 of queue the value stored in index position size of queue.
Assign to index position size of queue the value of null.

Declare an integer variable called i and assign to it the value of 1.
Declare an E variable called root and assign to it the value at index position 1.
Declare an E variable called 1eft and assign to it the value at index position 1 * 2.
Declare an E variable called right and assign to it the value at index position i * 2 + 1.
While 1 is less than size and root is less than either left or right...
...declare an E variable called 1eft and assign to it the value at index position i * 2.
...declare an E variable called right and assign to it the value at index positioni * 2 + 1.
..if rightisequaltonull or leftislessthan right...
...swap the values at index positions i and i * 2.
...assignto i thevalueof 1 * 2.
...assign to root the value of left.
...otherwise...
...swap the values at index positions i and i * 2 + 1.
...assignto i thevalueofi * 2 + 1.
...assign to root the value of right.
...increment the value of 1.
Decrement the value of size.
Return the value of head.

int size()

Precondition: This PriorityQueue contains 0 or more elements of some data type (E) to be specified at runtime.
Postcondition: Returns the number of elements currently contained within this PriorityQueue.

Pseudocode: Return the value of size.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

Description:)
® Models the mathematical set abstraction. interface Set<E>
® A collection that contains no duplicate elements

o More formally, sets contain no pair of
elements el and e2 such that
el.equals (e2), and at most one null
element

® May be ordered or unordered, depending upon the
implementation

Interfaces contain no instance variables.

Implementing Classes:
e HashSet<E>
o Array-based implementation that uses a hash
table to store elements based on their hash
values
o Maintains elements in an unspecified order
o Storage and retrieval of elements relies on
each element having a sufficiently defined * Method inherited from Collection<E> interface.
hashCode () and equals () methods
® TreeSet<E>
o Link-based implementation that arranges
elements in a balanced, binary search tree
o Maintains elements in a sorted order
o Elements must have a "natural ordering" (i.e.,
implements the Comparable<E> interface)

Additional methods not shown.

boolean add(E e)

Precondition: Parameter e may be null.

Postcondition: If this Set does not contain parameter ¢, it is added to the Set and the size of the Set is increased by 1.
Returns true if the size of the set was modified. Otherwise, returns false.

boolean addAll (Collection<E> c)

Precondition: Parameter c may contain null elements.

Postcondition: For each element in parameter ¢, if this Set does not contain the element, it is added to the Set and the size
of the Set is increased by 1 for each added element.
Returns true if the size of the set was modified. Otherwise, returns false.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

HashSet<E>

Description:

e Hash table implementation of the Set interface

class HashSet<E>

o Internally uses a HashMap instance
o Elements are stored/accessed using the
"bucket and chain" approach
o Optimal performance is maintained through
proper management of the table's capacity vs.
the load factor
o Makes no guarantees as to the iteration order
of the set; in particular, it does not guarantee
that the order will remain constant over time
m Capacity is the number of buckets in
the hash table
m Load factor is a measure of how full
the hash table is allowed to get
before its capacity is automatically
increased
m Table is rehashed when the number
of entries in the hash table exceeds
the product of the load factor and
the current capacity (i.e., the number
of buckets is approximately doubled)
Permits all elements, including null
NOTE: Because TreeSet and HashSet are both
backed by Map objects as their underlying data
structures, most methods between the two classes are
implemented identically to one another. The difference
in runtime performance of the two Set classes comes

- HashMap<E, Object> map;

Additional fields not shown.

add (E e)

addAll (Collection<E> c)
contains (Object o)
containsAll (Collection<E> c)
+ boolean equals (Object o)

+ boolean isEmpty ()

+ Iterator<E> iterator ()

+ boolean remove (Object o)

+ boolean removeAll (Collection<E> c)

+ int size ()

+ boolean
+ boolean
+ boolean
+ boolean

Additional methods not shown.

* Method inherited from AbstractSet<E>.

from the different runtime performances of their
underlying Map data structures.

boolean

add (E e)

Precondition:

Postcondition:

Pseudocode:

boolean

Parameter e may be null.

