

📕
SystemDesign.org

Textbook for System Design Interviews

 by InterviewCamp.io (Online Bootcamp for System Design)

✅ Created by FAANG Engineers
✅ Step-by-Step Illustrated Guide
✅ Curated Interview Questions
✅ 50+ pages
✅ Completely Free 🤑

📖 Document link: systemdesign.org
 📧 Email us: systemdesigndotorg@gmail.com

Version 1.0
This book is work in progress.

We’re adding sections every week. Get an email when we add a new section:

systemdesign.org/subscribe

https://interviewcamp.io/?ref=sdorg
https://systemdesign.org
mailto:systemdesigndotorg@gmail.com
https://systemdesign.org/subscribe

Why are we writing this book?
After talking to hundreds of candidates at FAANG companies, we found that actual
interviews are very different from online prep content.

Companies are going deeper these days. If they ask high level questions like “Design
Facebook”, they’re no longer happy with your standard high-level diagrams taught in
System Design Primer. They want to go deeper into each component.

 In this book, we try to cover topics that are more common in interviews today (as of
2021).

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 2

https://systemdesign.org/subscribe

Table of Contents

Why are we writing this book?​ 2

Introduction​ 4
System Design is a Tree, not a Line.​ 4

Design a Messaging Queue with High Throughput (non-distributed)​ 7

Design a Distributed Messaging Queue - like RabbitMQ or Amazon SQS​ 28

Design a Publish/Subscribe System - like Kafka​ 47

Design API for Amazon.com​ 47

Design a Logging System for Facebook​ 48

Design Twitter’s Analytics System​ 48

Design Capacity Planning for Reddit.com​ 48

Design Top K Apps/Amazon Best Sellers​ 48

“Which DB will you use? NoSQL or MySQL?”​ 48

Design Uber Surge Pricing - a Stream Processing System​ 48

“Do you need to add a Queue to your backend?”​ 48

..More questions to come..​ 49

Interview Concepts​ 49
Discussions vs Exams​ 49
Waterfall Approach​ 49

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 3

https://systemdesign.org/subscribe

Introduction

System Design is a Tree, not a Line.

Algorithm interviews are a line - you solve a problem, code it, test it, and that’s it.

With System Design, it’s more complicated - it’s a discussion. The interviewer can take it
in any direction. There are 1000+ variants of a single question!

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 4

https://systemdesign.org/subscribe

Think of a question like “Design Facebook”. You might think - “I’ve gone through
resources online. I know this”. But you might be wrong. Do you know the answers to
the following questions?

Let’s take one branch of the tree: Logging.

Now, let’s take a different branch: System Monitoring.

These topics don’t come to your mind when you think of designing Facebook. They’re
part of the Tree, not the Line.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 5

https://systemdesign.org/subscribe

This book tries to explore as many branches of the tree as we can.

🚧 It’s work-in-progress though. Bare with us as we add more sections.

We’re going to start with questions now. If you want more tips, go to the
Interview Concepts section at the end of the book.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 6

https://systemdesign.org/subscribe

Design a Messaging Queue with High Throughput
(non-distributed)

In this question, we design a queue in a single machine. This queue can handle things
like:

●​ A flood of tasks from a website like Facebook
●​ A stream of logs from a consumer app.

These use cases require a lot of throughput.

On one hand, this problem might seem trivial to you. After all, we just need to
implement the data structure right? Initialize a Queue object and that’s it.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 7

https://systemdesign.org/subscribe

You’re right about that. If we simply initialize a queue in memory and read/write to it,
that will be quite fast.

Why? Because in-memory reads/writes are quick. The problem comes when we have to
write this to disk. So far, we don’t have any requirement to write to disk, so everything is
hunky dory.

Making our Queue Persistent

With our setup above, there is a problem - if the machine goes down or restarts, we will
lose the entire queue. RAM goes away if the computer restarts. This is something we
should handle, because failures are very common in systems. We need to safeguard
against this.

 There are 2 ways to deal with this:

1.​ Persist the queue to disk - even if the machine goes down, the queue can be
reloaded from the hard drive.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 8

https://systemdesign.org/subscribe

2.​ Replicate the queue across multiple machines - if one machine goes down, the
replica machine will still have the queue.

Both these approaches are used by queues in the industry. For the interview, you should
know both!

