
Proposal for Stream Dependencies in SPDY
Draft 1​
Last Updated: 26 October 2012

This document proposes changes to the SPDY protocol to support stream dependencies. During a pageload,
the server uses dependencies to improve performance by allocating bandwidth capacity to the most important
resource transfers first.

The remainder of this document describes the motivation for dependencies, protocol changes to support them,
and examples of how those mechanisms can be used by the browser. We conclude with a discussion of the
client and server policies afforded by expressing dependency information in SPDY.

(Note that flow control is the subject of a separate document and is out of scope here.)

Motivation
In SPDY today, each stream has a priority (0–7) chosen by the client upon stream creation. Push streams are
an exception. The server policy today is to assume push streams are all low priority. Push or pull, the priority of
a stream cannot be changed once created.

Priorities provide hints to the server about which streams are most important to the client, but they are poorly
suited to several common use-cases.

●​ Specifying an ordering of resource transfers​
Sharing bandwidth between resource transfers may degrade performance as measured by page-load
time, e.g., when transferring two Javascript resources that cannot be executed until transfer is
complete, or two video chunks that will be played back-to-back. In these circumstances, the browser
may wish to specify an ordering --- HTML before script1.js before script2.js before image.png, for
example, or video_chunk1 before video_chunk2 and so on. (Moreover, changing the priority of the
HTML transfer itself may benefit performance; e.g., a large blocking script will be interpreted and
executed more quickly if it does not compete for bandwidth capacity with a large HTML transfer.)​
​
With a small number of fixed priorities, the browser is simply unable to express an ordering over many
resource transfers, and with a large number of priorities, reordering is costly.​

●​ Reacting to document parsing​
Because the browser's document parser blocks while waiting for script and style resource transfers to
complete, many resource requests will be speculative. (For more background, see Tony Gentilcore's
excellent summary of Chrome's implementation of speculative parsing, the preload scanner.) These
requests may need to be preempted as the document parser learns of higher priority resources. For
example, if a script a.js uses document.write to embed another script, b.js, the transfer of b.js
should preempt other in-flight resource transfers, as the receipt of b.js blocks page layout. As another
example, consider images styled with display: none; once such styling is discovered during
parsing, associated image transfers should be deferred to prioritize visible content.​

http://gent.ilcore.com/2011/01/webkit-preloadscanner.html
http://gent.ilcore.com/2011/01/webkit-preloadscanner.html

●​ Reacting to user behavior​
Suppose a SPDY proxy is servicing multiple users. In this case, many tabs (and their associated
streams) are multiplexed over the same SPDY connection. Fixed priorities (i.e., unchanging over the
lifetime of a stream) preclude reacting to user behavior; e.g., a user may switch among concurrently
loading tabs.​

●​ Server push​
No single fixed priority is appropriate for server push. A stream pushing a large image, for example,
should have lower priority than JS/CSS. But, when pushing JS/CSS that the browser needs, those
stream should have high priority.

In sum, for many common scenarios, fixed priorities are not sufficient to optimize the allocation of bandwidth
among competing requests.

Protocol changes
To address the limitations of priorities, we propose expressing dependencies among streams. Dependencies
improve matters in two main ways:​

1.​ Dependencies more accurately reflect the constraints of the browser.​
Rendering a page is a streaming process that naturally leads to a series of dependencies among
resource transfers. For example, a script may block HTML parsing, and a final layout may depend on
an external stylesheet.​

2.​ Dependencies can be updated efficiently.​
The relative importance of streams may change as Javascript executes or a user changes tabs, for
example. Dependencies allow the browser to express these changes compactly. If a user changes tabs,
for example, the browser may simply signal a change in priority of the tab's dependency root, thereby
reducing (or increasing) the bandwidth allocated to all dependent transfers.

Dependencies are expressed in two ways: 1) a new dependency field in the SYN_STREAM message, and 2) a
new REPRI message that updates the dependency pointers of existing streams. To allow servers to advertise
their support for scheduling transfers based on dependencies, we propose a new SETTINGS id/value pair. We
describe the layout and semantics of each in turn.

Note that these protocol changes are defined in terms of the latest version of the SPDY draft specification.