If this HashSet does not contain parameter e, it is added to the HashSet and the size of the HashSet is
increased by 1.
Returns true if the size of the set was modified. Otherwise, returns false.

Put a new key-value pair into map with parameter e as the key and a default Object as the value and return
true if the result is null. Otherwise, return false.

contains (Object 0)

Precondition:

Postcondition:

Pseudocode:

Parameter o may be of any object data type and may be null.
Returns true if parameter o is contained within this HashSet. Otherwise, returns false.

Return the result of testing whether map contains parameter o as a key.

boolean

equals (Object o)

Precondition:

Postcondition:

Pseudocode:

boolean

Parameter o may be of any object data type and may be null.

Returns true if parameter o is a Set, has the same size as this HashSet, and contains all of the same elements
as this HashSet. Otherwise, returns false.

If parameter o isnull, return false.

If parameter o is a reference to this HashSet, return true.

If parameter o is not a Set, return false.

If parameter o does not have the same size as this HashSet, return false.

Declare a Set<E> called that and assign to it the value of parameter o after typecasting it to a Set<E>.
Return the result of testing whether map contains all elements of that.

remove (Object o)

Precondition:

Postcondition:

Pseudocode:

This HashSet contains 0 or more elements of some data type (E) to be specified at runtime.
Parameter o may be null.

If this HashSet contains an element equivalent to parameter o (i.e., using equals ()), one matching element
is removed from this HashSet and the size of HashSet size is reduced by 1.
Returns true if the size of this HashSet is changed. Otherwise, returns false.

Remove the key-value pair from map that uses parameter e as the key and return false if the resultis null.
Otherwise, return true.

int size()

Precondition:

Postcondition:

Pseudocode:

This HashSet contains 0 or more elements of some data type (E) to be specified at runtime.
Returns the number of elements currently contained within this HashSet.

Return the size of map (i.e., the number of key-value pairs in the underlying map).

NOTE: This documentation is not exhaustive. Additional methods are not shown.

TreeSet<E>

Description:

class TreeSet<E>

Binary search tree implementation of the Set
interface

o Internally uses a TreeMap instance
Elements are ordered by either:

o The natural ordering of the element type

o AComparator provided to the constructor
NOTE: Because TreeSet and HashSet are both
backed by Map objects as their underlying data
structures, most methods between the two classes are
implemented identically to one another. The difference
in runtime performance of the two Set classes comes
from the different runtime performances of their
underlying Map data structures.

- NavigableMap<E,Object> map

Additional fields not shown.

add (E e)

addAll (Collection<E> c)
contains (Object o)
containsAll (Collection<E> c)
+ boolean equals (Object o)

+ boolean isEmpty ()

+ Iterator<E> iterator ()

+ boolean remove (Object o)

+ boolean
+ boolean
+ boolean
+ boolean

boolean

+ boolean removeAll (Collection<E> c)
+ int size()

Additional methods not shown.

* Method inherited from NavigableSet<E>.

add (E e)

Precondition:

Postcondition:

Pseudocode:

boolean

Parameter e may be null.

If this TreeSet does not contain parameter e, it is added to the TreeSet and the size of the TreeSet is
increased by 1.
Returns t rue if the size of the set was modified. Otherwise, returns false.

Put a new key-value pair into map with parameter e as the key and a default Object as the value and return
true if theresultis null. Otherwise, return false.

contains (Object 0)

Precondition:

Postcondition:

Pseudocode:

boolean

Parameter o may be of any object data type and may be null.
Returns true if parameter o is contained within this TreeSet. Otherwise, returns false.

Return the result of testing whether map contains parameter o as a key.

equals (Object o)

Precondition:

Postcondition:

Pseudocode:

Parameter o may be of any object data type and may be null.

Returns true if parameter o is a Set, has the same size as this TreeSet, and contains all of the same elements
as this TreeSet. Otherwise, returns false.

If parameter o is null, return false.