We will start with Persisting to Disk. We will handle replication later on, when we
distribute this queue to multiple machines.

As you may have guessed already, we are working towards designing a distributed queue
- something like RabbitMQ or Amazon SQS.

Queue on a Single Machine

Let’s first start with a Messaging Queue on a single machine. Once the single machine
model is clear, it will be easier to scale it horizontally. This is not very different from how
we scale a key-value store or a distributed hash table.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 9

https://systemdesign.org/subscribe

We implement it locally on a single machine, and then we figure out how to shard it
across many machines. A distributed queue uses similar concepts.

Let’s look at how a queue is implemented on a single machine.

If you were to implement a queue using your local IDE, how would you do it? Well
that’s simple, you would probably make a Queue object in Java (or a List in Python).
Something like this:

public class QueueManager<A> {
 Queue<A> queue = new Queue<>();

 // constructor

 // getter

 // setter
}

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 10

https://systemdesign.org/subscribe

This will make an in-memory queue that will live in your program’s Heap memory (in
RAM).

Heap space can be expanded as you add more data into the Queue, eventually taking all
the RAM available.

Reads and Writes will be very fast - because you read and write from memory.

Thread Design in our Queue

Let’s go a bit deeper now - how do we structure threads and processes in this Queue? So
far, we have a single process and a single thread. This thread does both - reads and writes.
Or in this case, enqueue and dequeue.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 11

https://systemdesign.org/subscribe

If we run two threads - one for read and one for write, it might be better, because reads
and writes don’t have to wait for each other. This way, one enqueue and one dequeue
can happen at the same time.

 In the way our Queue is structured right now, read and write operations are simple -
simply modifying the single queue. But in reality, the read/write operation can involve

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 12

https://systemdesign.org/subscribe

multiple steps - logging, persisting to disk, etc. For those use cases, having separate
threads for reading and writing might be beneficial, so that a read thread doesn't have to
wait while a write thread is doing those other operations.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 13

https://systemdesign.org/subscribe

This becomes especially beneficial if we have multiple processing cores. More on that
below.

How does it differ with multiple cores?

If we have multiple cores, that’s like having multiple CPUs, so two threads/processes can
actually run in parallel.

In a single CPU core, threads give you the illusion of running in parallel. They run
another thread when one thread is waiting for something. For example,

With multiple cores, you can actually run two threads in parallel.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 14

https://systemdesign.org/subscribe

Why did we bring this up? Generally, it is good to know this concept in interviews.
Adding parallelism is especially useful when you have multiple cores.

Multiple Queues on one machine

Ok so this is what our queue looks like right now:

You can have multiple queues in the machine. For this, you can add a QueueManager
that initializes different Queue objects and keeps track of each of them.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 15

https://systemdesign.org/subscribe

This Queue Manager can also maintain connections and serve as the interface to the
queue. A client can send a request asking for an item in a particular queue -
getItem(Q3), and the manager can call the Q3’s dequeue function and get the item and
send it to the client.

This way, we’re able to create multiple queues in the single machine with high
throughput. Since we’re storing everything in memory, read/write operations are very
fast.

Note:
Keep in mind that this may not be exactly how Queues are implemented in
RabbitMQ in reality. The point of the system design question is to show how you
would implement it from scratch, not to repeat the implementations of these well
known systems.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 16

https://systemdesign.org/subscribe

Ok, so now we have a high throughput well functioning queueing system that can
accept messages and give them quickly. Awesome. However, there are some ways we can
improve this.

How can we improve this? Well for one, there is a big problem with this system. Can
you spot it?

What if we want persistence?

We have a big problem with Data loss. In a Queue, our clients rely on us to not lose data.
If the data is not super important, then it’s ok. Or, if the data is backed up somewhere,
then it’s ok too. However, in our queue, because we are storing messages only in
memory, as soon as the system restarts or if the process crashes (a common occurrence),
our entire queue is lost.

So, we need to add persistence to this queue. This is a natural next question the
interviewer will ask.

Thankfully, adding persistence is a simple matter of backing up our queue to disk.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 17

https://systemdesign.org/subscribe

How can we back up our queue to hard drive? Well the solution is quite simple.

We can write new data to an in-memory buffer and periodically flush the data to hard
disk.

Why flush the data periodically? Because we want to minimize the number of writes to
disk. The more we can collect data and flush together, the less load on our program.

