UNIVERSITAS PADJADJARAN FACULTY OF MATHEMATICS AND NATURAL SCIENCES ## COURSE CODE: D20B.299 ## **MASTER PROGRAM IN CHEMISTRY** | Module designation | Solid and Surface Chemistry | |---|---| | Semester(s) in which the module is taught | 2 | | Lecturers | Dr. Engela Evy Ernawati
Dr. Eng. Irwan Kurnia | | Medium of instruction | English and Indonesian | | Relation to curriculum | Mandatory elective courses Functional Material Master of Science in Chemistry | | Teaching methods | Lecture and discussion | | Workload | Total workload : 80 hours | | | CLASS | | | Lecture and Discussion : 20 hours | | | Test and Examination : 20 hours | | | Independent Study : 40 hours | | | | | | | | | | | Credit points | 3 (3-0) | | | 3 Credits = 5.43 ECTS | | Required and recommended | - | |---------------------------|---| | prerequisites for joining | | | the module | | | | | | | | | Module objectives/intended learning outcomes 1. Students are able to master the theoretical concepts of solid and surface chemistry. [C2] 2. Students are able to produce appropriate conclusions regarding the latest topics of solid and surface chemistry, both personally and in group work, as well as present them. [C3] | | | |---|---------------------|---| | | objectives/intended | solid and surface chemistry. [C2] 2. Students are able to produce appropriate conclusions regarding the latest topics of solid and surface chemistry, both personally and in group work, as well as present | | | | Surface structure thermodynamics surface, electrical aspects of the interface. sorption; Physisorption, energy transfer at the surface, isotherm adsorption, chemisorption, interaction between adsorbates. preparation method; solid reaction, crystallization, structure modification, electrochemical reduction methods, preparation, thin films, single crystal growth, high pressure and hydrothermal methods. Solid characterization; diffraction methods, microscopy, spectroscopy, thermal analysis. Crystal chemistry; some types of important structures, factors affecting crystal structure, crystal defects. | |--|--|---| |--|--|---| | Examination forms | Test, Presentation, and Assignment | |------------------------------------|---| | Study and examination requirements | Minimum attendance at lectures is 80%. Final score is evaluated based on individual assignment (20%), mid semester exam (40%), and end semester exam (40%). | | Reading lists | Nadeem Baig et al., Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2021, 2, 1821. Handbook of Applied surface and Colloid Chemistry, 2002, Holmberg Krister, Shah Dinesh O., Schwuger Milan L., John Wiley & Sons, LTD. Recent journals related to solid and surface chemistry with index factor > 5. |