SYN_STREAM:
 0 1 2 3 4 5 6 7
+--------+--------+--------+-|-------+--------+--------+--------+--------+
| Length(16) |Flags(8)|1| Stream Id(31) | 0x1 | ->
+--------+--------+--------+-|-------+--------+--------+--------+--------+

 8 9 10 11 12,13,14..N
+-+-------+--------+--------+--------+=========================+
|P| PriOrDep(31) | Name/Value Header Block |
+-+-------+--------+--------+--------+=========================+

http://grmocg.github.com/SPDY-Specification/draft-mbelshe-httpbis-spdy-00.html

Here, the first 8 bytes are the standard control frame header (§2.2.2). A new 32 bit field replaces the existing
SYN_STREAM priority bits (§2.6.1) with:

●​ P: A bit indicating whether the following PriOrDep bits specify a priority (P = 1) or a stream ID (P = 0)
on which this new stream depends.

●​ PriOrDep: Depending on the value of P, either the priority of the new stream or a stream ID on which
this new stream depends.

●​ The structure and semantics of the Name/Value header block (§2.6.11) are unchanged.

P is exclusive; a stream may be assigned a priority or a parent dependency upon creation, but not both. There
are no constraints of the value of PriOrDep; any 31 bit value is valid. Thus, a stream may refer to a
dependency identifier that does not correspond to any current or previous stream ID. This is a deliberate
design choice that increases flexibility for clients when structuring dependencies, a topic we expand upon in
the policies section.

Server push streams are assigned an initial parent at the discretion of the server. A conformant implementation
SHOULD create a dependency on the push stream's associated-to-stream-id (§3.3.1).

REPRI:
 0 1 2 3 4 5 6 7
+--------+--------+--------+-|-------+--------+--------+--------+--------+
| Length(16) |Flags(8)|1| Dependency Id(31) | 0xc | ->
+--------+--------+--------+-|-------+--------+--------+--------+--------+

 8 9 10 11
+-+-------+--------+--------+--------+

|P| PriOrDep(31) | optionally followed by:
+-+-------+--------+--------+--------+

DependencyPriOrDep pairs, where a DependencyPriOrDep pair is:

+-|-------+--------+--------+--------+-|-------+--------+--------+--------+
|X| Dependency Id (31) |P| PriOrDep(31) |
+-|-------+--------+--------+--------+-|-------+--------+--------+--------+

As in SYN_STREAM, the control frame header is standard, followed by a P/PriOrDep label indicating an
update to the 31 bit Dependency Id specified in the header. We relabel the typical Stream Id here as
Dependency Id since a dependency need not correspond to an actual stream. (Recall that any 31 bit value
is a valid dependency identifier.)

To support batched updates of dependencies, an optional list of DependencyPriOrDep pairs with identical
semantics may follow. The number of such pairs is determined by examining the frame length.
number-of-pairs = ((length - 12) / 8). (12 required bytes, 8 bytes from len(stream_id) + len(PriOrDep))

We expect most streams to have at most a single dependency, but this is not a protocol requirement. (Later,
we describe scenarios where multiple parents may improve efficiency.) If a stream is referenced more than
once in a single frame, this indicates multiple parents. A server implementation which does not support multiple
parents MUST use the last referenced parent. Clients which send multiple parents thus SHOULD put the most
important parent last.

http://grmocg.github.com/SPDY-Specification/draft-mbelshe-httpbis-spdy-00.html#ControlFrames
http://grmocg.github.com/SPDY-Specification/draft-mbelshe-httpbis-spdy-00.html#SYN_STREAM
http://grmocg.github.com/SPDY-Specification/draft-mbelshe-httpbis-spdy-00.html#HeaderBlock
http://grmocg.github.com/SPDY-Specification/draft-mbelshe-httpbis-spdy-00.html#anchor20

SETTINGS:
Recall that dependencies and priorities are advisory. While servers must accept the messages, they are not
required to incorporate them into scheduling decisions. A client may benefit from knowing a server's level of
support; e.g., a client may specify priorities only if it knows a server will ignore dependencies. To communicate
this, we propose a new SETTINGS ID/value pair (§2.6.4),

●​ ID 9 - SETTINGS_MAX_CONCURRENT_DEPENDENCY_SCHEDULING_NODES allows the server to
indicate resource limits for dependency scheduling, e.g., to limit memory consumption. A value of 0
indicates that the server does not support dependency scheduling. (We expect most implementations
will select a value greater than or equal to MAX_CONCURRENT_STREAMS.)​

●​ ID 10 - SETTINGS_DEPENDENCY_SCHEDULING_NODE_TIMEOUT indicates how long the server will
maintain dependency nodes after creation. The value is an interval in milliseconds. This allows the
client to estimate if previously created dependency relationships are still available for reference at the
server. (We expect conformant implementations to maintain dependencies for at least as long as
associated streams are active, although this is not a correctness requirement.)