Depending on how often we want the data to be flushed, we can set a flush interval. At
the interval, someone needs to take the buffer and write it’s contents to disk. We can
have a separate thread do this.

Each queue can have it’s own file on disk.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 18

https://systemdesign.org/subscribe

On the disk, we have used a simple file to store queue contents.

How is the queue represented in the file?

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 19

https://systemdesign.org/subscribe

Every line is an item in the queue. We have put single characters in the queue. In reality,
Queue items will more likely be long lines, or even JSON.

Instead of using a file, some people might use a simple DB - like SQLite. A file seems to
be quite simple and well suited to this task though, so we’ll pick this. Feel free to pick
anything else.

When items are added to the queue, we append them to the end of the file.

When items are deleted from the queue, we need to delete them from the beginning of
the file.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 20

https://systemdesign.org/subscribe

How can we make file deletions faster?

Now, removing items from the start of the file is more expensive because we have to
rewrite the entire file. It makes sense to do this less often. To remove items from the
queue’s file, we can first add it to another file of dequeued items. We can periodically
flush these items from the front of the file.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 21

https://systemdesign.org/subscribe

Here is another consideration. Theoretically, as long as we keep track of which items are
deleted, we don’t need to delete from the beginning of the Queue file frequently. If we
can back up this buffer to separate files, so that we have a log of deletions, we can
perform this deletion very less frequently. This would especially be useful if the file is
large, so that we can avoid the large file from being re-written.

So now our persistent, high throughput queue looks like the following:

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 22

https://systemdesign.org/subscribe

With Queue Manager and Multiple Queues:

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 23

https://systemdesign.org/subscribe

How can we make it fault tolerant?

Let’s do a fault tolerance audit for this system. There’s two scenarios we want to look at -
the machine restarting and the machine going down, along with the hard disk.

Scenario 1: Machine restarts or process crashes

If the machine restarts and we lose the RAM Queue, we will still have the Queue
persisted in the file.

However, any unflushed items from the buffer might go missing. So, let’s say we flush
the buffer every 50ms, then there is potential for 50ms worth of queue items going
missing (in the worst case).

This may or may not be tolerable, but let’s assume for now that this is not tolerable,
since we want to design for high reliability. Since we want to maintain high throughput,

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 24

https://systemdesign.org/subscribe

it doesn’t make sense to flush more often, and even with a smaller flush interval, there
will always be the possibility of losing that smaller interval, e.g, 5 ms. Writing to disk
every time is the only safe way here, but that will be quite slow. So what do we do?

The answer for such scenarios is to add replication. If we replicate this queue into
another machine, then that small loss will be very unlikely to happen, because the other
machine’s queue will still be up.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 25

https://systemdesign.org/subscribe

Scenario 2: Machine crashes along with the hard disk

This also solves our second problem - what if the hard disk fails. If we replicate to
another machine, we will always have a backup queue saved in that machine’s hard disk,
so no problem if the machine fails.

Now you may ask, what if both machines fail at the exact same time? Well that scenario
is highly unlikely, a lot more unlikely than a single machine failing. But if our data is
extremely crucial that we want to safeguard even against that, then we can do a couple
things:

1.​ Increase our replicas to three. Three replicas is the standard number of replicas
cloud file systems use. Google File System uses that number by default. This
reduces our likelihood even more.

2.​ Place the replicas in different locations connected to different power supplies.
This ensures that if one power supply fails, they are not failing at the same time.
Placing them at different geographic locations is an excellent way to do this.

What if the Queue becomes too big for memory?

If the queue becomes too big - it’s because the consumer is slow and the producer is
producing a lot of data, the default way of managing this is to add another machine and
partition the queue.

However, if we want to restrict to one machine, we can also move part of the queue into
the disk to free up RAM space. This is very similar to what we do with caches -
swapping out lesser used pages into disk.

We can swap out pages of the queue to disk and the producer can then continue writing
to the queue.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 26

https://systemdesign.org/subscribe

Design a Distributed Messaging Queue - like
RabbitMQ or Amazon SQS
This is a very popular question. Designing a distributed queue is actually quite simple
once you understand the basics.

If you haven’t already, please take a look at the non-distributed version of a high
throughput queue. We can use that design and scale it up to implement a distributed
version. This is also a good pattern to follow if you are confused about implementing a
distributed system- figure out the single machine model, and then apply sharding and
replication to distribute it across different machines.