If parameter o is a reference to this TreeSet, return true.

If parameter o is not a Set, return false.

If parameter o does not have the same size as this TreeSet, return false.

Declare a Set<E> called that and assign to it the value of parameter o after typecasting it to a Set<E>.
Return the result of testing whether map contains all elements of that.

boolean remove (Object 0)

Precondition: This TreeSet contains 0 or more elements of some data type (E) to be specified at runtime.
Parameter o may be null.

Postcondition: If this TreeSet contains an element equivalent to parameter o (i.e., using equals ()), one matching element
is removed from this TreeSet and the size of TreeSet size is reduced by 1.

Returns true if the size of this TreeSet is changed. Otherwise, returns false.

Pseudocode: Remove the key-value pair from map that uses parameter e as the key and return false if the resultis null.
Otherwise, return true.

int size()

Precondition: This TreeSet contains 0 or more elements of some data type (E) to be specified at runtime.
Postcondition: Returns the number of elements currently contained within this TreeSet.

Pseudocode: Return the size of map (i.e., the number of key-value pairs in the underlying map).

NOTE: This documentation is not exhaustive. Additional methods are not shown.

Map<K, V>

Description:)
® Associates keys with values interface Map<K , V>
® Cannot contain duplicate keys Interfaces contain no instance variables.
e Each key can map to at most one value
e Allows a map's contents to be viewed as: + boolean containsKey (Object k)
o Asetofkeys +boolean containsValue (Object v)
o Acollection of values + boolean equals (Object o)
o Set of key-value mappings +V get(Object k)
e Keys may be ordered or unordered, depending upon + boolean isEmpty ()
the implementation + Set<K> keySet ()
e NOTE: Map<K, V> is closely related to other types of +V put(K k, V v)
collections (in particular, sets), but does not actually + void putAll (Map<K, V> m)
extend from the Collection<E> interface due to +V remove (Object k)
differences in available methods and method

+ int size()
signatures (i.e., Maps are defined generically in terms + Collection<V> values ()

of 2 types: its key and its value)
Additional methods not shown.

Implementing Classes:
e HashMap<K,V>
o Array-based implementation that uses a hash
table to store elements based on their hash
values
o Maintains key-value pairs in an unspecified
order, as determined by the key
o Storage and retrieval of elements relies on
each element having a sufficiently defined
hashCode () and equals () methods
e TreeMap<K,V>
o Link-based implementation that arranges
elements in a balanced, binary search tree
o Maintains key-value pairs in a sorted order, as
determined by the key
o Elements must have a "natural ordering" (i.e.,
implements the Comparable<E> interface)

boolean containsKey (Object k)

Precondition: Parameter o may be of any object data type and is not null.

Postcondition: Returns true if this Map contains a key-value pair whose key is equivalent to parameter k (i.e., using
equals ()). Otherwise, returns false.

boolean containsValue (Object v)

Precondition: Parameter o may be of any object data type and is not null.

Postcondition: Returns true if this Map contains a key-value pair whose value is equivalent to parameter k (i.e., using
equals ()). Otherwise, returns false.

boolean equals (Object 0)

Precondition: Parameter o may be of any object data type and may be null.

Postcondition: Returns true if parameter o is a Map, has the same size as this Map, and contains all of the same key-value pairs
as this Map. Otherwise, returns false.

V get (Object k)

Precondition:

Postcondition:

Parameter o may be of any object data type and is not null.

Returns the value associated with the key specified by parameter k, if such a key-value pair exists within this
Map. Otherwise, returns null.

Set<K> keySet ()

Precondition:

Postcondition:

V put (K

This Map contains 0 or more key-value pairs.
No 2 key-value pairs share the same key.

Returns the Set of all keys contained with this Map.
NOTE: The returned Set is "backed" by this Map. Any changes to the key-value pairs in this Map will
automatically be reflected in the returned Set.

k, V v)

Precondition:

Postcondition:

Parameter kis not null.
Parameter v may be null.