Both of these values are advisory. Servers need not abide by their stated values and clients may disregard
them. Conformant clients should respect the concurrency limit, but servers must be robust to a client that
exceeds it. Similarly, servers may drop dependency information at any time regardless of previous statements
made in SETTINGS. This is intended to provide flexibility for service policies; e.g., a server may reduce the
timeout in response to memory pressure or abandon dependency scheduling entirely.

Examples / use-cases revisited
The combination of dependencies and priorities suffices to express serialized as well as concurrent transfer
schedules. (Both are necessary, as we describe below.) But, how should the browser choose dependencies
and priorities when making requests? This question is best answered quantitatively, but as a starting point, we
consider the following policy in our examples:

1.​ Resource dependencies are (re)configured to reflect parser-blocking order. The transfer of
non-streaming resources is always serialized; i.e., non-async scripts and styling.

2.​ Resources that can be progressively rendered (e.g., images) are transferred concurrently and
(re)configured to depend on parser-blocking resource transfers.

3.​ To ensure that the speculative parser can maintain enough in-flight requests to fill pipe between the
client and server, page HTML is always a top-level dependency, although it may have lower priority
than a resource transfer currently blocking document parsing.

When scheduling transfers, we consider a server that allocates bandwidth hierarchically within dependency
trees and splits equally among streams with the same parent.

Concretely, suppose a SPDY connection is multiplexing multiple tabs from a user connected to a SPDY proxy,
with parent pointers and priorities as shown below. (P6, for example, indicates a priority of 6.)

http://grmocg.github.com/SPDY-Specification/draft-mbelshe-httpbis-spdy-00.html#SETTINGS

To color in this example, suppose that Tab 1 is the foreground tab, loading in parallel with Tab 2 in the
background. Thus, its relatively higher weight. a.js and b.js are scripts required for the first tab and should
be transferred serially (as scripts are executed in the order they are declared in the document, and are not
parsed until transfer completes.) Thus, a.js depends on b.js depends on tab1.htm. In the background
tab, two image transfers share capacity as both can be rendered progressively. Both image transfers have the
same parent and hence transfer concurrently.

Because the streams associated with the transfers of tab1 and tab2 have no parent, they are always
scheduled before any lower level in their trees. But, bandwidth allocation among trees remains proportional as
defined by the relative priority of roots. For example, if the transfer of tab2.htm is in progress and tab1.htm
(now complete) is selected, a.js will be scheduled before tab2.htm completes. This process proceeds until
all transfers in a tree have completed.

As a practical matter, the timeout for pruning nodes in a tree should be selected to allow transfers to complete
and to allow clients to name currently completed parents when defining transfer dependencies. Concretely, on
a high delay path, a small HTML transfer may be flushed entirely by the server before the client receives any
data and begins making dependent requests for resources embedded in the page.

With these client and server policies in mind, we revisit the motivating use-cases described above in greater
detail.

- Specifying an ordering of resource transfers ​
- Reacting to document parsing​
​
We illustrate the need for both serial dependencies, concurrency, and reprioritization in these cases with a
simple example.

Suppose site.com has index.htm:

<html>​
<body>​
<script src="a.js"></script>​
​
​
<link rel="stylesheet" type="text/css" href="style.css">​
</body>

​
with a.js:

document.write('<script src="b.js"></script>');

b.js:

document.write('<div>blocker</div>');

and style.css:

div {​
 border: 1px solid #000;​
}

How would this example page be transferred today? As the main HTML is received and parsed, a request for
a.js will be issued and block the document parser. As the remaining HTML streams in, the speculative parser
will issue requests for a.jpg, b.jpg, and style.css in quick succession. Once a.js is received and executed, a
request for b.js will be issued, which again blocks parsing until received. Visually:

This transfer schedule is suboptimal. Page rendering will complete only when style.css and b.js have
completed, but receiving each of those critical resources is slowed by competition for bandwidth capacity with
bulk data that's not on the critical path (a.jpg and b.jpg).

