
ISTMEIC - Prog3D 2019/2020 Grupo 6 - 02/06/2020

3D Programming Report
Assignment 2
Francisco Sousa 86416

Francisco Nicolau 86419

João Martinho 86454

For this assignment, instead of Unity3D, we decided to delve into a
Monte Carlo Path Tracing Algorithm capable of rendering 3D scenes featuring
spheres, triangles, planes and object lights, employing the Blinn global
illumination with BRDFs, reflections and refraction.

Besides that, adding some stochastic sampling techniques, like
anti-aliasing (with the jitter or tent filter); natural soft shadows (an advantage
of the path tracer); and the depth of field effect, where the lens is simulated
by a random distribution of N samples on unit squares and unit disks.

Finally, we built a Uniform Grid and a Bounding Volumes Hierarchy to
work as acceleration structures.

To achieve this, we followed the smallpt renderer and their slides;
implementing it on top of the ray tracer structure from the previous
assignment. The course’s slides along with Lund’s university EDAN30 lecture
slideswere consulted for the BVH implementation.

Previous Work
In this project, one of our main objectives was to build on top of the

existing framework, in order to be able to obtain a fair comparison with the
ray tracer we had done previously. As such, most of the code base which
included ray casting, geometry intersections, depth of field effect and the
uniform grid acceleration structure were already done and were used in the
building of the path tracer.

http://www.kevinbeason.com/smallpt/
http://fileadmin.cs.lth.se/cs/Education/EDAN30/lectures/S2-bvh.pdf


ISTMEIC - Prog3D 2019/2020 Grupo 6 - 02/06/2020

Changes to Scene format
Because our path tracer is defined based in

smallpt, we decided:
- Materials can be either diffuse;

completely reflective; or refractive with
some reflective properties;

- Lights are represented as spheres.

As such, the scene format needs some slight
changes to be able to work with our path tracer
algorithm:

- With path tracing, diffuse objects should have
1 for their diffuse component; mirror objects should only have their
specular component set to 1; and refractive objects should have their
diffuse and specular components set to 0. Lights should also have their
diffuse component set to 1.

- Materials have three extra values at the end of the line, describing the
emission of the object. Because only spheres can be lights, only spheres
should have emission.

Note: with this change, the ray tracer scenes are compatible with the path
tracer, if the last three (emission) values are added and the diffuse and
specular components taken into account.

Path tracing
The path tracer algorithm revolves

around the idea of global illumination. This is
achieved by, when intersecting with a diffuse
object, instead of simply returning its color,
we cast rays in a random direction (in the
normal hemisphere) in order to take into
account other objects’ contributions. For
refractive objects, the angle also has some
randomness, being possible for an incident
ray to be only reflected, only refracted, or
both. For intersections with mirror materials
there is no angle, and the incidence angle is
the same as the reflection angle.



ISTMEIC - Prog3D 2019/2020 Grupo 6 - 02/06/2020

Because this algorithm has some randomness when considering
diffuse and refractive materials, a lot of noise is introduced, as the pixel colors
are averages of the collected colors. To simply mitigate this, we can collect a
lot of samples per pixel, which increases the convergence of the colors to the
real pixel color.

Russian Roulette
To simulate the loss of light strength over

multiple light bounces, a roussian roulette is
introduced. This dictates that, after a set number of
jumps, there is a probability that a ray won’t bounce
again. This is also chosen randomly.

Bounding Volume Hierarchy (BVH)
To work as an acceleration structure, we also

built a Bounding Volume Hierarchy. Here, objects are
divided in a tree (as the name suggests), that describes the hierarchy of the
objects’ bounding volumes.
This tree is composed of
several nodes, each split in
left and right child nodes of
their own, which both can
have more sub-nodes or be
the objects in the scene, if
they are a leaf node.
The construction of such a
hierarchy follows a top-down
approach and, according to this algorithm, it starts with every object’s
bounding volume (AABB) contributing to a root node’s bounding volume.
After that, we recursively obtain the largest component of the current node
bounding volume, and then calculate a “center” by which to separate the
objects. To explain, let us assume, without loss of generality and because this
is recursive, that the largest component in this iteration is X:

1. We calculate the current node centroid X component (mid-point);
2. If no object in the current node has its centroid X component smaller or

larger than this mid-point, we calculate the object’s centroid average
over all the centroids X components (avg-point);



ISTMEIC - Prog3D 2019/2020 Grupo 6 - 02/06/2020

3. If, after this calculation, there is no clear division of objects from
“smaller” and “larger” centroids, we set the left node to host the
maximum number of objects a leaf node can host, and the remaining
objects go to the right child node.

4. Else, if there is a clear division, objects are split into the left and right
nodes, if they have X smaller and larger (respectively) than the
mid-point or avg-point. We then recursively apply the same, but to the
left and right nodes individually.

To check if a ray intersects any object, using this BVH, we start by intercept it
with the root bounding volume; if it hits, we intersect with both children’s
bounding volumes. We then consider recursively the closest child (if any hit
occurs) until we reach a leaf, and test intersections with objects in that leaf. If
a hit occurs with the object, and this is indeed the closest object to the ray’s
origin, this prevents testing objects farther away, possibly decreasing the
number of intersection tests.

Tracers comparison
A ray tracer and a path tracer differ but neither is better than the other.

While the first is good at simulating all types of materials, the second can't
really cope with semi-diffuse semi-transparent objects. On the other hand,
the path tracer represents color much better with a natural ambient light that
‘paints’ an object with the colors of other objects (as they do in real life). In this
matter, the ray tracer is really soft and only does this for reflective materials.
Because of this, the ray tracer bounces rays much less and is faster, while the
Monte Carlo algorithm also requires a lot of rays being cast in the beginning.
This makes our second tracer have anti-aliasing and soft-shadows given, while
we have to add code for it in the first. However, the ray tracer can generate us
a raw acceptable image fast and with few ray casted, the path tracer requires
a lot of rays for an image without acne. But the results are better.
Both the tracers have pros and cons, and must be chosen according to the
situation.

Acceleration structures comparison
The Internet says that the uniform grid and the BVH also produce very

similar results, varying on the scene. As we implemented both, we decided to



ISTMEIC - Prog3D 2019/2020 Grupo 6 - 02/06/2020

run the path tracer in two scenes, using 15x15 rays/pixel, and measure their
times with each of the acceleration structures.

path_mirror path_balls

Uniform Grid 361.0 526.6

BVH 327.78 512.43

As expected, both the uniform
grid and the BVH take roughly
the same time to render each
scene, but the tree still can
do better. We justify these
results with the scenes
chosen and the low graphics
card used.