Adds or updates a key-value pair to this Map that associates parameter k (i.e., the key) with parameter v (i.e.,
the value).

Returns the value previously associated with the key specified by parameter k, if such a key-value pair already
existed with this Map. Otherwise, returns null.

V remove (Object k)

Precondition:

Postcondition:

Parameter o may be of any object data type and is not null.

Removes the key-value pair specified by parameter k (i.e., the key) from this Map.
Returns the value previously associated with the key specified by parameter k, if such a key-value pair already
existed with this Map. Otherwise, returns null.

int size()

Precondition:

Postcondition:

This Map contains 0 or more key-value pairs.

Returns the number of key-value pairs currently contained within this Map.

Collection<V> wvalues ()

Precondition:

Postcondition:

This Map contains 0 or more key-value pairs.
Multiple key-value pairs may share the same value.

Returns the Collection of all values contained with this Map.
NOTE: The returned Collection is "backed" by this Map. Any changes to the key-value pairs in this Map will
automatically be reflected in the returned Collection.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

HashMap<K, V>

Description:

e Hash table implementation of the Map interface

(o]

Keys are stored/accessed using the "bucket
and chain" approach
m For 8 or fewer items in a bucket,
key-value pairs are stored in a linked
list of Node objects
m For more than 8 items in a bucket,
key-value pairs are stored in a binary
search tree of Node objects
Optimal performance is maintained through
proper management of the table's capacity vs.
the load factor
Makes no guarantees as to the order of the
map; in particular, it does not guarantee that
the order will remain constant over time.
m Capacity is the number of buckets in
the hash table
m Load factor is a measure of how full
the hash table is allowed to get
before its capacity is automatically
increased
m Table is rehashed when the number
of entries in the hash table exceeds
the product of the load factor and
the current capacity (i.e., the number
of buckets is approximately doubled)

e Permits all keys, including null

® Permits all values, including null

e Each key-value pairing is associated via a custom
Node<K, V> object defined as a private inner class of
HashMap

e NOTE: As a general rule, the default load factor (0.75)
offers a good tradeoff between time and space costs

(0]

boolean

Higher values decrease the space overhead
but increase the lookup cost

Lower values increase the likelihood of rehash
operations

containsKey (Object k)

- int size

- Node<K,V>[]
- Set<Map.Entry<K,V>> entrySet
- Set<K> keySet*

- float loadFactor

Additional fields not shown.

table

+ int size()

+ boolean containsKey (Object k)

+ boolean containsValue (Object v)
+ boolean equals (Object o)

+V get(Object k)

+ boolean isEmpty ()

+ Set<K> keySet ()

+V put(K k, V v)

+ void putAll (Map<K, V> m)

+ V remove (Object k)

+ Collection<V> wvalues ()

Additional methods not shown.

* Method inherited from AbstractMap<E>.

class HashMap.Node<K,6V>

- K key
-V value
- int hash

- Node<K, V> next

+ K getKey ()

+V getValue ()
+V setValue (V newValue)

Additional methods not shown.

Precondition:

Postcondition:

Pseudocode:

Parameter o may be of any object data type and is not null.

Returns true if this HashMap contains a key-value pair whose key is equivalent to parameter k (i.e., using

equals ()). Otherwise, returns false.

Bitwise AND the hash value of k with the length of table to compute the index of the appropriate "bucket".

For each Node objectin table[index]...

...if the key stored in the Node is equivalent to k...

...Return true.
Return false.

boolean containsValue (Object v)

Precondition: Parameter o may be of any object data type and is not null.

Postcondition: Returns true if this HashMap contains a key-value pair whose value is equivalent to parameter k (i.e., using
equals ()). Otherwise, returns false.

Pseudocode: For each index positionin table...
...for each Node object in table [index]...
...if the value stored in the Node is equivalent to v...
...Return true.
Return false.

boolean equals (Object 0)

Precondition: Parameter o may be of any object data type and may be null.

Postcondition: Returns true if parameter o is a HashMap, has the same size as this HashMap, and contains all of the same
key-value pairs as this HashMap. Otherwise, returns false.