What we would like is serialized transfer that reflects the document parse order with concurrency for
nonblocking, streaming resources. More specifically, we want to receive: 1) index.html, 2) a.js, 3) b.js, and 4)
style.css serialized (i.e., with no deliberate sharing of capacity among the ordered transfers). After those critical
transfers have completed, a.jpg and b.jpg should be transferred concurrently (as they may be displayed
progressively.)

Folding in the protocol mechanisms described above:

In the figure, each resource request corresponds to a new SPDY stream with the form ID: reqest (PriOrDep).
In more detail:

●​ The SYN_STREAM for the index.htm request has a parent indicating a default priority (3) and a stream
id of 1.​

●​ The document parser is blocked once the external script a.js is parsed. At this point, the speculative
parser looks ahead and creates new streams for a.jpg, b.jpg in parse order. a.jpg and b.jpg can be
progressively rendered, so their transfer is concurrent (same parent, 2, corresponding to a.js). ​

●​ When the parser encounters style.css, back-to-back control messages are sent to create the stream
and update the dependencies of the image transfers. Since stylesheets block rendering and cannot be
streamed, the image transfers are updated to depend on style.css (P5).​

●​ Once a.js completes, the document parser continues, executing a.js and inserting b.js via
document.write(), again blocking document parsing on the receipt of b.js. At this point, b.js should
preempt all other transfers since it's a non-streaming resource that is blocking page rendering. To this
end, the client creates the b.js stream with a.js as its parent (or, equivalently, index.htm). Batched with
this SYN_STREAM is another REPRI message rewiring style.css to depend on b.js. This serializes the
transfers (modulo the delay associated with message propagation and any transfer buffering delay at
the server).

This transfer schedule may significantly improve performance. By serializing the transfer of resources on the
critical path, the browser can ensure that resources needed immediately do not compete for bandwidth
capacity with less important transfers. Yet, the pipe remains full, as a queue of requests is maintained in the
scheduling tree ready to fill any idle capacity with useful data. Where we cannot make an informed scheduling
decision, we hedge our bets with concurrent transfers by hinting that they are peers and letting the server
decide what makes the most sense --- as in the case of two above the fold images that can be rendered

progressively.

Note that this sort of explicit scheduler hinting is not possible in HTTP today. Requests, once issued, cannot be
reprioritized or reordered on a single connection. This results in suboptimal transfer schedules given the
limitations of HTML lookahead scanning. Yet, lookahead is essential for ensuring the concurrency necessary to
keep the client <-> server pipe full. While the browser might serialize transfers itself, the many small transfers
typical of pageloads would significantly limit utilization. With ordering and reprioritization in SPDY, browsers can
jointly optimize both the transfer pipeline and resource priority as desired, rather than being forced to accept
poor utilization or poor transfer schedules.

- Servicing multiple tabs/users over a single SPDY session​
As an illustration of this case, recall the example from our straw-man design:

Suppose concurrent tabs are loading with a scheduling forest as shown. When a user changes tabs, the
browser simple sends a REPRI for the stream associated with tab2.htm to, say, priority 8. (A batched message
might also reduce the priority of tab1.htm to weight 3.) Because bandwidth allocation decisions are made
tree-by-tree and level-by-level, increasing the priority of tab2.htm effectively shifts capacity for all resource
transfers depending on tab1.htm to tab2.htm.

- Server push
As in client SYN_STREAM messages, server push messages indicate the priority and dependencies of a
resource as chosen by the server. Much like the client, the server is free to adopt prioritization policies to
improve performance, e.g., by prioritizing pushes of styles over images. But, as in our example above, the
browser may update the server's choices as information about resources needed for parsing is learned. (Again,
expressed via REPRI messages.)

Policy considerations
Both priorities and stream dependencies are advisory hints. Browsers may adopt sophisticated policies or
leave dependencies entirely unspecified. Similarly, servers may incorporate dependency hints into very
sophisticated schedulers or ignore them entirely. The protocol mechanisms for encoding dependencies are
designed to be simple. But, these mechanisms afford a very flexible set of policies depending on how browsers
and servers use them. This section expands on several policy considerations.

