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1 Project Description 

The goal of this project is for you first to implement some of the key aspects of the original 
BERT model, including multi-head self-attention and a Transformer layer. You will then use 
your completed BERT model on several tasks (e.g., sentiment analysis, question similarity, 
semantic similarity). In addition, you will also implement a BART model for paraphrase 
type generation and detection. Finally, in the latter half of this project, you will fine-tune 
and extend the models to solve the same  downstream tasks. We describe several 
techniques commonly used to create more robust and semantically-rich sentence 
embeddings – most from recent research papers. We provide these suggestions to help you 
get started. They should all improve over the baseline if implemented correctly (and note 
that there is usually more than one way to implement something correctly). 

In other words, the project will have two parts: 

●​ Part 01: Baseline implementations of BERT (sentiment analysis, question similarity, 
semantic similarity) and BART (paraphrase type generation and detection)1. Each 
task must have at least one baseline. 

●​ Part 02: Improvements for all baselines. Each task baseline must have at least one 
improvement. 

Though you are not required to implement something original, the best projects will pursue 
some form of originality (and may become research papers in the future). Originality does 
not necessarily have to be a completely new approach – small but well-motivated changes 
to existing models are valuable, especially if followed by sound analysis. If you can show 
quantitatively and qualitatively that your small but original change improves a 
state-of-the-art model (and even better, explain what particular problem it solves and how), 
then you will have done exceptionally well. It will be up to you to figure out what to do. In 
many cases, there will not be one correct answer for doing something – it will take 
experimentation to determine which is best. We expect you to exercise the judgment and 
intuition you have gained from the class and self-study to build your models. 

 

1 You can also implement the BERT model for paraphrase type detection. Please read Section 7.2 for more 
details. 

 



2 Basic Setup 

For this project, you will need a machine with GPUs to train your models efficiently. For this, 
you have access to a server provided by the University of Göttingen (GWDG and 
NHR@Göttingen)2. The servers and GPUs offered are restricted and should not be used as a 
playground or debug environment for your code. We advise that you develop your code on 
your local machine, using PyTorch without GPUs, and move to your Server only once you 
have debugged your code and you are ready to train. We advise that you use GitHub to 
manage your codebase and sync it between the two machines (and between team 
members). When you work through this section for the first time, do so on your local 
machine. You will then repeat the process on the GWDG cluster. Once you are on an 
appropriate machine, clone the project GitHub repository with the following command. 

 git clone https://github.com/GippLab-DNLP-Team/dnlp-final-project  

Alternatively, use the GitHub template feature to create your repository copy first. This 
repository contains the starter code and a minimalist implementation of the BERT model 
(minBERT) we will use. We also provide a small guide to the use of the BART model. We 
encourage you to fork our repository rather than simply download it so you can easily 
integrate any bug fixes we make into the code. You should periodically check whether there 
are any new fixes that you need to download. To do so, navigate to the dnlp-final-project 
directory and run the git pull command. If you use GitHub to manage your code, you 
must keep your repository private until the semester ends. 

2.1 Code overview 

The repository dnlp-final-project/ contains the following files: 

•​ base_bert.py: A base BERT implementation that can load pre-trained weights 
against which you can test your implementation. 

•​ bert.py: This file contains the BERT Model. Several sections of this implementation 
need to be completed. This includes the self-attention and the Transformer (BERT) 
layer. 

•​ config.py: This is where the configuration class is defined. You won’t need to modify 
this file in this assignment. 

•​ multitask_classifier.py: A classifier pipeline where you will train your minBERT 
implementation to perform sentiment analysis, paraphrase detection, and semantic 
textual similarity tasks (and paraphrase type detection). 

•​ bart_detection.py: A pipeline to train a BART model for the paraphrase types 
detection task. The main parts of this pipeline remain to be completed. 

2 Make sure to participate in the workshop offered by GWDG and NHR on 2024-05-30 during the exercise 
session. 

 

https://github.com/GippLab-DNLP-Team/dnlp-final-project
https://github.com/new?template_name=dnlp-final-project&template_owner=GippLab-DNLP-Team


•​ bart_generation.py: A pipeline to train a BART model for the paraphrase 
generation task. The main parts of this pipeline remain to be completed. 

•​ datasets.py: A dataset handling script. 

•​ evaluation.py: An evaluation handling script. 

•​ optimizer.py: An implementation of the Adam Optimizer. The step() function of the 
Adam optimizer needs to be completed. 

•​ tokenizer.py: This is where BertTokenizer is implemented. You won’t need to 
modify this file in this assignment. 

•​ utils.py: Utility functions and classes. You won’t need to modify this file in this 
assignment. 

In addition, there are two directories: 

•​ data/. This directory contains the train, dev, and test-student splits of the SST, STS, 
QQP and ETPC datasets as csv files that you will be using in the first half of this 
project.  

•​ predictions/. This directory contains the output predictions of your models for 
each of the datasets provided. When you have completed model training, the 
supplied pipeline components should place predictions here. 

•​ sanity_test/. This folder contains tests for your completed implementations of 
Adam and BERT. Reminder to run these files only from their directory.  

2.2 Setup 

Once you are on an appropriate machine and have cloned the project repository, it’s time to 
run the setup commands. 

cd dnlp-final-project​
./setup.sh 

Make sure you have Anaconda or Miniconda installed. For information about how to install 
them, please see here. 

This creates a conda environment called dnlp. 

For the first part of the project, you are only allowed to use libraries installed by setup. No 
other external libraries are allowed. Do not use transformers except where indicated. You 
shouldn’t change any existing command options (including defaults) or add new required 
parameters. The first part of the project is just to establish an equal baseline for 
everyone. 

 conda activate dnlp  

 

https://conda.io/projects/conda/en/latest/user-guide/install/index.html


This activates the dnlp environment. Remember to do this each time you work on your 
code. 

(Optional) If you would like to use PyCharm, select the dnlp environment. Example 
instructions: 

1.​ Open the dnlp-final-project directory in PyCharm. 

2.​ Go to PyCharm Preferences Project Project interpreter. 

3.​ Click the gear in the top-right corner, then Add. 

4.​ Select Conda environment Existing environment Click  ’...’ on the right. 

5.​ Select …/miniconda3/envs/dnlp/bin/python. 

6.​ Select OK then Apply. 

(Optional) If you would like to use VSCode, install the Python extension and select the dnlp 
environment. Example instructions: 

1.​ Open the dnlp-final-project directory in VSCode. 

2.​ Open the command palette (CTRL/CMD + SHIFT + P) 

3.​ Select "Python: Select Interpreter". Click "Python 3.10 (’dnlp’)" 

 

2.3 Setup on GWDG cluster 

First, you have to log into the frontend node of the GWDG cluster. See here for more details, 
and check out their Playlist on YouTube. Note that some modules or binaries must be 
loaded using module load, but most of your code should work without. A modern git 
version is available this way. After logging in and cloning your repository, you must create a 
conda environment. Note that this script may take a long time to run, resolve the 
environment, and download the packages. 

cd dnlp-final-project​
./setup_gwdg.sh 

The computing nodes of the GWDG cluster have no internet access. Since the project code 
requires several external files to run, e.g., config.json and pytorch_model.bin, we have to 
download them beforehand on the frontend node with internet access. This script should 
do that as well. You should run it once on the frontend node of the GWDG cluster. The 
necessary files will be saved in the cached path ~/.cache/huggingface/transformers/ on 
the frontend node where the computing nodes can access them. 

 

 

https://gitlab-ce.gwdg.de/dmuelle3/deep-learning-with-gpu-cores
https://youtube.com/playlist?list=PLvcoSsXFNRblM4AG5PZwY1AfYEW3EbD9O&si=_WkmijwdBi6BkM1w


3 BERT & BART 

3.1 BERT 

Bidirectional Encoder Representations from Transformers or BERT is a transformer-based 
model that generates contextual word representations. With its backbone being the 
Transformer, and by using the deeply bidirectional word representations, released in 2018, 
BERT took a large leap forward for contextual word embeddings/large language 
models/foundational models. Here, we will walk through the BERT model and give an 
overview of how the original BERT model was trained. 