Pseudocode: If parameter oisnull, return false.
If parameter o is a reference to this HashMap, return true.
If parameter o is not a Map, return false.
If parameter o does not have the same size as this HashMap, return false.
Declare a Map<E> called that and assign to it the value of parameter o after typecasting it to a Map<E>.
For each index position in table...
...for each Node object in table [index]...
...if that contains the key-value pair stored within the Node...
...return true.
Return false.

V get (Object k)

Precondition: Parameter o may be of any object data type and is not null.

Postcondition: Returns the value associated with the key specified by parameter k, if such a key-value pair exists within this
HashMap. Otherwise, returns null.

Pseudocode: Bitwise AND the hash value of k with the length of table to compute the index of the appropriate "bucket".
For each Node objectin table [index]...
...if the key stored in the Node is equivalent to k...
...return the value stored in the Node.
Return null.

Set<K> keySet ()

Precondition: This HashMap contains 0 or more key-value pairs.
No 2 key-value pairs share the same key.

Postcondition: Returns the Set of all keys contained with this HashMap.
NOTE: The returned Set is "backed" by this HashMap. Any changes to the key-value pairs in this HashMap will
automatically be reflected in the returned Set.

Pseudocode: If keySetisnull...
...create a new KeySet<K> (private inner class that extends AbstractSet<K>) that can utilize the
contents of table to implement the functionality of a Set of all keys stored within this Map.
Return keySet.

V put(K k, V v)

Precondition:

Postcondition:

Pseudocode:

Parameter k is not null.
Parameter v may be null.

Adds or updates a key-value pair to this HashMap that associates parameter k (i.e., the key) with parameter v
(i.e., the value).

Returns the value previously associated with the key specified by parameter k, if such a key-value pair already
existed with this HashMap. Otherwise, returns null.

Bitwise AND the hash value of k with the length of table to compute the index of the appropriate "bucket".
For each Node objectin table [index]...
...if the key stored in the Node is equivalent to k...
...replace the value stored in the Node with parameter v.
...return the value that was originally stored in the Node.
Create a new Node with a key of k, a value of v, a hash of the hash value of k, and a next pointer of null.
If the number of Node objects stored in table [index] is less than 8...
...append the newly created Node to the end of the linked chain of Node objects.
Otherwise if the number of Node objects stored in table [index] is equal to 8...
...construct a binary search tree of Node objects from each of the nodes in the linked list of Node objects.
...replace the linked list of Node objects in table [index] with the binary search tree of Node objects.
Otherwise...
...insert the newly created Node into the balanced, binary search tree of Node objects.
...rebalance the tree, if necessary.
Increment size.
Return null.

V remove (Object k)

Precondition:

Postcondition:

Pseudocode:

Parameter o may be of any object data type and is not null.

Removes the key-value pair specified by parameter k (i.e., the key) from this HashMap.
Returns the value previously associated with the key specified by parameter k, if such a key-value pair already
existed with this HashMap. Otherwise, returns null.

Bitwise AND the hash value of k with the length of table to compute the index of the appropriate "bucket".
For each Node objectin table [index]...
...if the key stored in the Node is equivalent to k...
...remove the Node from the linked list or binary search tree of Node objects.
...decrement size by 1.
...return value stored in the removed Node.
Return null.

int size()

Precondition:

Postcondition:

Pseudocode:

This HashMap contains 0 or more key-value pairs.
Returns the number of key-value pairs currently contained within this HashMap.

Return the value of size.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

TreeMap<K, V>
e Binary search tree implementation of the Map class TreeMap<K , V>

interface - Entry<K,V> root

® Keysare ordered by either: - NavigableSet<K> navigableKeySet
o The natural ordering of the element type - int size

o AComparator provided to the constructor
e The set of keys will be iterated over in ascending order Additional fields not shown.

