Introducing Starling

1H O] X
001 Blol =ML~ nassol: 0318 & =
002 Aol =AM 2~ nassol 0318 2=
003 Aloll+=MHR~
004 BoHFH R~
2H 0| X
005 BT MR~
006 Zol+=AMHR~
007 BT MR~
008 RlolT=AMR~
3H O Xl
009 Bol+=MHR~
41 O X
010 Zloll=MI R~
011 Bl FH R~
012 Boll=MHI R~
5H| 0| Xl
013 ZlollT=AMHIR~
014 BT H R~
015 Bloll=MHIR~
016 BT AH R~
6H Ol Xl
017 BTN R~
018 RlollT=AMI R~
019 BT MR~
020 Zol+=MHR~

11H O Xl

001 2o =ANl2~ nassol : 0318 2=

First Flight

What Is Starling?
AEE0 EOtR?

Starling is an ActionScript 3 2D framework
developed on top of the Stage3D APlIs
(available on desktop in Flash Player 11 and Adobe AIR 3).

>
Uy
UL
FIO

ADJEE 32D =T &K A0ICH
*%%8Stage3DAPIEJIt&9§oH}d HS O F .
(CIATEOIAS ZHA 113 Ol SHI Ol 01300 Al HIZ = CH(22))

Starling is mainly designed
for game development,

but could be used
for many other use cases.

=

ro

FZ A HE0 MEEH EHEALCLL TE SH2ZE ME

!
1
50
[w)

Starling makes it possible
to write fast GPU-accelerated applications
without having to touch the lowlevel Stage3D APIs.

(@]

Stage3D APIE 2 & UF X EOAT i Ot53tE HiHE

002 Aol =KNl2~ nassol 0318 2=

Why Starling?
AEEO0 N E201?

Most Flash developers
want to be able to leverage GPU acceleration (through Stage3D)
without the need
to write such higher-level frameworks (2 £ & ™ 2021 Xl..)
and dig into the low-level Stage3D APIs.

& N=+=&2| Stage3D APIE & & It 1)
A

N

KXl 2410 M Stage3DE AtE &t

Starling is completely designed
after the Flash Player APls

and abstracts
the complexity of Stage3D (Molehill)

and allows
easy and intuitive programming for everyone.
ﬁ%%'i =cHAl SdI0I101 APIOI SEH & H & ALY
cl1) Stage3D2l =& &S F4& a6t}
AEH S AMESH SRAUEL H2AHOZ IZ2T)HUS & = UL

M

R 1
o o

Starling is for ActionScript 3 developers,
especially those involved in 2D game development,
so you will need to have a basic understanding of ActionScript 3.

AEE 2 HE ADEE 3IHENE ?Iet 0|0
AEEY 2 S0l2D MY HE S ot HEXE I8 X0ICH
tetd A2 S AtE0tdE REATEHE 30 oAM= JI=82=2 &1 QA0 0F &tLh.

003 Zoll==A~

By its design
(lightweight, flexible, and simple),

Starling can also be used
for other use cases like Ul programming.

That said,
everything is designed to be
as intuitive as possible,

so any Java or .Net developer will get the hang of it
quickly as well.

004 E oA~
Philosophy

Intuitive

Starling is easy to learn.

Flash/Flex developers will feel at home immediately,
since
it follows most of the ActionScript dogmas
and abstracts the complexity of the low-level Stage3D APIs.

Instead of coding against concepts like

vertices buffer,

perspective matrices,

shader programs

and assembly bytecode,

you will use familiar concepts
like
a DOM display list,
an event model,
and familiar APls
like MovieClip, Sprite, TextField, and so on.

211 O] Al

005 Eoll =AM~

Lightweight

AEE 2 OtE L

Starling is a lightweight bird in many ways.
The amount of classes is limited (around 80k of code).

There are no external dependencies
beside Flash Player 11 or AIR 3

(mobile support will come in a future release).

This keeps
your applications small
and your workflow simple.

006 ol =AM~

Free

reze 220,

Starling is free and alive(2] 0] ?7?).

Licensed under the Simplified BSD license,
you can use it freely
even in commercial applications.

We are working on it every day
and we count on an active community
to improve it even more.

007 Zof==AMl2~

How

Behind the scenes,
Starling uses the Stage3D APIs,
which are low-level GPU APls
running on top of
OpenGL and DirectX on desktop
and OpenGL ES2 on mobile devices.

As a developer,
you have to know that
Starling is the ActionScript 3 port of Sparrow
(http://www.sparrow-framework.org),
the equivalent library for iOS
relying on OpenGL ES2 APIs (Figure 1).

Figure 1. Starling layer on top of Stage3D (Molehill)

008 Zof==AMl2~

Starling re-creates many APls
that Flash developers are already familiar with.

Figure 2 illustrates the APIs

exposed by Starling
when it comes to graphical elements.

3L Ol Xl
009 B & =AM~

Many people think that
the Stage3D APIs are strictly limited to 3D content
(and, to be fair, the name is a bit confusing),
but you can in fact also create 2D content with them.

Figure 3 illustrates the idea.

How can we draw something like a MovieClip
with the drawTriangles API?

Actually, it is very simple.

GPU are extremely efficient at drawing triangles,
so the drawTriangles API will draw two triangles,

and we will then
sample a texture
and apply it
to the triangles using UV mapping.

We will then end up with our textured quad,
which represents our sprite.