The original version of BERT was trained using two unsupervised tasks on Wikipedia 
articles. 

Masked Language Modeling (MLM). To train BERT to extract deep bidirectional 
representations, the training procedure masks some percentage (15% in the original 
paper) of the word piece tokens and attempts to predict them. Specifically, the final hidden 
vectors corresponding to the masked tokens are fed into an output softmax layer over the 
vocabulary and are subsequently predicted. To prevent a mismatch between initial 
pre-training and later fine-tuning, the “masked” tokens are not always replaced by the 
[MASK] token in the training procedure. Instead, the training data generator chooses 15% 
of the token positions at random for prediction; then in 80% of these cases, the token is 
replaced [MASK]; in 10% of cases, the token is replaced with a random token, and in 
another 10% of cases, the token will remain unchanged. 

 

 

 

 

 

 

 

Figure 1: The original BERT model was trained on two unsupervised tasks, masked 
token prediction and next sentence prediction. Figure from [Devlin et al., 2019]. 

Next Sentence Prediction (NSP). To allow BERT to understand the relationships between 
two sentences, BERT is further fine-tuned on the Next Sentence Prediction task. Specifically, 
across training with these sentence pairs, the BERT model, 50% of the time, the actual next 
sentence, and 50% of the time, it is shown as a random sentence. The BERT model then 
predicts whether the second sentence was the next across these pairs. 

 



3.2 BART 

Bidirectional and Auto-Regressive Transformers (BART) is a model that combines the best 
of both encoder and decoder architectures from transformer models. BART was introduced 
by Facebook in 2019 and has achieved state-of-the-art performance in various natural 
language processing tasks, such as text summarization, translation, and 
question-answering. 

BART has a unique approach to pre-training. It involves corrupting text with an arbitrary 
noising function and then learning to reconstruct the original text. The process consists of 
two main stages. Firstly, the encoder receives corrupted text, such as missing words or 
sentences, and processes it through its layers to understand the context and structure. 
Second, the decoder attempts to generate the original, uncorrupted text. BART has a dual 
mechanism that enables it to comprehend context, grammar, and semantics, making it a 
potent tool for both text comprehension and generation. 

The model is trained using various noising strategies, including token deletion, text infilling, 
and sentence permutation, to ensure its ability to handle a broad range of language tasks. 
Its flexible architecture excels in tasks requiring deep understanding and text generation.

 



4 Implementing minBERT 

We have provided you with several of the building blocks for implementing minBERT. In 
this section, we will describe the baseline BERT model and the sections that you must 
implement. 

4.1 Tokenization (tokenizer.py) 

The BERT model converts sentence input into tokens before performing any additional 
processing. Specifically, the BERT model utilizes a WordPiece tokenizer that splits sentences 
into individual words into word pieces. BERT has a predefined set of 30K different word 
pieces. These word pieces are then converted into ids for the rest of the BERT model. For 
example, the following words are converted into respective following word pieces. 

 

 

 

 

 
 

Table 1: An overview of considered paraphrase types and their occurrences in the ETPC 
dataset. 

 

 

 

 

 

Figure 2: BERT embedding layer. The input embeddings that are utilized later in the 
model are the sum of the token embeddings, the segmentation embeddings, and the 
position embeddings. Figure from [Devlin et al., 2019]. 

In addition to separating each sentence into its constituent word pieces tokens, word pieces 
that have previously not been seen (i.e., that are not part of the original 30K word pieces) 
will be set as the [UNK] token. To ensure that all input sentences have the same length, each 
input sentence is further padded to a given max_length (512) with the [PAD] token. Finally, 
for many downstream tasks, BERT represents sentence embeddings with the hidden state 
of the first token. As a result, in BERT’s implementation, [CLS] is prepended to the token 
representation of each input sentence. In this first part of this project, you will be working 
with the hidden state of this token. 

 



Note that a part of vanilla BERT’s training was a next-sentence prediction task. To help 
differentiate the first sentence from the second sentence input (given that BERT does not 
take in two distinct inputs as other models), the [SEP] token was further added to 
introduce an artificial separation between sentences. 

4.2 Embedding Layer (bert.BertModel.embed) 

After tokenizing and converting each token to ids, the BERT model uses a trainable 
embedding layer across each token. The input embeddings used in later portions of BERT 
are the sum of the token embeddings, the segmentation embeddings, and the position 
embeddings. Each embedding layer in the base version of BERT has a dimensionality of 
768. 

The learnable token embeddings map the individual input ids into vector representation 
for later use. More concretely, given some input word piece indices3  , the 𝑤

1
,..., 𝑤

𝑘
∈𝑁

embedding layer performs an embedding lookup to convert the indices into token 

embeddings . 𝑣
1
,..., 𝑣

𝑘
∈ ℝ𝐷

The learnable segmentation embeddings are used to differentiate between different 
sentences inputted into the model. We note that for this project, we do not consider the 
segmentation embeddings (we only consider individual sentences and not next-sentence 
prediction tasks4). They are implemented as placeholders only within the code base we 
provide. 

Finally, the positional embeddings encode the position of different words within the input. 
Like the token embeddings, position embeddings are learned embeddings that are learned 
for each of the 512 positions in a given BERT input. 

4 Take a look at the literature to know why the next sentence prediction task is not used here. 

3 A token index is an integer that tells you which row (or column) of the embedding matrix contains the 
word’s embedding. 

 



 

Figure 3: Encoder and Decoder Layers of Transformer used in BERT. Figure from 
[Vaswani et al., 2017]. 

4.3 BERT Transformer Layer (bert.BertLayer) 

As described in the original BERT paper [Devlin et al., 2019], the base BERT uses 12 
Encoder Transformer layers. These layers were defined initially in the work Attention is All 
You Need. The Transformer layer of the BERT transformer consists of multi-head attention, 
followed by an additive and normalization layer with a residual connection, a feed-forward 
layer, and a final additive and normalization layer with a residual connection. We briefly 
cover each of these layers here; we recommend that you read Section 3 of both cited papers 
for additional details. 

 

4.4 Multi-Headed Self-Attention (bert.BertSelfAttention.attention) 

Multi-head Self-Attention consists of a scaled-dot product applied across multiple different 
heads. Specifically, the input to each head is to a scaled-dot product consisting of queries, 
keys of dimension , and values of dimension . BERT computes the dot products of the 𝑑

𝑘
𝑑

𝑣

query with all keys, divides each by , and applies a softmax function to obtain the 𝑑
𝑘

weights on the values. In practice, BERT computes the attention function on a set of queries 

 



simultaneously, packed together into a matrix . The keys and values are also packed 𝑄
together into matrices  and . Scaled dot-product attention is thus computed as 𝐾 𝑉

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉( ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇

𝑑
𝑘

( )
 

 

 

 

 

 

 

Figure 4: Scaled Dot-Product and Multi-Head Self-Attention. Figure from [Vaswani et al., 
2017]  

Multi-head attention allows the model to jointly attend to information from different 
representation subspaces at different positions. With a single attention head, averaging 
inhibits this. Multi-head attention is computed as 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉( ) = 𝑐𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑
1
,..., ℎ𝑒𝑎𝑑

ℎ( )𝑊𝑂

Where  and where the projections are parameter ℎ𝑒𝑎𝑑
𝑖

= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊
𝑖
𝑄, 𝐾𝑊

𝑖
𝐾, 𝑉𝑊

𝑖
𝑉( )

matrices:  

, ,  and . 𝑊
𝑖
𝑄 ∈ 𝑅

𝑑
𝑚𝑜𝑑𝑒𝑙

×𝑑
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4.5 Position-wise Feed-Forward Networks 

In addition to the attention sublayer, each transformer layer includes two linear 
transformations with a ReLU activation function [Agarap, 2019]. 