Let’s take a look at the requirements of this queue:

Requirements:

1.​ High Throughput
2.​ The queue should have persistence as much as we can without compromising on

high throughput
3.​ Support for multiple consumers and producers
4.​ Once an item is taken from a queue, it can be deleted. Only one consumer can

access one item

Let’s see what we have so far from the single-machine implementation.

We can add and remove items from a created queue.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 27

https://systemdesign.org/subscribe

We can create multiple queues and add and remove items from each one of them by
specifying the queue id or the queue name.

Using this as a building block, we can figure out how to do this on multiple machines.

High Throughput Distributed Queue Scenario

Let’s now say we have 3 machines and one queue to create and manage. We have a large
volume of data, so we want this queue to be sharded. How can we manage this?

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 28

https://systemdesign.org/subscribe

We have a lot of producers writing to this queue and a lot of consumers pulling from the
queue. How do we handle the high throughput?

Well the logical thing to do will be to partition the queue into 3 separate queues, one on
each machine. Each producer can write to any partition, and consumers can consume
from any partition.

For huge workloads (think Facebook scale), you can partition this queue over 100
machines and achieve a lot of scale.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 29

https://systemdesign.org/subscribe

There is one problem though - this implementation will not be strictly FIFO for the
entire queue. It will only be FIFO within each partition. For most use cases, this is ok.
For example, if we’re using it as a task queue or as a notifications queue, it is ok if two
tasks are out-of-order within a small time frame.

We should try to keep all partitions evenly occupied. That will be ideal for the queue’s
performance because we don’t want to overload one partition.

With X machines, our throughput should be X times the throughput of a single
machine.

How to keep the Distributed Queue evenly balanced?

Keeping the queue balanced means writing and reading evenly from all the machines. If
one machine gets starved of items, then it’s readers will be starved as well.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 30

https://systemdesign.org/subscribe

In the Queue above, readers of Machine B and C will soon get starved because Machine
A is getting a higher rate of writes.

The challenge really becomes writing and reading evenly from all partitions. So we need
some sort of a balancing approach, or some sort of coordinator.

Coordinating between the Queue partitions

Let’s see how to coordinate a queue between 3 machines.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 31

https://systemdesign.org/subscribe

Let’s say we are creating a Queue Q1. We create 3 partitions - P1, P2 and P3 - each on a
different machine. We will need some sort of Queue Manager that keeps track of the
partitions.

Let’s say that we have such a program running on one of the three machines:

Try to figure this out yourself before reading our solution.

When a producer needs to write to the Queue, it asks the Queue Manager for the IP
address of a machine it can write to. Let’s say the Queue Manager returns the IP address
of Machine C (where P3 is located). The Producer can now establish a persistent
TCP/IP connection and start writing to P3.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 32

https://systemdesign.org/subscribe

Now you may ask, why is the producer connecting directly with the Partition Machine?
Why doesn’t it just pass along the message to the Queue Manager, and the Queue
Manager can send it to a partition, like this:

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 33

https://systemdesign.org/subscribe

This will make things simple - just hand it off to the Queue Manager and the Queue
manager can take care of the rest. The problem with this approach is that the Queue
Manager becomes a bottleneck. All of the data has to go through it, and there’s only so
much throughput this one machine can handle.

As the number of producers increases, this might slow down the entire queue. Then you
would have to add more queue managers to handle more writes. Instead of all this, the
general pattern is to directly let the producers connect to the machine. This way the
writes are decentralized, and that makes it more scalable horizontally. This is also the
pattern used in most distributed file systems for writing data. For example, Google File
System uses this exact pattern.

So now we’ve established that the producers will directly connect to the partition
machine and write the data.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 34

https://systemdesign.org/subscribe

So far we had one producer. Now, let’s say one more producer wants to write to the
Queue. The Queue Manager can send this producer to a different Machine so that the
previous partition is not hogged and other partitions are also written to.

This way, the Queue Manager keeps sending new producers to different partitions,
distributing the throughput across partitions.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 35

https://systemdesign.org/subscribe

As you can see, we also have heartbeat messages going from the Queue Manager to each
partition, regularly communicating the partition’s health with the Queue Manager. If
the partition goes down or becomes overcrowded in relation to the other partitions, the
Queue manager can assign less producers to the partition.