41H| O X
010 & ol A~

By updating the texture every frame on our triangles,
we would end up with a MovieClip.

Pretty cool, huh?

Now, the good news is
that we will not even have to go through those details
when using Starling.

We will just provide our frames, supply them to a Starling MovieClip, and voila (Figure 4)!

011 ol =AM~

To give you an idea of
how Starling reduces the complexity,
let’'s see what code we would have to write
to display a simple textured quad(At 2 &)
using the low-level Stage3D APIs:

/I create the vertices

var vertices:Vector.<Number> = Vector.<Number>([
-0.5,-0.5,0,0,0,//x,y,z,u,Vv

-0.5,0.5,0,0,1,

0.5,05,0,1,1,

0.5,-0.5,0,1,0Q]);

012 Zof =Ml 2~

/I create the buffer to upload the vertices
var vertexbuffer:VertexBuffer3D = context3D.createVertexBuffer(4, 5);

/[upload the vertices
vertexbuffer.uploadFromVector(vertices, 0, 4);

/I create the buffer to upload the indices
var indexbuffer:IndexBuffer3D = context3D.createlndexBuffer(6);

/I upload the indices
indexbuffer.uploadFromVector (Vector.<uint>([0, 1, 2, 2, 3, 0]), 0, 6);

/I create the bitmap texture
var bitmap:Bitmap = new TextureBitmap();

5 Ol Xl
013 Bl =M~

/I create the texture bitmap to upload the bitmap

var texture: Texture = context3D.createTexture(bitmap.bitmapData.width,
bitmap.bitmapData.height, Context3DTextureFormat.BGRA, false);

/I upload the bitmap
texture.uploadFromBitmapData(bitmap.bitmapData);
/Il create the mini assembler

var vertexShaderAssembler : AGALMiniAssembler = new AGALMiniAssembler();

/I assemble the vertex shader

014 Zof =AMl 2~

vertexShaderAssembler.assemble(Context3DProgramType.VERTEX,
"m44 op, va0, vcO\n" + // pos to clipspace
"mov v0, va1" // copy uv

);

/l assemble the fragment shader

fragmentShaderAssembler.assemble(Context3DProgramType.FRAGMENT,
"tex ft1, v0, fsO <2d,linear, nomip>;\n" +

"mov oc, ft1"

);

Il create the shader program

var program:Program3D = context3D.createProgram();

/I upload the vertex and fragment shaders

program.upload(vertexShaderAssembler.agalcode, fragmentShaderAssembler.agalcode);

015 Aol =AM~
/I clear the buffer
context3D.clear (1,1, 1,1);

/I set the vertex buffer

context3D.setVertexBufferAt(0, vertexbuffer, 0, Context3DVertexBufferFormat.FLOAT _3);
context3D.setVertexBufferAt(1, vertexbuffer, 3, Context3DVertexBufferFormat.FLOAT _2);

I set the texture
context3D.setTextureAt(0, texture);
/I set the shaders program
context3D.setProgram(program);

/I create a 3D matrix

var m:Matrix3D = new Matrix3D();

016 B o =AM~

/I apply rotation to the matrix
to rotate vertices along the Z axis

m.appendRotation(getTimer()/50, Vector3D.Z_AXIS);
/I set the program constants (matrix here)

context3D.setProgramConstantsFromMatrix(Co
ntext3DProgramType.VERTEX, 0, m, true);

/l draw the triangles

context3D.drawTriangles(indexBuffer);

61 Ol X|
017 =AM~

/I present the pixels to the screen

context3D.present();

And we would end up with the result shown in Figure 5.
Figure 5. A simple textured quad

Pretty complex code for this, right?

That is the cost of having access to low-level APIs.

You get to control a lot of things, but at the cost of low-levelness.

018 ol =AM~

With Starling, you will write the following code:

/I create a Texture object
out of an embedded bitmap

var texture: Texture = Texture.fromBitmap (new embeddedBitmap());
/I create an Image object our of the Texture

var image:Image = new Image(texture);

/I set the properties

image.pivotX = 50;
image.pivotY = 50;
image.x = 300;

image.y = 150;
image.rotation = Math.Pl/4;

/I display it

019 Zo =AMl 2~

addChild(image);

As an ActionScript 3 developer
already accustomed to the Flash APls,
you will feel pretty much at home
with these APIs exposed,
while all the complexity of the Stage3D APIs
is done behind the scenes.

If you try to use the redraw regions feature,
you will see that
Starling, as expected,
renders everything on Stage3D,

not the classic display list.

020 B o =AM~

Figure 6 illustrates the behavior.

We have a quad rotating on each frame;
the redraw regions only show the FPS counter
sitting in the display list (running on the CPU).

	Introducing Starling
	
	1페이지
	001 찜해주세요~ nassol : 0318 완료
	002 찜해주세요~ nassol 0318 완료
	003 찜해주세요~
	004 찜해주세요~

	2페이지
	005 찜해주세요~
	006 찜해주세요~
	007 찜해주세요~
	008 찜해주세요~

	3페이지
	009 찜해주세요~

	4페이지
	010 찜해주세요~
	011 찜해주세요~
	012 찜해주세요~

	5페이지
	013 찜해주세요~
	014 찜해주세요~
	015 찜해주세요~
	016 찜해주세요~

	6페이지
	017 찜해주세요~
	018 찜해주세요~
	019 찜해주세요~
	020 찜해주세요~