 𝐹𝐹𝑁 𝑥( ) = 𝑚𝑎𝑥 0, 𝑥𝑊
1

+ 𝑏
1( )𝑊

2
+ 𝑏

2

 



The feed-forward linear layers are followed by normalization layers. Thus, as specified in 
this section, multi-head attention consists of: 

•​ Linearly projecting the queries, keys, and values with their corresponding linear 
layers. Namely, for each word piece embedding, BERT creates a query vector of 
dimension , a key vector also of dimension , and a value vector . 𝑑

𝑘
𝑑

𝑘
𝑑

𝑣

•​ Splitting the vectors for multi-head attention. 

•​ Following the Attention equation to compute the attended output of each head. 

•​ Concatenating multi-head attention outputs to recover the original shape 

Dropout We note that BERT applies Dropout to the output of each sub-layer before it is 
added to the sub-layer input and normalized. BERT also applies dropout to the sums of the 
embeddings and the positional encodings. BERT uses a default setting of . 𝑝

𝑑𝑟𝑜𝑝
= 0. 1

 

4.6 BERT output (bert.BertModel.forward) 

As specified throughout this section, BERT consists of: 

•​ An embedding layer that consists of token embedding token_embedding and 
positional embedding pos_embedding. 

•​ BERT encoder layers which are a stack of 12 config.num_hidden_layers 
BertLayer. 

After going through the respective layers, the outputs consist of: 

•​ last_hidden_state: the contextualized embedding for each word piece of the 
sentence from the last BertLayer (i.e., the output of the BERT encoder). 

•​ pooler_output: the [CLS] token embedding (The first token). 

 

4.7 Code To Be Implemented: Multi-head Self-Attention and the Transformer 
Layer 

We have provided you with much of the code for a BERT baseline model. Having gone over 
the basic structure of the BERT Transformer model, we will now describe the sections that 
need to be implemented: 

4.7.1 BERT Multi-head Self-Attention (bert.SelfAttention.attention) 

The first function that you should implement is the multi-head attention layer of the 
transformer. This layer maps a query and a set of key-value pairs to an output. The output is 
calculated as the weighted sum of the values, where the weight of each value is computed 

 



by a function that takes the query and the corresponding key. You can implement this 
attention function within bert.SelfAttention.attention. 

4.7.2 BERT Transformer Layer (bert.BertModel and bert.BertLayer) 

After implementing the BERT multi-head self-attention layer, you can implement the 
sections to realize the full BERT transformer layer. These functions can be filled in at 
bert.BertLayer.add_norm, bert.BertLayer.forward, and bert.BertModel.embed. 

After finishing these steps, note that we provide a sanity check function at 
sanity_check.py in the sanity_test folder to test your implementation. It will reload two 
embeddings we computed with our reference implementation and check whether your 
implementation outputs match ours. 

python sanity_check.py 

 

 



5 NLP Tasks 

In this project, you will implement some of the most important components of the BERT 
model [Devlin et al., 2019] so that you can better understand its architecture. Using 
pre-trained weights loaded into your BERT model, you will then perform sentence and 
paraphrase classification with the BERT model. 

After this initial exercise, you will examine how to fine-tune BERT’s contextualized 
embeddings to perform well on multiple sentence-level tasks (sentiment analysis, 
paraphrase detection, semantic textual similarity, and paraphrase classification). This 
section allows you to experiment with different options to obtain robust and generalizable 
sentence embeddings that perform well in different settings. 

 

5.1 Paraphrase Detection 

Paraphrase Detection is the task of finding paraphrases of texts in a large corpus of 
passages. Paraphrases are “rewordings of something written or spoken by someone else”; 
thus, paraphrase detection seeks to determine whether particular words or phrases convey 
the same semantic meaning [Fernando and Stevenson, 2008]. From a research perspective, 
paraphrase detection is an interesting task because it measures how well systems can 
“understand” fine-grained notions of semantic meaning. 

As a concrete dataset example, the website Quora often receives duplicates of other 
questions. To better redirect users and prevent unnecessary work, Quora released a dataset 
that labeled whether different questions were paraphrased from each other. 

Question Pair: (1) “What is the step-by-step guide to investing in the share market in 
India?”, (2) “What is the step-by-step guide to investing in share market?” Is Paraphrase: 
No. 

Question Pair: (1) “I am a Capricorn Sun Cap moon and cap rising...what does that say 
about me?”, (2) “I’m a triple Capricorn (Sun, Moon, and ascendant in Capricorn) What does 
this say about me?” Is Paraphrase: Yes. 

 

5.2 Semantic Textual Similarity (STS) 

The semantic textual similarity (STS) task seeks to capture that some texts are more similar 
than others; STS aims to measure the degree of semantic equivalence [Agirre et al., 2013]. 
STS differs from paraphrasing in that it is not a yes or no decision; rather, STS allows for 
degrees of similarity. For example, on a scale from 5 (same meaning) to 0 (not at all 
related), the following sentences have the following relationships to each other5: 

5 These sentences and labels come from https://aclanthology.org/S131004.pdf 

 

https://aclanthology.org/S131004.pdf


(5) The sentences are completely equivalent, as they mean the same thing: 

​ The bird is bathing in the sink 

​ Birdie is washing itself in the water basin. 

(4) The two sentences are mostly equivalent, but some unimportant details differ: 

​ In May 2010, the troops attempted to invade Kabul. 

​ The US army invaded Kabul on May 7th last year, 2010. 

(3) The two sentences are roughly equivalent, but some important information differs: 

​ John said he is considered a witness but not a suspect. 

​ He is not a suspect anymore 

 

(2) The two sentences are not equivalent, but do share some details: 

​ They flew out of the nest in groups. 

​ They flew into the nest together. 

(1) The two sentences are not equivalent, but are on the same topic: 

​ The woman is playing the violin. 

​ The young lady enjoys listening to the guitar. 

(0) The two sentences are on different topics: 

​ John went horseback riding at dawn with a whole group of friends. 

​ Sunrise at dawn is a magnificent view to take in if you wake up early enough for it. 

 

5.3 Sentiment Analysis 

A basic task in understanding a given text is classifying its polarity (i.e., whether the 
expressed opinion in a text is positive, negative, or neutral). Sentiment analysis can be used 
to determine individual feelings towards particular products, politicians, or news reports. 

As a concrete dataset example, the Stanford Sentiment 6 [Socher et al., 2013]   consists of 
11,855 single sentences extracted from movie reviews. The dataset was parsed with the 

6 https://nlp.stanford.edu/sentiment/treebank.html 
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Stanford parser7 and includes 215,154 unique phrases from those parse trees, each 
annotated by three human judges. Each phrase has a label of negative, somewhat negative, 
neutral, somewhat positive, or positive. 

Movie Review: Light, silly, photographed with colour and depth, and rather a good time.​
Sentiment: 4 (Positive) 

Movie Review: Opening with some contrived banter, cliches and some loose ends, the 
screenplay only comes into its own in the second half.​
Sentiment: 2 (Neutral) 

Movie Review: ... a sour little movie at its core; an exploration of the emptiness that 
underlay the relentless gaiety of the 1920’s ... The film’s ending has a “What was it all for?"​
Sentiment: 0 (Negative) 

 

5.3 Paraphrase Type Detection 

While the QQP dataset (5.1 Paraphrase detection) only differentiates between two 
sentences being paraphrased or not, the paraphrase type detection task is a bit more 
advanced. Instead of asking if two sentences are paraphrases, the task is to find the correct 
type of paraphrase. There are seven different types of paraphrases.  

Note that one sentence pair can belong to multiple paraphrase types.  

The two columns sentence1(2)_segment_location contain information about which token 
belongs to which paraphrase type. The two columns sentence1(2)_tokenized contain 
each token of the sentence in the original sentence ordering.8 

Below is an example of a data point from this dataset. Note that you must convert the labels 
to a binary format to train on them. 

Sentence1: Amrozi accused his brother, whom he called "the witness", of deliberately 
distorting his evidence.​
Sentence2: Referring to him as only "the witness", Amrozi accused his brother of 
deliberately distorting his evidence. 