This above setup has a flaw though - can you spot it? Spend some time thinking about
it.

Here it is: This model of assigning a single partition per producer works well if the
producers are homogeneous and more in number than the queue partitions. That way,
each partition will get a similar amount load, and we don’t need to do any load
balancing.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 36

https://systemdesign.org/subscribe

For load that doesn’t have a lot of bursts, and which has a lot of producer servers, this
will work well. If there is even one “power producer” that is producing a lot of data at a
high rate, one partition will be hogged up.

This model breaks down as soon if we have different producers producing different
quantities of data.

As we can see above, the power producer fills up one partition quicker. When
consumers read the queue randomly, the filled up partition’s items are at a disadvantage,

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 37

https://systemdesign.org/subscribe

because they will be read much later - after the items in other slower partitions have been
read. This reduces the FIFO properties of the queue.

What can we do to solve this? Well, one solution is for each producer to write to
multiple partitions. Each producer can do a round-robin write to different partitions.

When the producer connects, the Queue manager can give it the IPs of all three
partitions. The producer can then connect to all three machines and write to all 3

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 38

https://systemdesign.org/subscribe

machines in a round robin fashion - once to Machine A, then to Machine B, then to C,
and so on.

Now, you might ask, if I am writing code on the producer, do I need to write a loop to
pick one partition and write, then pick another partition, etc.? No, that will be handled
by the Queue’s client library.

For example, RabbitMQ has client libraries that the producer machine will install. Let’s
say the producer is a Web server and the web server needs to write lots of JSON objects

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 39

https://systemdesign.org/subscribe

to the queue. The web server will install your Queue’s (MyQueue) client library. This
library will have functions to connect to the queue and write to it. For example:

Connection queueConnect = MyQueueManager.get(“My JSON Queue”);
queueConnect.enqueue(“{id:33435, data: {...}}”);

The enqueue function and the MyQueueManager library should handle round robin
writes to different partitions. All of this is abstracted away from the end user aka the
producer.

So now we have seen two approaches for writing to the Queue - assign one partition to a
producer and assign multiple partitions to the producer. In reality, different situations
might deem different approaches to be more suitable.

If we have 1000 producers and only 3 machines, then it might make sense to assign one
partition per producer, because evenly spreading so many producers might result in
good load balancing anyway.

In our library, we can give a configurable property for this. The developer can configure
it according to their situation and customize the load balancing.

How do we make sure the system is fault tolerant?

From the discussion in the non-distributed version, we know that till the data flushes to
disk, it is susceptible to being lost if the process crashes or if the machine goes down.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 40

https://systemdesign.org/subscribe

This is usually small - the size of the flush interval - usually less than a second. However,
this is still a major cause of concern because in a messaging queue, we want zero data
loss. If you are sending a task to be queued and the messaging queue loses that task, we
have suddenly lost the task. This is not acceptable in most use cases. Imagine you
sending a message to a friend, and that message just disappearing into thin air without
you ever knowing or being informed. That is what will happen if our queue loses data.

Now, if a hard drive fails, we have suddenly lost all contents in a queue.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 41

https://systemdesign.org/subscribe

This is not desirable at all. If the drive fails, all the data is not recoverable. Assuming the
process also crashes when the drive fails, the entire queue is lost, including the data in
the RAM. How do we save ourselves from this horrible fate?

We turn to a time tested method of replication. That is the only way to safeguard against
total machine failure.

This means that we need to replicate each partition into multiple machines. Here is
what that would look like:

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 42

https://systemdesign.org/subscribe

Each partition has a leader machine. All reads and writes to that partition go to that
leader machine . Note that in a Queue, a “Read” is also effectively a write because the
item has to be dequeued. So we cannot take advantage of replication to increase read
throughput as we do in replicated databases - where read replicas are able to increase our
read throughput. This might be different in a streaming platform like Kafka where a
read does not delete the queue.

Let’s look at how exactly the replication happens. As we can see, there is a leader
machine for each partition. The producer will connect with the leader machine and
send data. The leader will write data to it’s partition and to all it’s synchronous replicas.
Synchronous replicas are those who are updated synchronously with the leader replica.
Let’s say we have 1 synchronous replica. This ensures that the write is written to 2
machines right away.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 43

https://systemdesign.org/subscribe

Before we send an acknowledgement to the producer that the write is done, it is written
in 2 machines. This might take longer than writing to one machine, but it ensures that
data loss will be very hard.