+ boolean containsKey (Object k)
+ boolean containsValue (Object v)
+ boolean equals (Object o)

+V get(Object k)

+ boolean isEmpty ()

+ Set<K> keySet ()

+V put(K k, V v)

+ void putAll (Map<K, V> m)

+ V remove (Object k)

+int size()

+ Collection<V> wvalues ()

Additional methods not shown.

* Method inherited from NavigableMap<E>.

class TreeMap.Entry<K,V>

- K key

-V value

- Entry<K,V> left

- Entry<K,V> right
- Entry<K, V> parent

+ K getKey ()
+V getValue ()
+V setValue (V newValue)

Additional methods not shown.

boolean containsKey (Object k)

Precondition: Parameter o may be of any object data type and is not null.

Postcondition: Returns true if this TreeMap contains a key-value pair whose key is equivalent to parameter k (i.e., using
equals ()). Otherwise, returns false.

Pseudocode: Declare an Entry<K, V> variable called node and assign to it a reference to root.
While node isnot null...
...if the key stored in node is equivalent to parameter k...
...return true.
...if the key stored in node is greater than parameter k...
...reassign to node a reference to node . left.
...otherwise...
...reassign to node a reference to node . right.
Return false.

boolean equals (Object 0)

Precondition: Parameter o may be of any object data type and may be null.

Postcondition: Returns true if parameter o is a TreeMap, has the same size as this TreeMap, and contains all of the same
key-value pairs as this TreeMap. Otherwise, returns false.

Pseudocode: If parameter oisnull, return false.
If parameter o is a reference to this TreeMap, return true.
If parameter o is not a Map, return false.
If parameter o does not have the same size as this TreeMap, return false.
Declare a Map<E> called that and assign to it the value of parameter o after typecasting it to a Map<E>.
Declare a Stack<Entry<K, V>> variable called nodes and initialize it to an empty stack.
Push a reference to root onto nodes.
While nodes is not empty...
...Declare an Entry<K, V> variable called node and assign to it the Entry object popped from nodes.
...if that does not contain the key stored in node or the value associated with the key in this is not
equivalent to the value associated with the key in that...
...return false.
..if node.leftisnotnull..
...push onto nodes a reference to node . left.
..if node.rightisnotnull...
...push onto nodes a reference to node . right.
Return true.

V get (Object k)

Precondition: Parameter o may be of any object data type and is not null.

Postcondition: Returns the value associated with the key specified by parameter X, if such a key-value pair exists within this
TreeMap. Otherwise, returns null.

Pseudocode: Declare an Entry<K, V> variable called node and assign to it a reference to root.
While node is not null...
...if the key stored in node is equivalent to parameter k...
...return the value stored in node.
...if the key stored in node is greater than parameter k...
...reassign to node a reference to node. left.
...otherwise...
...reassign to node a reference to node . right.
Return false.

Set<K> keySet ()

Precondition: This TreeMap contains 0 or more key-value pairs.
No 2 key-value pairs share the same key.

Postcondition: Returns the Set of all keys contained with this TreeMap.
NOTE: The returned Set is "backed" by this TreeMap. Any changes to the key-value pairs in this TreeMap will
automatically be reflected in the returned Set.

Pseudocode: If navigableKeySetisnull...

...create a new KeySet<K> (private inner class that extends AbstractSet<K>) that can utilize the
balanced, binary search tree referenced by root to implement the functionality of a Set of all keys
stored within this Map.

Return navigableKeySet.

V put(K k, V v)

Precondition: Parameter kis not null.
Parameter v may be null.

Postcondition: Adds or updates a key-value pair to this TreeMap that associates parameter k (i.e., the key) with parameter v
(i.e., the value).
Returns the value previously associated with the key specified by parameter k, if such a key-value pair already
existed with this TreeMap. Otherwise, returns null.

Pseudocode: Declare an Entry<K, V> variable called node and assign to it a reference to root.
Declare an Entry<K, V> variable called parent and assign to it a value of null.
While node is not null...