Paraphrase_types: [2,6,7,0,0,0,0] 

Sentence1_segment_location: [7, 7, 7, 7, 0, 2, 0, 2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7] 

Sentence2_segment_location: [2, 2, 2, 0, 7, 0, 0, 0, 0, 0, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0] 

8 For more details see regarding the different paraphrase types see here. 

7 https://nlp.stanford.edu/software/lex-parser.shtml 
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Sentence1_tokenized: ['Amrozi', 'accused', 'his', 'brother', ',', 'whom', 'he', 'called', '``', 'the', 
'witness', "''", ',', 'of', 'deliberately', 'distorting', 'his', 'evidence', '.'] 

Sentence2_tokenized: ['Referring', 'to', 'him', 'as', 'only', '``', 'the', 'witness', "''", ',', 'Amrozi', 
'accused', 'his', 'brother', 'of', 'deliberately', 'distorting', 'his', 'evidence', '.\n'] 

5.4 Paraphrase Type Generation  

In addition to the four classification tasks above, you will perform one generation task. The 
paraphrase generation task is closely related to the paraphrase type detection task. Instead 
of detecting the paraphrase types, you will give the model one sentence and a list of 
paraphrase types as input. The model should generate a paraphrased version of the given 
sentence using the given paraphrase types.  

The data for this task is the same as the data for the paraphrase type detection task. 

For a better understanding of the Paraphrase type detection and generation task, you can 
look into the original paper, which proposes “Paraphrase Types for Generation and 
Detection” by Jan Philip Wahle, Bela Gipp, and Terry Ruas.  
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6 Deliverable: BERT and BART Model for multiple tasks 

Having implemented a working minBERT model, you will now utilize pre-trained model 
weights and the outputted embeddings from your implemented BERT model to perform 
sentiment analysis, paraphrase prediction, semantic textual similarity analysis, and 
paraphrase classification on corresponding datasets.  In addition, you will use a pre-trained 
BART model to perform paraphrase classification and generation.  

Furthermore, you will fine-tune your models on each dataset to achieve better results. In 
the end, you will have three different versions of the minBERT model and two different 
versions of the BART model; each fine-tuned for a different task for the first part of the 
project. For the second one (Section 7), you must implement at least one improvement for 
each baseline developed in the first part. The SST, STS, QQP, and ETPC datasets are in the 
data subfolder. 

6.1 Datasets 

6.1.1 Quora Paraphrase Dataset 

The Quora paraphrase dataset consists of 400,000 question pairs with labels indicating 
whether particular instances are paraphrases of one another. 

We have provided you with a subset of this dataset with the following splits. For the Quora 
dataset, we have the following splits: 

•​ train (141,506 examples) 

•​ dev (20,215 examples) 

•​ test (40,431 examples) 

Given the binary labels of this dataset, the metric that we utilize to test this dataset is 
accuracy. 

6.1.2 SemEval Semantic Textual Similarity Benchmark Dataset (STS) 

The SemEval STS Benchmark dataset consists of 8,628 different sentence pairs of varying 
similarity on a scale from 0 (unrelated) to 5 (equivalent meaning). For some examples of 
these pairs, see Section 5.2. 

For the STS dataset, we have the following splits: 

•​ train (6,041 examples) 

•​ dev (864 examples) 

•​ test (1,726 examples) 

 



When testing this dataset, we will (as in the original SemEval [Agirre et al., 2013] paper) 
calculate the Pearson correlation of the true similarity values against the predicted 
similarity values across the test dataset. 

6.1.3 Stanford Sentiment Treebank Dataset (SST) 

The Stanford Sentiment Treebank9 [Socher et al., 2013] consists of 11,855 single sentences 
from movie reviews extracted from movie reviews. The dataset was parsed with the 
Stanford parser10 and includes 215,154 unique phrases from those parse trees, each 
annotated by three human judges. Each phrase has a label of negative, somewhat negative, 
neutral, somewhat positive, or positive. Within this project, you will utilize BERT 
embeddings to predict these sentiment classification labels. To summarize, for the SST 
dataset, we have the following splits: 

•​ train (8,544 examples) 

•​ dev (1,101 examples) 

•​ test (2,210 examples) 

6.1.4 Extended Typology Paraphrase Corpus (ETPC) 

The Extended Typology Paraphrase Corpus11 consists of 3799 sentence pairs with labels 
indicating which paraphrase types the sentence pair belongs. It is the largest corpus to date 
annotated with atomic paraphrase types.  

Since the dataset is small compared to the other datasets and is used for two different tasks, 
we have split the dataset only into a train and test set. It is up to you to find and implement 
good train/validation splits for the two tasks. 

We have the following splits:  

●​ train (2525 examples) 

●​ test for detection (573 examples) 

●​ test for generation (701 examples) 

6.2 Code To Be Implemented 

6.2.1 Training and predicting with BERT  

Within the multitask_classifer.py file you will find a pipeline that 

11 https://huggingface.co/datasets/jpwahle/etpc 

10 https://nlp.stanford.edu/software/lex-parser.html 

9 https://nlp.stanford.edu/sentiment/treebank.html 
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•​ Calls the BERT model to encode the sentences for their contextualized 
representations. 

•​ Feeds in the encoded representations for the different tasks 

•​ Fine-tunes the BERT model on the downstream tasks (e.g., sentence classification, 
paraphrase prediction and detection, semantic textual similarity) 

We have provided function definitions that predict the sentiment scores of sentences, 
predict whether a sentence pair are paraphrases of each other, and predict the similarity of 
two input texts. 

We similarly provide you with ready-made code that loads in the training data of the STS, 
SemEval, and Quora datasets and evaluates your model on the provided dev sets. Whether 
you wish to keep this formulation for training is up to you. Here, we give a brief overview of 
this code. 

•​ multitask_classifier.MultitaskBERT: A class that imports the weights of a 
pre-trained BERT model and can predict sentiment, paraphrases, and semantic 
textual similarity. 

•​ multitask_classifier.MultitaskBERT.forward: The output of your BERT model. 
You can choose to experiment with the contextual word embeddings of particular 
word pieces or extract just the pooler_output. 

•​ multitask_classifier.MultitaskBERT.predict_paraphrase: Predicts whether 
two sentences are paraphrases of each other based on BERT embeddings. 

•​ multitask_classifier.MultitaskBERT.predict_similarity: Predicts the 
similarity of two sentences based on BERT embeddings. 

•​ multitask_classifier.MultitaskBERT.predict_sentiment: Predicts the 
sentiment of a sentence based on BERT embeddings. As a baseline, you should call 
the new forward() function followed by a dropout and linear layer. 

•​ multitask_classifier.MultitaskBERT.predict_paraphrase_types:  

Predicts which kind of paraphrases two sentences are based on BERT embeddings. 

•​ multitask_classifier.train_multitask(): A function for training your model. It 
is largely your choice how to train your model. As a baseline, you will already find 
code to train your model on the SST sentiment dataset in this function. 

•​ datasets.SentenceClassificationDataset: A class for handling the SST sentiment 
dataset. 

•​ datasets.SentencePairDataset: A class for handling the other three datasets. 

•​ evaluations.test_multitask(): A function for testing your model. You should call 
this function after loading in an appropriate checkpoint of your model. 

 



Within this file, you are to implement the MultitaskBert model. You will implement this 
class to encode sentences using BERT and obtain the pooled representation of each 
sentence or sentence pair12. The class will then classify the sentence or sentence pair by 
applying dropout on the pooled output and then projecting it using a linear layer. Finally 
(already implemented), the model must be able to adjust its parameters depending on 
whether we are using pre-trained weights or are fine-tuning. 

Note, that the parts you must implement in this class are marked with a 
NotImplementedError.  

 

6.2.2 Training and predicting with BART  
The Python scripts bart_generation.py and bart_detection.py contain everything 
needed to do the two tasks: paraphrase type detection and paraphrase generation. You will 
also find the prepared ETPC data set required for these tasks in the data folder. Note that 
the training set is the same for both tasks. 