Assigning and updating dependencies.​
Updates and overhead​

In our examples, we consider a browser that configures dependencies to reflect parser-blocking order for
resources, updated as parsing continues. We expect this to improve performance, but browsers are free to
deviate from this policy, and there may be good reasons to do so. For example, if the parser-blocking order is
highly dynamic (e.g., in response to many JS events), the overhead of updating dependencies may not be
worth the cost, particularly for small transfers. A sophisticated client may base dependency update decisions
on content-length and/or RTT, restricting updates to only those streams likely to benefit from it. Quantitative
implementation experience will be helpful here.​
​
The overhead of updating dependencies depends in part on the existing structure of dependencies. In some
scenarios, it may be more efficient to introduce placeholder nodes to improve the efficiency of common update
operations. For example, consider a variant of our earlier example page:​
​
<html>​
<body>​
<script src="a.js"></script> <!-- containing: document.write('<script src="b.js"></script>'); -->​
​
​
​
...​
​
</body>​
​
In this example, the speculative parser might create 10 streams depending on the JS transfer; i.e.,

But, once a.js is executed, the transfer of b.js should preempt all image transfers; i.e.,

Transitioning between these dependency structures requires sending REPRI messages for each image.
Because updating the dependencies of images is common, a client might create all image streams with a
placeholder dependency, yielding an initial configuration of:

With such an initial configuration, updating the dependencies of the images to the stream associated with b.js
can be accomplished with a single REPRI message updating the placeholder.

Multiple parents​
All of our examples have considered nodes with a single parent. But, single parent trees cannot express some
transfer schedules. For example, an asynchronous script at the end of HTML is non-blocking and does not
block interaction or pageload. It should be loaded after all visible resources (e.g., images) have completed. A
possible dependency graph is:

​

Here, any of img1, img2, or img3 should be prioritized before the asynchronous script, a schedule that cannot
be expressed with single parent pointers.
​
Reacting to server capabilities
Clients should not specify dependencies to servers that do not support it (as indicated by
SETTINGS_MAX_CONCURRENT_DEPENDENCY_SCHEDULING_NODES in the SETTINGS frame). Rather, an
intelligent client may fall back to specifying priorities only, thereby improving performance relative to specifying
dependencies that will be ignored.​
​
Server scheduling.​
A conformant server should respect the semantics of priorities and dependencies in its scheduling policy.
Priorities indicate a preference for weighted scheduling (e.g., using a lottery scheduler) among root nodes (i.e.,
those created with a priority and not a parent). Interior nodes with identical parents are weighted equally.​
​
Server scheduling should reflect guidance from dependencies, but it need need not be strict. If all streams in a

http://dl.acm.org/citation.cfm?id=1267639

dependency tree have data available to write at the server, writes should be serviced first for root nodes, then
children, then grandchildren, and so on. But, children that are ready to write should not starve to enforce a
scheduling dependency. In other words, scheduling dependencies should not lead servers to waste capacity. If
data is not available to continue writing the root, for example, a child ready to write should do so.​
​
Finally, we point out that servers may improve performance even if clients do not provide dependency
information or priorities. For example, an intelligent server may inspect the content type of resources to make
informed prioritization decisions on its own without client guidance. (However, respecting client-provided hints
when available is likely to improve performance, as clients have detailed knowledge of parser dependencies.)​

Garbage collecting dependency information.​
SPDY implementations must take care to protect themselves from the use of dependencies as a DoS vector.
The protocol provides wide flexibility in this regard; servers are free to drop dependency or priority data at any
time without sacrificing correctness.​
​
Otherwise, we envision servers choosing a timeout value for dependency nodes that is large enough to cover
the likely time period during which a client may reference a node; e.g., page load time + rtt. Alternatively, a
large fixed number of dependencies may be maintained per-session with LRU eviction. Either of these policies
is likely to sharply limit the number of missed dependency references. On the client side, browsers should take
care to manage dependencies according to server policies, e.g., by creating new dependency structures rather
than referring to those that have likely timed out and been garbage collected.​

While missed references may be rare, they are unavoidable in an asynchronous system with timeouts. (This is
why we require that servers accept as correct any dependency id.) In cases where a reference is made to an
unknown node at the server, the server may create the referenced id as a new root for future reference or
ignore the dependency entirely (i.e., treat the new stream as a root). ​

	Proposal for Stream Dependencies in SPDY
	Motivation
	Protocol changes
	Examples / use-cases revisited
	Policy considerations