In order to lose data, now 2 machines have to go down at the same time, which is much
less likely. To make this even less likely, the administrator can also do things like ensuring
the two machines are connected to different power supplies or different network routers
- so that they don’t have a common cause of failure.

We can also have normal replicas or asynchronous replicas, which are synchronized
after the main replicas returns an ack to the producer. These replicas are faster for the
throughput, because the write is propagated asynchronously. This is what the
replication looks like now after adding the asynchronous replicas.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 44

https://systemdesign.org/subscribe

As we can see, we have a replication factor of 3 here - 2 synchronous and 1 asynchronous
replica. You can adjust this as per the data needs. For example, if the data is not too
critical, like user behavior logs, it’s probably ok to lose small amounts of data once in a
while, so you can do 1 synchronous replica and 1 async replica. It’s up to the developer
to adjust this according to business needs and costs.

After adding fault tolerance, this queueing system can now scale to many machines. We
can auto scale the queue and add more partitions as load increases. To add another
partition to a new machine, we simply create a new partition and point producers to it.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 45

https://systemdesign.org/subscribe

Design a Publish/Subscribe System - like Kafka
In Progress​

Design API for Amazon.com

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 46

https://systemdesign.org/subscribe

Design a Logging System for Facebook

Design Twitter’s Analytics System

Design Capacity Planning for Reddit.com

Design Top K Apps/Amazon Best Sellers

“Which DB will you use? NoSQL or MySQL?”

Design Uber Surge Pricing - a Stream Processing System

“Do you need to add a Queue to your backend?”

​

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 47

https://systemdesign.org/subscribe

 ..More questions to come..

​

Interview Concepts

Discussions vs Exams

With algorithms, if you’ve seen a question before, you can easily ace the interview - it’s
an exam. If you do the same with SD, it won’t work.

For example, let’s say you know the high-level design for Facebook’s backend. You
present it. That is not enough to impress the interviewer . They know you’re just
repeating what you saw on a popular site. They will probe you further - until they find
something you’re struggling with. Then they will cross question you. That’s when they
see your skills. It’s a discussion, not an exam.

Waterfall Approach

As much as possible, I recommend following a waterfall approach. What does that
mean? The waterfall approach means that one step leads to the other.

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 48

https://systemdesign.org/subscribe

First, you decide what features of this system are. You try to narrow down features as
much as possible - there’s only so many features you can implement and go in depth.
Those features directly lead to a UI mock, or an API. And that API or UI mock leads to
the system we need to design.

1.​ Collaborate with the interviewer. Deploy the Suggestive Approach.
2.​ The interviewer can interrupt at any point and lead you in a different direction.

For example, let’s say you’re done defining features, and you start to define an
API. Maybe this interviewer doesn't want an API. They tell you to jump to the
design. That’s ok, you have to be adaptable. Remember, System Design
Interviews are a Tree, not a Line. The interviewer can interrupt at any point and
take you in another direction.

3.​ Before you start with the next step, Confirm it with the interviewer. This ensures
that you both are on the same page. It also gives the interviewer an opportunity
to adjust the course if they want to.

​

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 49

https://systemdesign.org/subscribe

We are still in the process of writing this book. Please consider subscribing for new
updates 🙏 : https://systemdesign.org/subscribe

🚧 This book is constantly being updated. To get updates, please visit systemdesign.org/subscribe 50

https://systemdesign.org/subscribe
https://systemdesign.org/subscribe

	Why are we writing this book?
	Introduction
	System Design is a Tree, not a Line.

	Design a Messaging Queue with High Throughput (non-distributed)
	Design a Distributed Messaging Queue - like RabbitMQ or Amazon SQS
	
	Design a Publish/Subscribe System - like Kafka
	Design API for Amazon.com
	Design a Logging System for Facebook
	Design Twitter’s Analytics System
	Design Capacity Planning for Reddit.com
	Design Top K Apps/Amazon Best Sellers
	“Which DB will you use? NoSQL or MySQL?”
	
	Design Uber Surge Pricing - a Stream Processing System
	“Do you need to add a Queue to your backend?”
	 ..More questions to come..
	Interview Concepts
	Discussions vs Exams
	Waterfall Approach