Note that you should split the train data into a train and validation set for a meaningful 
evaluation. Finding an appropriate train/validation split ratio is up to you. 
 
The bart_detection.py and bart_generation.py files provide you with a pipeline to 
load, train, and test a BART model on those two tasks: 

●​ transform_data(): A function to transform the data frame into a Dataloader. We 
recommend you encode the sentences using the AutoTokenizer from the 
Transformer library. Further, you should change the labels into binary labels for 
paraphrase detection, as described in the comment in the code. This is not necessary 
for paraphrase generation.  

●​ train_model(): Here, you implement a function that finetunes the loaded BART 
model on the ETPC dataset. Return the model and save it at appropriate checkpoints 
during training.  

●​ test_model(): Implement a function that uses a given model to predict/generate 
outputs for the test_set. Make sure to return the predictions/generations as a 
dataframe, where the columns are named as asked in the comment of the function. 
This is important since our evaluation of your model’s predictions requires this 
format.  

●​ evaluate_model(): We provide this function to you to measure your model 
performance. For the detection task, the function calculates and returns the accuracy 
of the predictions. For the generation task,  the function calculates and returns the 
BLEU score of the generations. 

12 See the forward function in bert.py for how to access this representation. 

 



●​ finetune_paraphrase_detection(generation)(): This pipeline loads and 
transforms the data, loads and trains a BART model, and saves the model’s 
predictions on the test_set using all the described functions above. 

  

6.2.3 Adam Optimizer 

In addition to implementing BertSentimentClassifer, you will further implement the step() 
function of the Adam Optimizer based on Decoupled Weight Decay Regularization 
[Loshchilov and Hutter, 2019]  and Adam: A Method for Stochastic Optimization  [Kingma 
and Ba, 2017] to train a sentiment classifier. 

The Adam optimizer is a method for efficient stochastic optimization that only requires 
first-order gradients. The technique computes adaptive learning rates for different 
parameters by estimating the first and second moments of the gradients. Specifically, at 
each time step, the algorithm updates the exponential moving averages of the gradient  𝑚

𝑡
and the squared gradient  , where the hyperparameters  control the rate of 𝑣

𝑡
β
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, β

2
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exponential decay of these averages. Given that these moving averages are initialized at 0 at 
the initial time step, these averages are biased towards zero. As a result, a key aspect of this 

algorithm is performing bias correction to obtain  and  at each time step. We present 𝑚
𝑡

^
𝑣
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the full algorithm below [Kingma and Ba, 2017]: 

 



 

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by 
changing the order of computation by replacing the last three lines in the loop with the 
following line: 
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This eliminates the need to calculate the bias-corrected estimates manually. If you are 
unsure, look at the papers mentioned. 

You should implement the step() function of the Adam Optimizer. Our reference uses the 
“efficient” method of computing the bias correction mentioned at the end of Section 2 
“Algorithm” in [Kingma and Ba, 2017] (and at the end of the algorithm above) in place of 

the intermediate  and  method. Similarly, the learning rate should be incorporated into 𝑚
^

𝑣
^

the weight decay update. You can test your implementation in the sanity_test directory by 
running: 

python optimizer_test.py 

 



 

6.2.4 Training minBERT  

You should test your completed model for all datasets using pre-trained and fine-tuned 
embeddings. You can run training by using the following command: 

python multitask_classifier.py --option [pretrain / finetune] task=[sst, sts, 
qqp, etpc] 

Look at the argument parsing part of the code to understand more possible arguments.  If 
you are running the code on the GWDG cluster, you should add the --use_gpu and 
--local_files_only flags. 

 

As a baseline, your implementation should have results similar to the following on the dev 
datasets (Mean reference accuracies and standard deviations, n=10): 

Finetuning for SST: Dev Accuracy: 0.522 (0.006) 

Finetuning for STS: Dev Correlation: 0.361 (0.010) 

Finetuning for QQP: Dev Accuracy: 0.759 (0.007) 

Keep in mind this should be achieved with default settings. We used very simple linear 
layers and a minimal implementation with the correct loss function on top of the given 
BART embeddings. For the large data set of Quora, it is sufficient if you only train for a 
single epoch. Please let us know if you achieve significantly higher performance with 
another minimal implementation. The STS score is especially bad. 

 

6.2.5 Training BART  

You can run training by running the bart_detection.py (for the detection task) or 
bart_generation.py (for the generation task) file:  

python bart_generation.py 

python bart_detection.py 

Again, you should use the GWDG arguments as above. You can also implement a similar 
argument system as we did for the other implementation. 

As a baseline, your implementation should have results similar to the following on the dev 
datasets: 

 

 



Finetuning for Paraphrase Detection: Dev Accuracy: 0.829 (0.003) 

Finetuning for Paraphrase Generation: BLEU Score: 46.7 (0.136) 

Again, we used a very minimal implementation with a split ratio of 80/20, 5 epochs, and a 
learning rate of 1e-5. Please let us know if you achieve significantly higher performance 
with another minimal implementation. 

For Part 1, you may only use the training set and our dev set to train, tune, and evaluate 
your models. For this section, for grading, we will largely be looking at your code and 
implementation. For the first part of the project, it is not necessary to exceed the baseline 
by a significant margin. Training for each dataset should take no more than 5 and 15 
minutes (depending on your GPU).  

 



7 Extensions and Improvements for Additional Downstream Tasks 

While we have focused on implementing key aspects of BERT and BART in the first half of 
this project, for the rest of this project (and the part that will make up the bulk of your 
grade on the final deliverable), you will have free rein to explore other datasets to better 
fine-tune and otherwise adjust your BERT and BART embeddings so that their 
performances improve on the following tasks: BERT - paraphrase prediction, semantic 
textual similarity, and sentiment analysis; BART - paraphrase type generation and 
detection.  

Note that this section will test you using the SST dataset for sentiment analysis, the Quora 
dataset for paraphrase prediction, the SemEval dataset for semantic textual analysis, and 
the ETPC for paraphrase type generation and detection. You will find the train, dev, and 
test datasets for each of these datasets within the data folder. The ETPC dataset only 
contains train and test sets.  You may only use our training and dev data to train, 
tune, and evaluate your models. If you use the official test data of these datasets to train, 
tune, or evaluate your models, or if you manually modify your csv solutions in any way, you 
are committing an honor code violation13. 

In addition to embeddings extracted from pre-trained BERT weights provided to you in the 
prior part of this assignment, you are allowed to utilize other pre-existing NLP tools such as 
a POS tagger, dependency parser, Wordnet, coreference module, etc... that are not built on 
top of pre-trained contextual embeddings. You may further use other embeddings that you 
train yourself. However, for this assignment, you may not, for instance, use pre-trained 
embeddings from the transformers library. 

For this next part of the project, you can reorganize the functions inside each class, create 
new classes, and otherwise retrofit your code. 

7.1 Possible Extensions 

Many possible extensions can improve your model’s performance on our proposed tasks. 
We recommend finding a relevant research paper for each improvement you wish to 
attempt (or at least see if others have tried them). Here, we provide some suggestions, but 
you might look elsewhere for interesting ways of improving sentence embeddings for the 
selected tasks. Do not limit yourself to this list; explore further. 

7.1.1 Additional Pretraining 
How to Fine-Tune BERT for Text Classification? [Sun et al., 2020] 

As outlined, BERT was trained in a general domain with a different data distribution than 
the datasets we will use to grade your project. A natural way to improve your model would 
be to pre-train your BERT model further with target-domain data. This would involve 
implementing and training on the masked LM objective or predicting tokens as outlined in 

13 This will result in automatic Fail. 

 



the training datasets that we provided. See [Devlin et al., 2019] for more details on BERT's 
pre-training. 

7.1.2 Multiple Negative Ranking Loss Learning 
Efficient Natural Language Response Suggestion for Smart Reply [Henderson et al., 2017] 

Another effective way of improving your embeddings would be to fine-tune your model 
with Multiple Negative Ranking Loss14. With this loss function, training data consists of sets 
of K sentence pairs  where ,  are labelled as similar sentences and all 𝑎
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Specifically, training is to minimize the approximated mean negative log probability of the 
data. See sbert15 and [Henderson et al., 2017] for additional details. 

