Travail et énergie cinétique الشغل والطاقة الحركية

ا. الطاقة الحركية

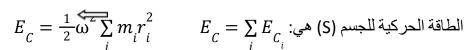
1. الطاقة الحركية لجسم صلب في حركة إزاحة

a. حركة الإزاحة

نقول إن جسما في حركة إزاحة, إذا حافظت متجهة $\stackrel{\longrightarrow}{AB}$ لنقطتين ما منه على نفس الاتجاه ونفس المنحى طيلة مدة الانتقال.

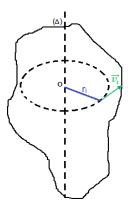
b. مفهوم الطاقة الحركية (حركة إزاحة)

نسمي الطاقة الحركية لجسم صلب في حركة إزاحة, كتلته v بالنسبة لجسم سلب في حركة إزاحة, كتلته v بالنسبة لجسم مرجعي, المقدار: (س v^2 .s-2) $E_c = \frac{1}{2} \overline{m} v^2$)) مرجعي, المقدار:


ملحوظة: الطاقة الحركية مقدار سلمي موجب مستقل عن اتجاه ومنحى الحركة, لكنها تتعلق بالجسم المرجعي الذي نختاره.

2. الطاقة الحركية لجسم صلب في حركة دوران حول محور ثابت

نعتبر جسما صلبا (S) في دوران حول محور ثابت (Δ) بسرعة زاوية ω . كل نقطة من نقط الجسم (S) تنجز حركة إزاحة بالنسبة لمحور الدوران.


$$E_{c_i} = \frac{1}{2} m_i v_i^2$$

$$E_{c_i} = \frac{1}{2}m_i r_i^2 \omega^2 v_i = r_i.w$$
 نعلم أن:

$$E_c = \frac{1}{2} J_\Delta \omega^2$$
 نضع: $J_\Delta = \sum_i m_i r_i^2$ نضع

 L_{Δ} : عزم قصور الجسم بالنسبة للمحور (Δ) وحدته في (S.I) هي: (Kg.m²). و هو يتعلق فقط بتوزيع الكتلة المكونة له حول المحور (Δ).

أمثلة:

تمرین تطبیقی:

نعتبر قرصا متجانسا عزم قصوره بالنسبة لمحور الدوران (Δ) المار من مركز تماثله هو:

يدور القرص بسر عة زاوية ثابتة قيمتها: R = 30cm و m = 800 مع: $J_{\Delta} = \frac{1}{2} m r^2$

$$.\omega = \frac{100}{3} tr. min^{-1}$$

أحسب الطاقة الحركية للقرص.

مبرهنة الطاقة الحركية

1. نص مبرهنة الطاقة الحركية

في معلم غاليلي, يساوي تغير الطاقة الحركية لجسم صلب في إزاحة أو في حركة دوران حول محور ثابت بين لحظتين t_1 و t_2 , المجموع الجبري لأشغال القوى المطبقة على الجسم بين هاتين

2. تعبير مبرهنة الطاقة الحركية

a. في حالة الإزاحة

$$\frac{1}{2}mv_{B}^{2} - \frac{1}{2}mv_{A}^{2} = \sum_{i}W_{A\to B}(\vec{F}_{i})$$

d. في حالة الدوران حول محور ثابت

$$\frac{1}{2}J_{\Delta}\omega_{B}^{2} - \frac{1}{2}J_{\Delta}\omega_{A}^{2} = \sum_{i}W_{A\to B}(\vec{F}_{i})$$

3. تطبيق

a. تطبيق 1

v = 100 Km/h على سكة مستقيمية بسر عه $M = 4~10^5 Kg$ يتحرك قطار كتلته

- 1. أحسب الطاقة الحركية للقطار.
- 2. إذا استعملنا هذه الطاقة لرفع القطار, إلى أي ارتفاع h يمكن أن يصل إليه؟

b. تطبيق 2

كرة	ساق	ساق	أسطوانة	حلقة	قرص	الجسم
r	$\stackrel{\Delta}{\longleftarrow}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}$				
$J_{\Delta} = \frac{2}{5} \text{ m.r}^2$	$J_{\Delta} = \frac{1}{3} \text{m}\ell^2$	$J_{\Delta} = \frac{1}{12} \text{ m}\ell^2$	$J_{\Delta} = \frac{1}{2} \text{ m.r}^2$	$J_{\Delta}=m.r^2$	$J_{\Delta} = \frac{1}{2} \text{ m.r}^2$	عزم القصور آ ام

u يدور مقود, عزم قصوره بالنسبة لمحور دورانه t_{Δ} , حول محوره بسرعة زاوية قيمتها: t_{Δ} = 1200tr/min

لإيقافه نطبق عليه مزدوجة عزمها ثابت بالنسبة لمحور الدوران, قيمته 20N.m فيتوقف بعد أن ينجز 20 دورة.

1. أحسب L_{\wedge} .

Www.AdrarPhysic.Com