...if the key stored in node is equivalent to parameter k...
...replace the value stored in node with v.
...return the original value stored in node.
...assign to parent the value of node.
...if the key stored in node is greater than parameter k...
...reassign to node a reference to node. left.
...otherwise...
...reassign to node a reference to node . right.
Create a new Entry<K, V> variable called child and initialize it with a key of k and a value of v.
If k is less than the key stored in parent...
...assignto parent.left areference to child.
Otherwise...
...assign to parent.right areference to child.
Rebalance the tree as necessary.
Increment size by 1.
Return null.

V remove (Object k)

Precondition: Parameter o may be of any object data type and is not null.

Postcondition: Removes the key-value pair specified by parameter k (i.e., the key) from this TreeMap.
Returns the value previously associated with the key specified by parameter k, if such a key-value pair already
existed with this TreeMap. Otherwise, returns null.

Pseudocode: Declare an Entry<K, V> variable called node and assign to it a reference to root.
Decrement size by 1.
While node is not null...
...if the key stored in node is equivalent to parameter k...
...promote the right-most node of the left subtree to replace node.
...rebalance the tree as necessary.
...if the key stored in node is greater than parameter k...
...reassign to node a reference to node. left.
...otherwise...
...reassign to node a reference to node . right.
Return null.

int size()

Precondition: This TreeMap contains 0 or more key-value pairs.
Postcondition: Returns the number of key-value pairs currently contained within this TreeMap.

Pseudocode: Return the value of size.

NOTE: This documentation is not exhaustive. Additional methods are not shown.

-
' - ~
eoeLiajul A
N A
’ sjuowo]du e ssefosadn,
\\ (poseq-yury) sselo (paseq-Aeuy) ’ s Amu...% ssePans
-Aewty) 55210
’ POLIOS I e e
’
!
#
1 j 4
I aoepay
ssEiD
<p>depye|qebiney — i
I . <A‘Y>depioensqy
— - Wm E—
_ ~ 1 - - o — ~
k4 ; i S~
|} 7Y & ~
aoepaLy s
\ <py>de > 4 Sosna £ h
S NPaLOS <opds ’ deauly s
’ " 4) N
~ ”’ A
SR a0 W €5 o W Wan W an W :
~ -— - L L ,
1 ===
P - ~ s (paseq-MeLty) sseD -
’ LN . o <z>isif \ (paseq-feuy) sseio | 1
n Biy 1
’ \ » " pauos . " ;
y (peseq-yury) sy I \ ' ; -a
4 n@tom <g>jeSedll < (paseq-Aeiy) ssejn 1 " 1 1
4 & 1eSUsEH \ <g=enenplidond -— ' SSE|D J0BASqY . ! :
1
/ W\\ S — 7 ; " P " (poseq-Aeuy) sszo | 11
— 1
! aoppay 'S 1 m) 1 |
ssey B
I | <a>iesoiqebine | \ Y 1 0} eaep ! \
InEN <= §5B|0) 10BASqY NS
1 el <g>ananp}o \ soepa S
T SSE|0 JOE.
1 ! il \L_<penbea — 4
' Y /v . U SPiERREaY '
aoBuBIL RS "
V< » ! o Y « h 4 i 4
JoSpooS s sseiD Joessay N Y 4
’ \ m #@w ﬁmgﬂ_#ﬁﬂ a2eLa)uf \
o
e ’ bl <g>ononp s ’
o = - " ~ =3 s
' s
h 4 . ,
ESEET) - = = »
<3>uon29||on - ., me—m—=
A 4
0B
<3>e|qeiy

10100

01111
01101

10011
01001
01110
00111
01000
11010
01000
00001
01110
00111
00010
01111
10111
01110

Copyright © 2024, Jeff C. Mickel

	Collection<E> extends Iterable<E>
	List<E>
	ArrayList<E>
	LinkedList<E>

	Stack<E>
	Queue<E>
	PriorityQueue<E>

	Set<E>
	HashSet<E>
	TreeSet<E>

	Map<K,V>
	HashMap<K,V>
	TreeMap<K,V>