7.1.3 Cosine-Similarity Fine-Tuning 
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks [Reimers and 
Gurevych, 2019] 
​
Additional fine-tuning can further improve your BERT model on one of the pre-selected 
tasks. SemEval dataset the similarity between two embeddings is often computed using 
their cosine similarity. A way of potentially improving your embeddings would thus be to 
utilize CosineEmbeddingLoss16 while fine-tuning on this dataset. In this setup, sentences 
that are the equivalent have a cosine similarity of 1 and those that are unrelated have a 
cosine similarity score of 0. 

7.1.4 Fine-Tuning with Regularized Optimization 
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models Principled 
Regularized Optimization [Jiang et al., 2020] 

Aggressive fine-tuning can often cause over-fitting. This can cause the model to fail to 
generalize to unseen data. To combat this in a principled manner, [Jiang et al., 2020] 
propose (1) Smoothness-inducing regularization, which effectively manages the complexity 
of the model and (2) Bregman proximal point optimization, which is an instance of 
trust-region methods and can prevent aggressive updating. See [Jiang et al., 2020] and their 
repository17 for additional details. 

17 https://github.com/namisan/mt-dnn 

16 https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html 

15 https://www.sbert.net/examples/training/nli/README.html#multiplenegativesrankingloss 

14 https://www.sbert.net/docs/package_reference/losses.html 
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7.1.5 Multitask Fine-Tuning 
BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning. 
[Stickland and Murray, 2019]​
MTRec: Multi-Task Learning over BERT for News Recommendation. [Bi et al., 2022]​
Gradient surgery for multi-task learning.  [Yu et al., 2020] 

Rather than fine-tuning BERT on individual tasks, you can alternatively use multi-task 
learning to update BERT. For example, Bi et al. [2022], use multi-task learning adding each 
together each loss to the tasks of category classification and named entity recognition. 
Using multi-task learning, however, depending on how the model is fine-tuned is not always 
beneficial. Gradient directions of different tasks may conflict with one another. Yu et al. [15] 
recommend a technique called Gradient Surgery that projects the gradient of the  𝑖 − 𝑡ℎ
task  onto the normal plane of another conflicting task’s gradient . 𝑔

𝑖
𝑔

𝑖

7.1.6 Contrastive Learning 
Simple Contrastive Learning of Sentence Embeddings. [Gao et al., 2021] 

Gao et al. [2021] proposed a simple contrastive learning framework that works with 
unlabeled and labeled data called SimCSE. Unsupervised SimCSE simply takes an input 
sentence and predicts itself in a contrastive learning framework, with only standard 
dropout used as noise. In contrast, supervised SimCSE incorporates annotated pairs from 
NLI datasets into contrastive learning by using entailment pairs as positives and 
contradiction pairs as hard negatives. You can utilize a similar approach to improve 
sentence embeddings across different models. 

7.1.7 Paraphrase Generation with Deep Reinforcement Learning 
Paraphrase Generation with Deep Reinforcement Learning [Li, Jiang, Shang et al., 2018] 

Li, Jiang, Shang et al. [2018] propose a deep reinforcement learning framework consisting 
of a data-trained generator and evaluator for paraphrase generation. The generator, a 
sequence-to-sequence model, creates paraphrases, while the evaluator, a deep matching 
model, judges their accuracy. The generator is first trained by deep learning and later 
fine-tuned with reinforcement learning using the evaluator's output as a reward. You can 
use a similar approach to generate more accurate paraphrases. 

7.1.8 Controlled Paraphrase Generation 
Quality Controlled Paraphrase Generation, [Bandel et al., 2022] 

In current paraphrase generation models the quality of a generated paraphrase is not 
directly controlled. Bandel et al. [2022] try to overcome this limitation by introducing a 
quality-guided controlled paraphrase generation model that allows directly controlling the 
quality dimensions. The quality for a sentence s and a paraphrase s′ is defined as a 
three-dimensional vector q(s,s′)  containing the semantic similarity, the syntactic and 
lexical variation. You can add the quality controlling architecture, as proposed in the paper,  
to your model to improve the quality of your paraphrase generation. 

 



7.1.9 Efficient finetuning  
PIP: Parse-Instructed Prefix for Syntactically Controlled Paraphrase Generation [Wan et al., 
2023] 

Fine-tuning a large language model by updating all its parameters is computationally 
expensive. Thus, more efficient fine-tuning methods have been developed, which only 
update a small fraction of the parameters. One efficient fine-tuning method is the so-called 
Prefix Tuning. Prefix tuning keeps the parameters of the pretrained model fixed and only 
trains a small continuous “prefix” that is input to the model. Wan et al. [2023] propose two 
methods to instruct a model’s encoder prefix to capture syntax-related knowledge. 

You can use their or other efficient fine-tuning methods to improve your training of the 
models. 

7.1.10 Additional datasets 
Fine-tuning the BERT/BART model on different datasets is an additional approach you 
could apply. There are a lot of different datasets and tasks that you can potentially apply to 
your model to get more robust embeddings. See the following for some example datasets: 

•​ https://arxiv.org/abs/1508.05326 

•​ http://sbert.net/datasets/paraphrases 

•​ https://arxiv.org/abs/1704.05426 

•​ https://aclanthology.org/2022.emnlp-main.631 

7.1.11 Additional input features 

Although deep learning can learn end-to-end without feature engineering, using the right 
input features (e.g., part-of-speech tag, named entity type, etc.) can still boost performance 
significantly. If you implement a model like this, reflect on the tradeoff between feature 
engineering and end-to-end learning and comment on it in your repository. 

7.1.12 Other improvements 

You can improve your performance through many other things besides training changes. 
The suggestions in this section are just some examples; it will take time to run the 
necessary experiments and draw the necessary comparisons. Remember that we will be 
grading your experimental thoroughness, so do not neglect the hyperparameter search! 

•​ Regularization. The baseline code uses dropout. You could further experiment with 
different values of dropout and different types of regularization. 

•​ Sharing weights. The baseline code outlines a way to use different distinctive layers 
for predicting whether sentences are paraphrases, their semantic similarity, and 
each sentence’s sentiment. You could potentially share some layers amongst these 
different tasks to improve performance. 

 

https://arxiv.org/abs/1508.05326
http://sbert.net/datasets/paraphrases
https://arxiv.org/abs/1704.05426
https://aclanthology.org/2022.emnlp-main.631/


•​ Model size and the number of layers. With any model, you can increase the number of 
layers utilized to predict each of the tasks. 

•​ Optimization algorithms. The baseline uses the Adam optimizer. PyTorch supports 
many other optimization algorithms. Also, consider varying the learning rate. 

•​ Ensembling. Ensembling almost always boosts performance, so try combining 
several of your models together for your final submission. However, ensembles are 
more computationally expensive to run. 

•​ Hyperparameter Optimization. While we provide some defaults for various 
hyperparameters, these do not necessarily lead to the best results. Another 
approach would be to perform a hyperparameter search to find the best 
hyperparameters for your model. 

7.1.13 Other approaches 

The models and techniques we have presented here are far from exhaustive. There are 
many published papers on the tasks we are testing - there may be new ones we haven’t 
seen yet! In addition, there is lots of deep learning research on many different tasks that 
may help improve your model18 These papers may contain interesting ideas that you can 
apply to build more robust and semantically rich embeddings. 

7.2 Bonus Tasks 

Note that the following tasks are not mandatory. Although optional, these tasks can help 
you better understand the concepts and inspire new ideas and extra points. If you decide to 
try them, please include them in your repository promptly. These tasks will not affect your 
grades negatively. In other words, solving them can only positively affect your grade.   

7.2.1 Paraphrase Types Detection with minBERT 

You are required to complete the​
multitask_classifier.MultitaskBERT.predict_paraphrase_type function to establish a baseline 
for paraphrase detection using minBERT. After setting this baseline, explore and implement 
an improvement to enhance the model's performance. Additionally, investigate and 
compare the performance differences between the minBERT and BART models for this task. 
This comparison might show some limitations of the minBERT model since this paraphrase 
detection task is quite challenging. However, you might be able to improve the minBERT’s 
performance with some of the suggested (chapter 7.1) improvements.  

Finetuning for ETPC (Paraphrase Detection): Dev Accuracy: 0.253 (0.004) 

18 http://nlpprogress.com/ 

 

http://nlpprogress.com/


7.2.2 Multitask classification 

You will train one model combined on the three datasets: QQP, SST, and STS, to evaluate 
multitask learning capabilities. Beyond training, implement an improvement that boosts 
the model's multitask performance (average performance on all three tasks). Compare the 
multitask model's performance against models trained on individual tasks to assess the 
effectiveness of multitask learning. How does training on a different dataset influence the 
model’s performance on another task? Make sure to discuss the obtained results. What are 
the benefits/limitations of this approach? Do you identify any trends? 

To start, try using the multitask argument already provided, but you may need to modify 
your training loops. 

You can systematically investigate how different training (e.g., train on one dataset after 
another, shuffle all datasets together, and train the model simultaneously, etc) affects its 
performance on all three tasks.  Starting from those insights, you can come up with some 
ideas of how to improve the multitask performance of the model. Furthermore, you could 
use some ideas from the papers presented in 7.1. Implement at least one idea that leads to 
an improvement in the multitask performance.  

 



8 Notes 

Projects that partially, or even exclusively, use large language model (LLM) APIs like 
OpenAI’s GPT-3, 3.5, and now 4, or ChatGPT are within scope for the final project. However, 
students should also be aware that they are expected to make a substantive scientific 
and/or engineering contribution on top of such APIs. Since LM APIs abstract away a lot of 
the challenge of building NLP systems, the relative contribution of a project using an LM 
API is expected to be more than a project that works directly with LMs via deep learning 
libraries like Transformers or PyTorch. With this in mind, projects that simply prompt an 
LLM like GPT-3 to generate text for a specific use case (e.g., summarizing news articles or 
generating song lyrics) are unlikely to be enough work for a final project. Examples of more 
appropriate contributions include (but are not limited to): Systematically identifying 
and/or benchmarking some capabilities, weaknesses, and/or biases of current LLMs 
Building substantial systems that interface with LLM APIs to enable new applications or 
workflows for end-users.  

 



9 Deliverables 

The project will have three deliverables. 

1.​ The initial model’s code for the five baseline models-tasks (Section 6). 

2.​ The model’s scores of the improved models and code for the sentiment analysis, 
paraphrase detection, semantic textual similarity tasks, paraphrase types detection 
and generation (SST, Quora,  STS, and ETPC) (Sections 7). 

3.​ The detailed repository for the fine-tuned model (Section 9.3). 

4. ​ (optional) the scores of the bonus models and code for the bonus task. 

9.1 Part 1 - Submission Instructions for minBERT and BART 

You will submit the minBERT and BART part of this project to your tutor (detailed below): 

1.​ Verify that the following files exist at these specified paths within your repository: 

•​ predictions/bert/sst-sentiment-test-output.csv 

•​ predictions/bert/sts-similarity-test-output.csv 

•​ predictions/bert/quora-paraphrase-test-output.csv 

•​ predictions/bart/etpc-paraphrase-detection-test-output.csv 

•​ predictions/bart/etpc-paraphrase-generation-test-output.csv 

You don’t have to submit any Python files; however, we should be able to find all 
relevant Python files in your repository. 

2.​ Run prepare_submit.py to produce your dnlp_final_project_submission.zip 
file. 

3.​ Rename your submission file to 
id_group_name_dnlp_final_project_submission.zip 

4.​ Submit your id_group_name_dnlp_final_project_submission.zip in StudIP here. 

At a high level, the submission file for the dev/test datasets should look like the following:​
 

id​ Predicted_Sentiment​
001fefa37a13cdd53fd82f617​ 4​
00415cf9abb539fbb7989beba​ 2​
00a4cc38bd041e9a4c4e545ff​ 1​
...​
fffcaebf1e674a54ecb3c39df​3 

 

https://studip.uni-goettingen.de/dispatch.php/course/files?cid=6026b9615509f320efae9b1e52577919


The submission file for the STS dataset should look like the following: 

id​ Predicted_Similarity​
8f4d49b9f4558f9e45423e84c​ 1.000​
1c5cd37407630a3ba19a0f2ad​ 0.4051​
318c885e36cc9e6f6bb7de7dd​ 0.2138​
...​
4e1ef3b635d01039a8a8f059b​ 0.7462 

The submission file for the Paraphrase dataset should look like the following: 

id​ Predicted_Is_Paraphrase​
872887985e1e0f2dd5b690ffd​ 1​
472398907a6adb9ed2f660550​ 0​
c3ceaaed421cc008282efdf8a​ 0​
...​
5e10dfc4ac8ae205f3e114445​ 1 

The submission file for the Paraphrase type detection should look like the following: 

id​ Predicted_Paraphrase_Types​
872887985e1e0f2dd5b690ffd​ [0,1,0,1,0,1,1]​
472398907a6adb9ed2f660550​ [1,1,0,0,0,0,0]​
c3ceaaed421cc008282efdf8a​ [1,1,0,0,0,1,1]​
...​
5e10dfc4ac8ae205f3e114445​ [0,0,0,1,0,0,0] 

The submission file for the Paraphrase type generation should look like the following: 

id​ Generated_sentence2​
2317539b4e5a4160a253d5199685955c​ Referring to him as only "the witness",...​
eaab3036395f4bcc9c9c93d678c622a1​ On June 10, the ship's owners had published…​
90fe3baf95d84645956219234f72694b​ PG&E Corp. shares jumped $1.63 or 8 percent 
to…​
...​
4c02bbf5f56c447e97a0d8f40b358777​ With the scandal hanging over Stewart's 
company, revenue… 

9.2 Part 2 - Submission Instructions for Fine-Tuned Models (BERT and BART) 

You are allowed to submit your dev and test results only once in StudIP.  In case of an 
extraordinary situation, please contact your tutors or the lecturer. 

You may use the evaluations.test_multitask() function in the evaluations.py script to 
generate a submission file of the correct format. At a high level, the submission file for the 
SST dataset should look like the following: 

 



id​ Predicted_Sentiment​
001fefa37a13cdd53fd82f617​ 4​
00415cf9abb539fbb7989beba​ 2​
00a4cc38bd041e9a4c4e545ff​ 1​
...​
fffcaebf1e674a54ecb3c39df​3 

The submission file for the STS dataset should look like the following: 

id​ Predicted_Similarity​
8f4d49b9f4558f9e45423e84c​ 1.000​
1c5cd37407630a3ba19a0f2ad​ 0.4051​
318c885e36cc9e6f6bb7de7dd​ 0.2138​
...​
4e1ef3b635d01039a8a8f059b​ 0.7462 

The submission file for the Paraphrase dataset should look like the following: 

id​ Predicted_Is_Paraphrase​
872887985e1e0f2dd5b690ffd​ 1​
472398907a6adb9ed2f660550​ 0​
c3ceaaed421cc008282efdf8a​ 0​
...​
5e10dfc4ac8ae205f3e114445​ 1 

The submission file for the Paraphrase type detection should look like the following: 

id​ Predicted_Paraphrase_Types​
872887985e1e0f2dd5b690ffd​ [0,1,0,1,0,1,1]​
472398907a6adb9ed2f660550​ [1,1,0,0,0,0,0]​
c3ceaaed421cc008282efdf8a​ [1,1,0,0,0,1,1]​
...​
5e10dfc4ac8ae205f3e114445​ [0,0,0,1,0,0,0] 

The submission file for the Paraphrase type generation should look like the following: 

id​ Generated_sentence2​
2317539b4e5a4160a253d5199685955c​ Referring to him as only "the witness",...​
eaab3036395f4bcc9c9c93d678c622a1​ On June 10, the ship's owners had published…​
90fe3baf95d84645956219234f72694b​ PG&E Corp. shares jumped $1.63 or 8 percent 
to…​
...​
4c02bbf5f56c447e97a0d8f40b358777​ With the scandal hanging over Stewart's 
company, revenue… 

The header is required as well as the first column being a 25-digit hexadecimal ID for each 
example (IDs defined in each of the respective test/dev files), and the last column is your 

 



predicted answer. The rows can be in any order. For the test and dev of the QQP, STS and 
SST data, you must submit a prediction for every example. For the ETPC dataset, you only 
must submit a prediction for every example from the test set.  

Create a submission file the same way as in Section 9.1  

9.3 Repository Instructions 

In this course, we will not have a formal report. Instead, we will invest time in having a 
high-quality repository. Thus, all groups are required to follow the mandatory README 
template. The NeurIPS19 template available at PapersWithCode20 is also a great reference 
for a solid repository. 

On top of all the information on these repositories, you should also include two sections, 
namely the “Methodology” and “Experiments”. Another required section in your repository 
is the description of each member’s contribution to the project. These sections should 
explain and highlight the contributions of your project so we can quickly assess your group. 
Along with the complete explanation of your project, you should also include any references 
used, e.g., other repositories, papers, etc. Make sure to indicate how you are using existing 
ideas and extending them. Later, this might be used as an initial step for a possible paper if 
your group is selected. 

As a rule of thumb, your repository should allow anyone to reproduce your results. Thus, 
the information contained in your README.md should be clear and detailed. To cope with the 
recent (and fast) use of AI assistants, please also include the AI Usage Cards21 in your 
repository as a pdf file. You can find many examples of excellent repositories, methodology, 
and experiments on the links and papers of this project description. However, please do not 
limit yourself to them. The information in this document is not a comprehensive list, but a 
small, compiled collection. All group repositories should be private and only shared/invited 
with the lecturers and teaching assistants of the course via our teaching user account. After 
the course is over, you can make your code public. Please remember that the quality of your 
repository (e.g., content, organization, reproducibility, transparency) will directly reflect on 
your final grade. Therefore, a higher score on the solved task does not necessarily mean a 
higher grade. For more details on the grading criteria, please read the next section. 

Note that we have created a README template for you. Please use this template in your 
repository and fill out all the sections as described.  

Please keep the predictions of your final models on the used train, dev, and test sets in the 
predictions folder of your repository. 

21 https://ai-cards.org/ 

20 https://github.com/paperswithcode/releasing-research-code 

19 https://neurips.cc/ 
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https://ai-cards.org/
https://github.com/paperswithcode/releasing-research-code
https://neurips.cc/


10 Grading Criteria 

The final project will be graded holistically. This means we will look at many factors when 
determining your grade: the creativity, complexity, and technical correctness of your 
approach, your thoroughness in exploring and comparing various approaches, the strength 
of your results, the effort you applied, and the quality of your repository, evaluation, and 
error analysis. Generally, implementing more complicated models represents more effort, 
and implementing more unusual models (e.g. ones that we have not mentioned in this 
handout) represents more creativity. You are not required to pursue original ideas, but the 
best projects in this class will go beyond the ideas described in this handout and may 
become published works themselves! 

For the second part of this project, an aspect of your grade will include your performance 
relative to the leaderboard as a whole across all tasks. Note that the strength of your results 
on the leaderboard is only one of the many factors we consider in grading. We focus on 
evaluating peoples’ well-reasoned research questions, explanations, and experiments that 
evaluate those questions. 

There is no pre-defined accuracy (SST, Quora, ETPC), Pearson correlation (SemEval), or 
BLEU score (ETPC) to ensure a good grade. Though we have run some preliminary tests to 
get some ballpark scores, it is impossible to say in advance what distribution of scores will 
be reasonably achievable for students in the provided timeframe. For similar reasons, no 
pre-defined rule for which of the extensions proposed would ensure a good grade. 
Implementing a small number of things with good results and thorough 
experimentation/analysis is better than implementing many things that don’t work or 
barely work. In addition, the quality of your repository, method, and experimentation are 
essential. We expect you to convincingly show that your techniques are effective and 
describe why they work (or the cases when they do not work). 

Challenging Grades 

All students are welcome to question their grades for the exam and the project. After the 
grade is communicated, the student will have one week to schedule a meeting with the 
tutor to review their grade. 

 

 



11 FAQ  

●​ What happens if we encounter unforeseen technical challenges with the datasets or 
model implementations? 

Answer: You can contact your tutors all the time. They won’t give you the solution 
but will help you to overcome those challenges.  

●​ Can I implement a model to solve all tasks at the same time? 

Answer: Yes. This is actually one of the Bonus tasks. Make sure to explain how this 
model is built and trained! 

●​ Can I use another model to generate synthetic data?  

Answer: Yes, just make sure to explain how it was used. 

●​ Can I include ablation studies and other metrics to support my results? 

Answer: Yes, the more robust your investigation is, the better. 

●​ Can I just replicate a successful solution?  

Answer: You can start with this after implementing the baseline models and 
investigate this solution for further improvements. For the final project (including 
improvements), this is not enough since you have to bring your ideas.  

●​ Can we use external libraries for the project? 

Answer: For the first part of the project, only libraries installed by setup.sh are 
allowed. For the second part, you are free to install additional libraries.  

●​ Are there any specific computational resources provided for training the models? 

Answer: Yes. The computational power and your budget on the GWDG cluster are 
sufficient for the whole project. 

●​ Are there any limitations on the size or architecture of the models that we can use 
for our improvements in Part 2 of the project? 

Answer: No. However, you have a limited budget for using the GPUs on the cluster. 
So, you should be able to make all the improvements with this budget. 

●​ Are we allowed to use LLMs like ChatGPT for the project? 

Answer: Yes. However, it’s not sufficient to simply call the API of ChatGPT or to only 
create synthetic data with those models. Instead, you should systematically 
investigate benchmarks, weaknesses, etc., of such an approach including a LLM. 
Every AI assistant use must be disclosed using the AI-Usage Cards.    

 

https://ai-cards.org/


●​ My group was composed of 5 people, but some dropped out during the semester. Do 
I still need to solve all five tasks? 

​ Answer: Yes, and their improvement in Part 02 as well. 

●​ If too many members left my group, what should I do? 

Answer: There are many alternatives: look for another group, look for other people 
in the same situation as you and maybe form a new group, talk with the responsible 
Tutor. 

●​ Can I still pass the course if I missed/failed the written exam? 

Answer: No. You need a minimum passing score in both modules (Lecture and 
Practical). However, you are more than welcome to continue in the course. 

●​ Are there any minimum requirements for the project? 

Answer: Yes. Each task must contain at least one baseline and one improvement. 
Keep in mind this is the minimum; it is up to you to pursue an innovative solution, 
interesting technique, detailed analysis, clear description and discussion, etc. 
Remember, quantity is not quality, more (shallow) experiments do not necessarily 
translate into a higher score.  

 

 

 



12 Honor Code 

Here are some specifically relevant guidelines: 

1.​ Unless you wrote that implementation yourself, you may not use a pre-existing 
implementation for the minBERT challenge as your starting point. 

2.​ You are not allowed to use pre-trained contextual embeddings (such as ELMO, GPT, 
etc) for your system. You are allowed to use other pre-existing NLP tools, such as a 
POS tagger, dependency parser, and coreference module, that are not built on top of 
pre-trained contextual embeddings. We encourage you to rely on clever solutions 
not pre-trained models. If you used other pre-trained models, it would not be clear 
where the improvements would come from. 

3.​ You are free to discuss ideas and implementation details with other teams (in fact, 
we encourage it!). However, under no circumstances may you look at another team’s 
code or incorporate their code into your project. 

4.​ It is an honor code violation to use the official SST, Quora, SemEval, ETPC training 
and test data, and their test sets in any way. 

5.​ Do not share your code publicly (e.g., in a public GitHub repo) until after the class 
has finished. 
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